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disease, we reviewed two decades of ALS/FTLD literature 
and combined this with bioinformatic analyses. We find 
that both RNA-binding proteins and nuclear transport fac-
tors are key players in ALS/FTLD pathology. Moreover, 
our analyses suggest that disturbances in nucleocytoplas-
mic transport play a crucial initiating role in the disease, 
by bridging both nuclear loss and cytoplasmic gain of func-
tions. These findings highlight this process as a novel and 
promising therapeutic target for ALS and FTLD.
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal 
lobar degeneration (FTLD) are two devastating adult-onset 
neurodegenerative disorders. In ALS, motor neurons in the 
motor cortex, brainstem and spinal cord degenerate. This 
leads to motor problems, muscle weakness and paralysis. 
These motor impairments are progressive, and ALS is usu-
ally fatal within 3–5 years after diagnosis [114]. In FTLD, 
cortical neurons in the frontal and anteriotemporal cortex 
of the brain degenerate. FTLD patients can present with 
behavioral and/or personality changes or language prob-
lems [85]. In recent years, it has become increasingly clear 
that these seemingly unrelated diseases, ALS and FTLD, 
are the extremes of a disease spectrum. This idea originated 
from the clinical overlap in a number of patients presenting 
a mix of motor problems typical for ALS and behavioral 
changes characteristic of FTLD [114]. In the last decade, 
solid evidence has emerged for shared molecular mecha-
nisms. Mutations in a set of genes can cause both diseases, 

Abstract  Neurodegenerative diseases are characterized by 
the presence of protein inclusions with a different protein 
content depending on the type of disease. Amyotrophic 
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species are RNA-binding proteins. Interestingly, these pro-
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feature has suggested a potential dual mechanism with both 
nuclear loss of function and cytoplasmic gain of function 
being at play. Yet, why and how this pathological cascade 
is initiated in most patients, and especially sporadic cases, 
is currently unresolved. Recent breakthroughs in C9orf72 
ALS/FTLD disease models point at a pivotal role for the 
nuclear transport system in toxicity. To address whether 
defects in nuclear transport are indeed implicated in the 
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and many ALS and FTLD patients share a similar pathol-
ogy [68, 109].

For both ALS and FTLD, hereditary forms of the disease 
exist. In approximately 10 % of ALS patients and in 40 % 
of FTLD patients, the disease runs in the family. The neu-
rodegeneration in these familial cases is caused by muta-
tions in a heterogeneous set of genes (reviewed in Renton 
et al. [99]; Sieben et al. [109]). While the cause of the dis-
ease in sporadic cases is mostly unknown, the majority of 
patients present with similar neuropathological lesions: the 
RNA-binding protein TAR DNA-binding protein 43 (TDP-
43) was identified as the major component of the ubiquitin-
positive neuronal inclusion bodies observed in nearly all 
ALS patients (~97 %) and patients of the FTLD-TDP sub-
type (~45 %) [3, 68, 90]. The significance of this finding 
was consolidated by the subsequent discovery of mutations 
in the TAR DNA-binding protein gene (TARDBP), encod-
ing TDP-43, in approximately 4 % of familial ALS patients 
[49, 99, 111] and rare FTLD cases [9]. This discovery has 
set the stage for a prime role for TDP-43 aggregation in 
ALS/FTLD pathogenesis. Besides TDP-43, another RNA-
binding protein was found to be strongly implicated in the 
disease: mutations in fused in sarcoma (FUS) are found in 
~5 % of ALS cases and rare cases of FTLD [60, 99, 123], 
and wild-type FUS protein aggregates are present in about 
10  % of FTLD patients [89]. Moreover, patients carrying 
hexanucleotide repeat expansions in the chromosome 9 
open reading frame 72 gene (C9orf72), the most common 
genetic cause of ALS-FTLD [25, 100], have repeat RNA 
foci which sequester numerous RNA-binding proteins [20, 
38, 64, 81]. Additionally, these patients also have dipeptide 
repeat peptides which interfere with RNA metabolism [61], 
and TDP-43 pathology [52]. These breakthroughs from the 
last decade have caused a paradigm shift in the ALS/FTLD 
field. The disease is no longer exclusively considered as a 
proteinopathy —a mere defect in protein folding— but is 
increasingly appreciated as a problem in ribostasis, or the 
conjoined misregulation of RNA-binding proteins and their 
responsive RNAs [98]. Despite these novel insights, the 
exact cause of the pathological aggregation of these RNA-
binding proteins and their consequences remain elusive.

RNA‑binding proteins are strongly implicated 
in the pathology and genetics of ALS/FTLD

To obtain a comprehensive view on protein misregulation 
in ALS and FTLD, we performed a systematic search of 
studies reporting protein mislocalization and/or aggrega-
tion in post-mortem patient material. PubMed search terms 
included ‘ALS’, ‘MND’, ‘FTLD’, ‘FTD’, ‘pathology’, 
‘aggregation’, ‘aggregate’, ‘inclusion’ and ‘mislocaliza-
tion’ (last search on 26/01/2016). Proteins were identified 

as misregulated when they were found aggregated in 
inclusion bodies or were mislocalized, based on immuno-
histochemistry or immunofluorescence in brain or spinal 
cord (muscle in multisystem proteinopathy patients). The 
results are graphically presented in Fig. 1a and show that 
at least 53 proteins are misregulated in patients [6, 12, 16, 
19, 21, 22, 28, 29, 31, 35, 41, 42, 44, 47, 52, 53, 58, 66, 
70, 74, 75, 77, 81, 84, 86–88, 91, 92, 96, 101, 108, 116, 
117, 122, 124–126, 128, 131, 137]. This set of pathological 
proteins could be divided into four main groups based on 
functional annotations derived from UniProt and the litera-
ture. ‘RNA binding proteins’ constitute about 50 % of this 
list, highlighting their key role in the disease. The remain-
ing proteins were involved in ‘Cytoskeleton’, ‘Proteosta-
sis’ or ‘Nuclear transport’. While the first three categories 
are widely appreciated as important players in the disease 
[102], ‘Nuclear transport’ has received limited attention 
[26]. Using GeneMANIA software [127] and data from a 
recent large-scale interactomics study [39], we constructed 
an interaction network for the 53 identified misregulated 
proteins. Despite the large heterogeneity of the input set, 
the network included all proteins (Fig.  1b). This suggests 
that despite their different functions, they act together in 

Fig. 1   RNA-binding proteins are strongly implicated in ALS/
FTLD pathology. a Schematic overview of protein mislocalization 
and aggregation in ALS/FTLD, as determined in post-mortem brain 
or spinal cord (muscle for MSP data). Patients are divided into dif-
ferent categories based on their pathology: SOD1, TDP-43, FUS, 
mutant FUS, Tau or DPR. DPR pathology is concurrent with RNA 
foci and TDP pathology. ALS/FTLD disease genes are boxed. Pro-
teins can be grouped according to their function: ‘RNA metabolism’, 
‘Nuclear transport’, ‘Cytoskeleton’ and ‘Proteostasis’. Misregulated 
RNA-binding proteins can be further divided into three classes based 
on their misregulation: I (red), II (orange) and III (yellow). Asterisk 
denotes debated findings; hash denotes occurrence in several neuro-
degenerative diseases; double hash denotes occurrence in all protein 
aggregation diseases. AD Alzheimer’s disease, HD Huntington’s dis-
ease, MSP multisystem proteinopathy, SCA2 spinocerebellar ataxia 
type 2, aMND atypical motor neuron disease. b Network analysis 
using GeneMANIA indicates that all pathological proteins are highly 
interactive. Physical interactions are depicted in red, genetic in green, 
and colocalization in blue. Ubiquitin was not included in this net-
work. c Word cloud depicting significantly overrepresented terms, 
as analyzed by ingenuity pathway analysis (IPA). Functional terms 
are green, disease and pathology terms black. Terms are scaled to 
the −log10(p value). References: TDP-43 [86], FUS [52, 87, 117], 
EWS [21, 87], TAF15 [22, 87], Matrin-3 [47], hnRNPA1 [42, 53, 88], 
hnRNPA2B1 [53], hnRNPA3 [81], TIA-1 [35, 70, 124], RBM45 [19], 
HuR [77], NONO [108], SMN [44, 122], PDCD7 [44], Coilin [44], 
Gemin-8 [122], PABP-1 [35, 75], ATX2 [29, 31], G3BP-1 [124], 
TTP [124], eIF3b [70], rpS6 [35], eIF4g [28], Drosha [96], XRN1 
[125], Staufen-1 [125], C9orf72 [52, 133], Nup62 [58, 84], Nup88 
[58], Nup107 [144], Nup153 [58], Nup205 [144], Importin α-1 [92], 
Importin β-1 [58, 84], Transportin-1 [91], Ran [126], Rangap-1 [133, 
144], Tau [109, 137], NF-H [52, 131], β-actin [131], Peripherin [52, 
131], KAP-3 [116], TTBK1 [66], TTBK2 [66], RGNEF [52], SOD1 
[52, 128], Optineurin [16], RNF19A [41], Ubiquilin-2 [12], p62 [52], 
ubiquitin [101], PDI [6] and unc-119 [74]

▸
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common pathways. To identify these pathways, we per-
formed enrichment analysis on the pathology protein set 
using Ingenuity Pathway Analysis (IPA®, QIAGEN, http://
www.qiagen.com/ingenuity). Disease terms significantly 
enriched included ‘motor neuron disease’ and ‘frontotem-
poral dementia’, which can be expected given the origin 
of the input data set (Fig. 1c, Supplementary Data). Also, 
‘Paget’s disease of bone’ and ‘inclusion body myopathy’ 
were found. This is also not surprising as it has become 

increasingly clear in the last few years that both these dis-
eases share several pathological hallmarks and disease 
genes with ALS and FTLD [13, 118]. Consequently, all 
of these diseases are often classified as multisystem pro-
teinopathies [118]. Pathology-related terms included ‘for-
mation of inclusion bodies’ and other previously implicated 
abnormalities, such as ‘accumulation of neurofilaments’ 
[134] and ‘accumulation of mitochondria’ [73]. Functional 
terms included ‘translation of protein’ and ‘processing of 

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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RNA’, but also ‘transport of protein’ and ‘transport of RNA’ 
along with ‘axonal transport’. Indeed, the transport of rib-
onucleoprotein particles along the axon for local synaptic 
translation has become a prime pathological mechanism in 
ALS [2, 69], hereby bridging the gap between the earlier 
implicated cytoskeletal defects and the new interest in RNA 
metabolism.

We performed the same analysis for genes linked to ALS 
[99] and/or FTLD [109], and we found similar results (Fig. 
S1, Supplementary Data). This suggests that the identified 
actors and pathways, especially centering on RNA metab-
olism, are indeed implicated in the pathogenesis of these 
diseases.

Dissecting RNA‑binding protein pathology: what 
can we learn?

From the pathological and genetic findings, RNA-bind-
ing proteins emerge as a major class of actors in disease. 
Understanding the consequences but especially the cause 
of their misregulation could, hence, provide us with invalu-
able clues on the pathogenesis of ALS and FTLD.

We classified the implicated RNA-binding proteins 
in three major classes (see Fig.  1a) on the basis of their 
described pathological alterations. Firstly, proteins which 
under normal conditions mainly localize to the nucleus, but 
in the context of the disease mislocalize to the cytoplasm 
and aggregate (class I, red). Secondly, proteins which show 
a decreased number of nuclear bodies in disease (class II, 
orange). Thirdly, cytoplasmic proteins which also target the 
inclusion bodies seen in patients (class III, yellow).

Twelve of the affected RNA-binding proteins fall into 
class I. They include TDP-43 and FUS themselves, but also 
other related RNA-binding proteins which are mutated in 
rare familial cases, i.e., TATA-binding protein-associated 
factor 2N (TAF15) [22], EWS RNA-binding protein 1 
(EWS) [21], Matrin-3 [47], and heterogeneous nuclear 
ribonucleoproteins A1 (hnRNPA1) [53] and A2B1 (hnRN-
PA2B1) [53]. Under normal conditions, these proteins are 
predominantly localized in the nucleus, where they serve 
essential functions in transcription and RNA processing. 
Hence, their nuclear depletion suggests a nuclear loss-of-
function disease mechanism, besides the potential cyto-
plasmic gain of function associated with the inclusion 
bodies. Noteworthy in this regard are the different knock-
out and knockdown models generated which present with 
ALS-related phenotypes [43, 136] and gross transcriptome 
abnormalities [63]. Proteins in class II are as well depleted 
from their normal nuclear localization, hence, also suggest-
ing a loss of function [44, 122]. Despite the nuclear pre-
dominance of class I proteins, they shuttle to the cytoplasm 
in a tightly regulated manner, where they control RNA 

transport, stability, decay and translation [62]. Interestingly, 
upon cellular stress, several of these RNA-binding proteins 
accumulate in large cytoplasmic ribonucleoprotein com-
plexes called stress granules [7], and the formation of these 
stress granules is an essential step in the stress response. 
Proteins in class III are also known to localize to stress 
granules [7]. Given the strong similarities in protein content 
with the disease aggregates, stress granules have been sug-
gested as potential stepping stones toward inclusion body 
formation [98]. Pathological aggregation hence could also 
perturb normal cytoplasmic function of these RNA-binding 
proteins or lead to a novel toxic gain of function.

Extensive efforts have been made to resolve the issue 
whether disease is caused by nuclear loss of function or 
cytoplasmic gain of function of the RNA-binding proteins. 
The available evidence so far suggests that both events are 
not mutually exclusive and could play an equally important 
role in the disease [68]. Identifying the pathways upstream 
of both cytoplasmic mislocalization and aggregation is of 
pivotal importance, as it could uncover targets for therapeu-
tic intervention that prevent both nuclear loss-of-function 
and cytoplasmic gain-of-function mechanisms.

Nuclear transport: bridge between loss and gain 
of function?

Given the nuclear depletion of several RNA-binding pro-
teins in patients, impaired nuclear import has previously 
been suggested as a pathogenic mechanism, and moreover, 
as a key initiating event in pathogenesis [26]. Indeed, most 
pathogenic FUS mutations affect its nuclear localization 
sequence (NLS) and interfere with its proper nuclear tar-
geting [28]. Compellingly, the nuclear/cytoplasmic ratio of 
different FUS mutants in vitro is inversely correlated with 
the age of disease onset in FUS-ALS patients [28]. In addi-
tion to alterations in its amino acid sequence, methylation 
of the FUS NLS also perturbs its nuclear targeting [27]. 
No NLS mutants for TDP-43 have been described in ALS 
or FTLD patients up to now. However, caspase-3 cleavage 
and alternative splicing in patients are known to generate 
an aggregation-prone C-terminal fragment, which lacks 
a functional NLS and, hence, is invisible for the nuclear 
transport machinery [135, 146].

Most mutations in TDP-43 [26], TAF15 [22], EWS [21], 
hnRNPA1 [53], hnRNPA2B1 [53] and several in FUS [26], 
specifically target their prion-like domains. These domains 
are disordered and contain amyloidogenic zipper motifs 
capable of inducing β-sheet formation and aggregation, 
similar to yeast prions [57]. Disease-causing mutations 
often target key conserved residues in these zippers [21, 
22, 53], making these proteins more aggregation-prone. 
Once formed, aggregates of either mutant or wild-type 
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RNA-binding proteins are able to seed prion-like aggrega-
tion of the remaining soluble pool. As these proteins shuttle 
constantly from nucleus to cytoplasm, such sequestration 
will trap these proteins in cytoplasmic aggregates and lead 
to a subsequent nuclear depletion.

As mentioned above, cytoplasmic inclusion bodies 
have been proposed to arise from stress granules [26, 98]: 
more than 70  % of the pathological RNA-binding pro-
teins that we identified are known stress granule compo-
nents (Fig.  2a, b) [7]. This suggests that inclusion bodies 
could be seeded by stress granules or could arise from their 
improper clearance. Autophagy was shown to play a major 
role in this clearance, and interestingly, ALS/FTLD causing 

mutations in the autophagy protein valosin-containing pro-
tein (VCP) indeed perturb stress granule dissolution [13]. 
Recently, it was discovered that stress granules form by 
a process called phase transition. Similar to for example 
water, which can condense from vapor to fluid and freeze 
from fluid to solid, ALS- and FTLD- related RNA-binding 
proteins (e.g., TDP-43, hnRNPs and FUS) can undergo a 
similar phenomenon in vitro and in cell culture [15, 79, 83, 
94] (Fig.  2c). Depending on specific in  vitro conditions, 
such as concentration, salt and temperature, several RNA-
binding proteins spontaneously demix from a watery solu-
tion and form liquid-like protein droplets. These droplets 
are highly reminiscent of cellular stress granules. Although 

Fig. 2   ALS/FTLD-related RNA-binding proteins undergo liquid–
liquid phase transitions. a All RNA-binding proteins misregulated in 
ALS/FTLD are part of endogenous membrane-less organelles. b Sev-
eral of these RNA-binding proteins are part of stress granules in vivo 
[7] or precipitate with β-isox in  vitro [51] (green illustrates percent 
of total). c Scheme depicting RNA-binding protein phase transitions 
and the role of nuclear transport in this process. These phase transi-

tions strongly depend on the local concentrations of the involved 
RNA-binding proteins. Disaggregases, such as VCP, and post-trans-
lational modifications (PTMs) also play a role in this process. Due to 
defects in the proper regulation of this process, e.g., aging and disease 
mutations, liquid-like stress granules can probably seed pathological 
aggregation
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disease-related mutations did not affect this liquid-like 
state, they promoted excessive β-sheet aggregation and 
transformed liquid droplets into solid aggregates [79, 83, 
94]. As was the case for droplet formation, this maturation 
process was also strongly dependent on protein concentra-
tion. Partial maturation of the fluid-like interactions into 
more stable β-sheet structures seems to be inherent to stress 
granules in vivo [46, 132]. This illustrates the necessity of a 
tight control of stress granule dynamics to avoid excessive 
pathological aggregation.

Given the strong concentration dependence of stress 
granule dynamics, nucleocytoplasmic transport seems to 
be important in regulating this process. Indeed, inhibit-
ing nuclear import of hnRNPs spontaneously induces the 
induction of stress granules [79]. On the other hand, over-
expressing FUS NLS mutants [28] or removing the NLS 
sequences from TDP-43 [146] has similar effects. This 
shows that raising the cytoplasmic concentrations of these 
RNA-binding proteins is sufficient to induce stress gran-
ule formation. With respect to this, it is interesting to note 
that these proteins occur at endogenous intracellular con-
centrations which induce droplet formation in  vitro (e.g., 
[hnRNPA1]cell =  7.64  µM [39]  >  [hnRNPA1]droplet =  0.5 
µM [79]). This implies that cells must have evolved effec-
tive ways to regulate the initiation of such liquid-like phase 
transitions, more specifically, by controlling local concen-
trations through subcellular compartmentalization. Indeed, 
these proteins seem to withstand spontaneous phase separa-
tion at high concentrations in the nucleus for reasons cur-
rently unknown.

Nuclear transport factors themselves, such as importins 
and Ran, are well-established stress granule components 
[34, 72] and are known to regulate stress granule dynam-
ics [17, 34, 138]. This suggests that these processes are 
indeed tightly linked and co-regulated. Of note, both FUS 
and TDP-43 control their cellular concentrations by means 
of autoregulation. High nuclear levels will result in a degra-
dation of their own mRNAs through binding of the 3′UTR 
sequences [14, 147]. Pathogenic 3′UTR mutations which 
interfere with this process have been reported for both FUS 
and TDP-43 [36, 147]. This results in their overexpression 
which promotes aggregation. This crucial autoregulatory 
pathway once more stresses the need for proper nuclear 
import/export in the control of FUS and TDP-43 function.

Other membrane-less cellular compartments, e.g., the 
nucleolus or P granules, are also controlled by concentra-
tion-dependent phase transitions [10, 11]. Compellingly, 
all pathological RNA-binding proteins are found in such 
organelles (Fig. 2a), suggesting that this process is of major 
importance to the function of these RNA-binding proteins 
both in health and disease. For example, while a defect in 
nuclear import of class I proteins results in their cytoplas-
mic aggregation, a similar defect could underlie loss of 

nuclear bodies for class II proteins. In this case, lowered 
nuclear levels would lead to the dissolution of their nuclear 
bodies.

Nucleocytoplasmic transport bridges nuclear depletion 
and cytoplasmic aggregation, the two major pathological 
findings in ALS and FTLD. Besides this, nuclear trans-
port factors are an important class of pathological proteins 
(Fig.  1a). Furthermore, mutations in FUS affect binding 
to its corresponding importin [28], and conversely, wild-
type FUS inclusions sequester this specific importin [91]. 
All together, these findings advocate for a pivotal role of 
nucleocytoplasmic transport in the pathogenesis of ALS 
and FTLD.

Nuclear transport factors are modifiers of ALS/
FTLD disease models

We reviewed the literature on different ALS/FTLD models 
and their modifiers to find out whether there is support for 
a role for nucleocytoplasmic transport in the disease. Many 
research groups have harnessed the power of yeast and 
fly genetics to perform high-throughput genetic screens. 
Figure S2a gives an overview of the screens performed in 
ALS/FTLD models.

Fly ALS models of TDP-43, FUS and VAMP-associated 
protein B (VAPB) toxicity were used to identify genetic 
modifiers [24, 45, 142]. These modifiers included nuclear 
transport factors (Fig. S2a). Likewise, yeast genetic modi-
fier screens for TDP-43 and FUS toxicity yielded modifiers 
in this process as well [4, 54, 113] (Fig. S2b). Despite the 
involvement of nuclear transport factors in these disease 
models, convincing evidence for a modifying role of these 
proteins has come from a recent work on C9orf72. Repeat 
expansions in the non-coding part of this gene result in the 
generation repeat RNAs [64, 129], which are translated 
by an ATG-independent mechanism into five dipeptide 
repeats (DPRs) [5, 80, 82, 148]. To investigate the under-
lying mechanisms of C9orf72 ALS-FTLD, a genome-wide 
modifier screen in flies expressing an expanded GGGGCC 
repeat has been performed [32]. This led to the identifica-
tion of numerous nuclear transport factors which were 
able to suppress or enhance the repeat RNA-induced rough 
eye phenotype [32] (Fig. S2a). Flies expressing the repeat 
expansion showed a defective nuclear mRNA export, 
which was reproduced in cortical neurons derived from 
induced pluripotent stem cells from C9orf72 patients. As 
the model used in this study can display effects originating 
from both RNA and DPR toxicity, it remains unclear which 
of them causes the defects in nuclear transport. However, it 
has been suggested that in the current fly models with mod-
erate repeat sizes, DPRs are the predominant mediators of 
neurodegeneration [78, 121].
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The generation of codon-optimized ATG-dependent 
DPR expression constructs has allowed our laboratory 
and others to investigate protein toxicity independent from 
RNA toxicity in C9orf72. Expression of proline-arginine 
or glycine-arginine DPRs was toxic in yeast and induced 
rough eye phenotypes in fly [8, 48, 78, 121, 129]. Two 
genome-wide yeast screens [48] and a screen targeting 
nuclear transport in fly [8] uncovered similar modifier 
genes, which also showed partial overlap with the modifi-
ers from the GGGGCC screen (Fig. S2a). These findings 
suggest an important role of DPRs in the nucleocytoplas-
mic transport defects observed in these models. Another 
recent study concludes that direct RNA toxicity is involved 
in these defects as well, through an aberrant interaction 
of GGGGCC RNA with Ran GTPase-activating protein 1 
(RanGAP1) [144], a key regulator of the energy gradient 
driving nucleocytoplasmic transport (Fig. S2a). Interest-
ingly, RanGAP1 was also found trapped in GA aggregates 
in mouse brain [145]. Lastly, the C9orf72 loss-of-function 
hypothesis, due to lowered transcription levels, has not yet 
been ruled out. Recent reports suggest that the protein itself 
could operate in autophagy [105] and stress granule assem-
bly [71], but also in nucleocytoplasmic transport [133].

All these suggested mechanisms in C9orf72 patho-
genesis are not mutually exclusive, and future work is 
required to untangle their relative contributions to the 
disease (reviewed in [37]). However, all of them seem to 
point toward nucleocytoplasmic transport as a key player 
in C9orf72 pathogenesis, confirming the previously antici-
pated role for this process in ALS and FTLD [26].

Nuclear transport defects are implicated in ALS 
and FTLD

The recent developments in the C9orf72 field point at key 
pathways in nucleocytoplasmic transport. These findings 
could explain the mislocalization and aggregation of TDP-
43 and other RNA-binding proteins in patients carrying a 
repeat expansion. Yet, why wild-type proteins mislocalize 
in other types of the disease, and especially in sporadic 
patients, remains largely enigmatic.

ALS and FTLD are typically adult-onset disorders, sug-
gesting that aging and its related processes are crucial to 
induce the disease. Interestingly, the efficiency and selec-
tivity of nucleocytoplasmic transport deteriorates signifi-
cantly during aging [23]. This can be largely attributed to 
the fact that several nuclear pore proteins are among the 
most long-lived proteins in post-mitotic neurons [103]. 
Postmitotic cells are unable to repair damaged nuclear 
pores, which become leaky during aging. Oxidative stress, 
a well-known hallmark of aging and implicated in several 
neurodegenerative disorders [65], is known to cause such 

damage to the nuclear pore [23, 140], but also to other 
components of the nuclear transport machinery [18, 59]. 
Several nuclear transport factors themselves have already 
been found misregulated in post-mortem ALS and FTLD 
patient material [58, 84, 92, 126, 144] (Fig. 1a). However, 
the precise reason for this mislocalization has remained 
elusive. A recent landmark study concludes that defects in 
proteostasis could be involved in this process [130]. It was 
found that cytoplasmic aggregation of synthetic amyloido-
genic proteins, as well as disease relevant proteins, such as 
TDP-43 fragments, did cause mislocalization and aggrega-
tion of nuclear pore subunits and other nuclear transport 
factors. This resulted in defects in protein import and also 
in mRNA export. Interestingly, mice expressing mutant 
superoxide dismutase 1 (SOD1) showed misregulation 
of different nuclear pore components and import factors 
[143]. Additionally, aggregates of mutant VAPB [120] or 
TDP-43 [107] also affected the solubility of these proteins 
(Fig. S2b). Of note, wild-type VAPB itself seems to be 
important in nuclear pore assembly [120]. Lastly, wild-type 
FUS aggregates sequester transportin-1 and coaggregate 
with other cargoes in FTLD-FUS cases [91].

Besides protein aggregation, defects in RNA metabolism 
are considered to be a cornerstone of ALS/FTLD pathogen-
esis [68]. TDP-43 itself regulates numerous nuclear trans-
port genes [106, 126]. Consequently, TDP-43 deregula-
tion could initiate a positive feedback loop by perturbing 
nuclear transport. TDP-43 knockdown in cell lines led to 
depletion and mislocalization of several nuclear transport 
factors [112] (Fig. S2b). Also, TDP-43 mislocalized in an 
FTLD mouse model, and this was accompanied by nuclear 
depletion of Ran GTPase (Ran) [126]. TDP-43 was shown 
to regulate Ran expression, and loss of TDP-43 function 
resulted in lower Ran levels. Moreover, overexpression 
of Ran was able to rescue neurodegeneration and TDP-
43 mislocalization in cortical neurons derived from this 
mouse model [126]. This latter finding, together with the 
recent C9orf72 reports [32, 48, 144], suggests that nucleo-
cytoplasmic transport could be an interesting therapeutic 
strategy.

Despite the importance of nuclear transport proteins in 
the pathology of ALS/FTLD, this group of genes has not 
been strongly implicated in the genetics of the disease so 
far. A notable exception is GLE1 RNA export mediator 
(Gle1). Mutations in Gle1 were recently linked to ALS 
cases [50]. Gle1 knockdown did induce motor neuron 
defects in embryonic zebrafish, which could be rescued 
by wild type but not by mutant Gle1. Besides functioning 
in mRNA export, Gle1 has been also shown to regulate 
as well stress granule dynamics [1]. This genetic link of 
ALS with an established mRNA export factor once more 
illustrates the potential importance of this process in the 
disease. As indicated before, the C9orf72 protein is also 
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a suspected nuclear transport factor [133], which could 
further increase the genetic evidence for a role of nuclear 
transport in the disease.

Can nuclear transport defects initiate disease?

Nucleocytoplasmic transport involves protein import and 
export, mediated by importins and exportins, respectively. 
Numerous different import and export factors exist, but the 
most important ones include transportin-1, the importin α2/
β1 complex and exportin-1. Interestingly, these different 
import factors were recently identified in different genetic 
screens for modifiers of C9orf72 toxicity [8, 32, 48, 144], 
as discussed above. Using quantitative mass spectrometry 
in combination with in  vitro import assays, two studies 
aimed to identify cargoes dependent on transportin-1 or 
importin α2/β1 for their nuclear targeting (Fig. 3a) [55, 56]. 
In each case, about 80 high-confidence cargoes were found 
using stringent cut-off criteria. We used these proteins to 
reconstruct interaction networks for both import pathway 
clients. Figure 3b shows the highly interactive network of 
transportin-1 cargoes, suggesting that all these proteins 

share similar functions. Two subnetworks drew our inter-
est: firstly, ribosomal proteins are one of the main clients 
of nuclear import, since after cytoplasmic translation, these 
proteins need to shuttle back to the nucleolus for ribosomal 
subunit assembly. Of note, nucleolar stress and a defec-
tive ribosomal biogenesis have been recently implicated in 
ALS/FTLD models [38, 48, 61, 115, 129]. Secondly, sev-
eral hnRNP family members were also detected among the 
transportin-1 cargoes. This family of RNA-binding pro-
teins has been increasingly implicated in ALS/FTLD in 
the last years [42, 81], and mutations in some of them are 
rare causes of the disease [53]. Enrichment analysis uncov-
ered strong associations with ALS/FTLD-related pathways 
for the entire cargo set. Significantly enriched terms espe-
cially centered on RNA metabolism and protein translation 
(Fig. 3c, Supplementary Data). Moreover, when looking at 
enriched disease terms, we found that these sets of proteins 
were associated with ‘neuromuscular disease’ and ‘demen-
tia’. Also, the related proteinopathies ‘Paget’s disease of 
bone’ and ‘inclusion body myopathy’ resulted from this 
analysis. Network and enrichment analysis of the importin 
α2/β1 dataset gave similar results as for transportin-1 (Sup-
plementary Data).

Fig. 3   Nuclear transport cargoes are strongly implicated in ALS/
FTLD and related pathways. We analyzed transportin-1 and expor-
tin-1 cargo lists, which were experimentally validated. a Scheme 
of experimental setup for determining transportin-1 cargoes [55]. b 
These cargo proteins form a dense interaction network. Two subnet-

works, the ribosome and hnRNP family, are highlighted. Red depicts 
physical interactions, green genetic, and blue colocalization. c Word 
cloud of significantly overrepresented terms, as analyzed by ingenuity 
pathway analysis (IPA). Functional terms are black, and disease terms 
red. Terms are scaled to the −log10 (p value)
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Nuclear export mediated by exportin-1 can be specifi-
cally inhibited by leptomycin B [119]. Using quantitative 
mass spectrometry, proteins affected in their subcellular 
distribution by this compound have been identified [119]. 
Whereas most proteins were unaffected, just over 100 pro-
teins showed a significant depletion from the cytoplasm 
and/or accumulation in the nucleus. When analyzing 
this set for enriched functional and disease terms, similar 
pathways were found as for the importin cargo sets (Sup-
plementary Data). Interestingly, nuclear transport factors 
themselves were also misregulated by leptomycin B treat-
ment. Indeed, nucleocytoplasmic transport is dependent on 
the continuous translocation of different effectors back and 
forth in and out of the nucleus to maintain their appropriate 
cellular distribution, e.g., importins need to go back to the 
cytoplasm for binding new NLS cargoes. Hence, disrupting 
one aspect of this process will have widespread effects on 
both import and export.

Our analyses of nuclear transport cargo sets illustrate 
that problems in nucleocytoplasmic transport will affect 
processes implicated in the disease, especially centering on 
RNA metabolism. Moreover, the fact that these cargo sets 
show a strong enrichment for proteins already implicated 
in ALS/FTLD and related disorders, suggests that defects 
in nuclear transport could initiate important pathogenic 
cascades.

Why are neurons vulnerable for nuclear transport 
defects?

Nucleocytoplasmic transport is an essential process in cel-
lular organization and functioning. So, if defects in nuclear 
transport are a cause of ALS/FTLD, why is degeneration 
largely restricted to specific neuronal populations? Explain-
ing this discrepancy between general pathogenic pathways 
and selective cell death has been puzzling the neurodegen-
eration field for years, and applies to numerous established 
disease mechanisms, e.g., excitotoxicity, mitochondrial 
damage or protein aggregation [104].

A potential reason why nucleocytoplasmic transport 
defects could especially harm neurons can be found in 
their extreme cellular organization: neurons are the long-
est cells in the human body, e.g., motor neurons can reach 
lengths of up to 1 m in adults. This means that the synapse, 
the site of action, is located on a phenomenal distance from 
the nucleus. Synapses are, for their proper functioning, 
dependent on local translation and, hence, RNA transport 
along the axon. Numerous ALS/FTLD-associated genes 
are implicated exactly in this process [2, 69]. Also, nuclear 
transport factors themselves are found locally in the axon 
and at the axon terminals where they play a crucial role in 
this long-distance communication [95, 141]. As discussed 

above, the post-mitotic nature of neurons predisposes them 
as well to age-related disturbances in nucleocytoplasmic 
transport [23, 103].

On the other hand, the central nervous system is a hot 
spot for alternative splicing events [97, 139]. Brain alterna-
tive splicing events are also more conserved during evolu-
tion than in other tissues [76], illustrating the importance of 
this process in normal brain functioning [97]. Such tissue-
specific splicing events seem to fine-tune protein–protein 
interaction networks according to the specific need of the 
cell type [30]. Both ALS- and/or FTLD-linked genes and 
pathological proteins were significantly enriched for splic-
ing factors (‘splicing of RNA’; Benjamini–Hochberg cor-
rected p value  =  1.21E−03 and 1.84E−03). Defects in 
splicing are also a common theme in neurological diseases 
[67]. Maintaining proper nuclear levels of splicing factors, 
hence, is key to neuronal functioning.

Conclusions

Landmark discoveries in the last decade have vastly 
expanded our knowledge on ALS and FTLD. The involve-
ment of RNA-binding proteins has moved the field from 
viewing the diseases as exclusive proteinopathies to a more 
holistic view of ALS/FTLD as a problem in ribostasis, link-
ing RNA-binding protein aggregation to problems in RNA 
metabolism. Mutations in numerous genes encoding such 
proteins strengthened this hypothesis, and finally, the dis-
covery of the C9orf72 expansion consolidated the impor-
tance of RNA metabolism in the disease. However, key 
issues remain to be addressed. Especially, the exact under-
pinnings of RNA-binding protein mislocalization proved 
elusive. NLS mutations were identified in FUS, but why 
wild-type proteins mislocalize was unknown. Only very 
recently, the identification of nuclear transport genes as 
modifiers of C9orf72 disease models shifted the focus of 
the field explicitly to nucleocytoplasmic transport.

In this review, we tried to discuss all data currently avail-
able on the role of nucleocytoplasmic transport in ALS and 
FTLD. Moreover, we tried to address the question whether 
transport defects could be an initiating event in the disease. 
We used meta-analyses and bioinformatics to investigate 
this option. We found that nucleocytoplasmic transport 
cargoes are indeed associated with ALS/FTLD and related 
pathogenic processes. This suggests that a disruption of 
their proper localization could result in a loss of their nor-
mal functions, such as RNA splicing and transport, both 
vital in neuronal health. The function of RNA-binding pro-
teins is strictly regulated, and largely depends on their sub-
cellular localization. High levels of specific RNA-binding 
proteins in the cytoplasm will initiate spontaneous com-
partmentalization of these proteins into fluid-like granules, 
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such as stress granules. These dynamic organelles are the 
prime suspects as seeds of the pathological aggregates. 
Compellingly, more than 70 % of all RNA-binding proteins 
misregulated in ALS/FTLD are known constituents of these 
stress granules. Recent evidence indeed suggests that RNA-
binding proteins can undergo in vitro and in vivo concen-
tration-dependent phase separations, and in  vitro droplet 
maturation to pathological aggregates was observed in real 
time [79, 94]. These data highlight the need for a tight con-
trol of stress granule dynamics, with an important role for 
nuclear transport in this process. Hence, both loss of nor-
mal nuclear function and cytoplasmic aggregation of RNA-
binding proteins seem to converge on nucleocytoplasmic 
transport. In Fig. 4, we provide an overview of how nuclear 
transport could fit in the framework of ALS/FTLD patho-
genesis, and how disease mutants affect these processes.

The recent C9orf72 modifier studies provided us with a 
list of interesting candidates which could be more broadly 
implicated in ALS and FTLD. Figuring out whether and 

how nucleocytoplasmic transport could be perturbed in 
sporadic patients will be one of the key future challenges. 
Nucleocytoplasmic transport has been therapeutically 
targeted before, but mostly by inhibition [40]. More fun-
damental research into the precise regulation of this pro-
cess will be needed to find ways to boost, specifically, the 
affected nucleocytoplasmic transport pathways. Indeed, 
upregulation of this process has been shown to rescue neu-
rodegeneration in yeast, fly and neuronal ALS/FTLD mod-
els [48, 126, 144]. Consequently, nucleocytoplasmic trans-
port could become a novel and promising therapeutic target 
for ALS and FTLD.
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