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Far upstream element binding protein 1 (FUBP1), a DNA-binding protein, participates in diverse tumor-promoting behaviors by
regulating the expression of oncogenes in the nucleus, but the underlying mechanisms remain to be elucidated. In the present study,
we found that FUBP1mRNA and protein expressions were markedly upregulated and closely linked with poor prognosis in cervical
cancer. In vitro, functional experiments showed that knockdown of FUBP1 inhibited CC cell proliferation and migration.
Therefore, FUBP1 plays a prooncogenic function in CC progression. Further investigations for the first time demonstrated that
nuclear localization of FUBP1 regulated the gene expression of immune checkpoint NRP1. Moreover, our work demonstrated
that FUBP1 translocated into the nucleus which was mediated by interacting with Transportin-1 (TNPO1). Collectively, this
study revealed that FUBP1 might be a potential therapeutic target for the restriction of tumor progression.

1. Introduction

FUBP1 (far upstream element binding protein 1) is an
important regulator of transcription and translation that
exerts its function by binding to the distal far upstream
element (FUSE) [1]. The oncoprotein role of FUBP1 and
overexpression of FUBP1 have been demonstrated in mul-
tiple types of cancers, such as hepatocellular carcinoma,
neuroblastoma, myeloid leukemia, and endometrial cancer
[2–5]. As a DNA helicase V, FUBP1 regulates the expres-
sion of downstream target genes, including MYC, by form-
ing stable complexes with single-stranded DNA and
promoting oncogenic processes, such as tumorigenesis
and progression [6, 7]. Given that the nuclear localization
of FUBP1 crucially affects the transcription of oncogenes,
we speculated that blocking the nuclear import of FUBP1
suppresses cancer proliferation and becomes a potential
target for cancer therapy.

During the immune response, immune system maintains
self-tolerance or prevents side tissue damage using a series of
immune checkpoints [8]. To further understand the complex
tissue microenvironment (TME) under pathophysiological
conditions, such as tumor TME, it is important to analyze
immune checkpoint proteins and phenotypic markers. Classi-
cal immune checkpoint proteins PD-1 and CTLA-4 are upreg-
ulated in tumor-infiltrating T cells, and checkpoint blockade
immunotherapy established a new approach in cancer treat-
ment [9, 10]. As an unidentified immune checkpoint in T cells,
blocking Neuropilin-1 (NRP1) can improve immunotherapy
and prevent cancer recurrence [11]. NRP1was originally iden-
tified as a neuronal and endothelial receptor that is required
for normal embryonic development and angiogenesis [12].
NRP1 is also expressed in a variety of immune cell types
involving in some immune functions [13]. NRP1 is upregu-
lated in Treg cells of cancer patients, suggesting that it may
be a novel target of cancer immunotherapy.
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Dysregulation of the nuclear-cytoplasmic transport of
macromolecules is associated with many diseases, including
cancer [14]. Nuclear-cytoplasmic translocation is responsible
for regulating the physiological levels and temporal-spatial
positions of tumor suppressors, oncoproteins, and other
macromolecules, which are closely associated with tumori-
genesis and drug resistance processes [15, 16]. Functional
proteins with locating in the nucleus, such as transcription
factors, are synthesized in the cytoplasm and enter the
nucleus by interacting with importins to regulate gene
expression and signal transduction [17, 18]. TNPO1 encodes
a nuclear import protein that participates in the nuclear
transport of macromolecules, ciliary transport, and mitosis
[19]. In addition, TNPO1 mediates the transcription factor
Snail into the nucleus to inhibit the expression of E-
cadherin and enhance the invasion of liver cancer cells [20].
Therefore, it is particularly urgent and important to explore
the mechanisms of nuclear-cytoplasmic transport of macro-
molecules in cancers.

In the present study, the expression of FUBP1 was mark-
edly increased in CC tissue, and increased expression wors-
ened the prognosis of CC patients. The biological
experiments showed that FUBP1 promoted CC cell prolifer-
ation and migration. We further demonstrated FUNP1 regu-
lated the gene transcription of immune checkpoint NRP1
and potentiates immune suppression. Moreover, we revealed
for the first time a PY-NLS in the FUBP1 sequence and found
that TNPO1 is responsible for the nuclear import of FUBP1.

2. Materials and Methods

2.1. Human CC Tissue Specimens. In this research, the clini-
cal patient tissue microarray contained 40 paired cervical
cancer and paracarcinoma tissue specimens from Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital. All
tissue specimens were confirmed by pathologist diagnosis.
The informed consent was given to patients before this
research.

2.2. Cell Culture. Human CC cells (MS751 and Siha) and
HEK-293 cells were preserved in Shanghai Cancer Institute,
Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong Uni-
versity. These cells were all cultured in DMEM (GIBCO) and
supplemented with 10% FBS and (v/v) penicillin/streptomy-
cin at 37°C in an atmosphere containing 5%-CO2.

2.3. Immunohistochemical Staining. Clinical patient tissue
microarray was bedded in paraffin for immunohistochemis-
try. IHC staining and score criteria were showed as previous
research [21]. The primary antibody used was anti-FUBP1
(dilution 1 : 1000, ab181111, Abcam).

2.4. Quantitative Real-Time PCR. Total mRNA was extracted
from cells using Trizol reagent (Takara) following the operat-
ing protocol. qRT-PCR was performed with SYBR Green
Supermix (Bimake) on a 7500 RT-PCR system (Applied Bio-
systems). Reference gene 18S was utilized to normalization.
Primer sets used for FUBP1, NRP1, MYC, and 18 s RNA
examination were as follows: FUBP1 forward 5′-GGAACA

ACACCTGATAGGATAGC-3′, FUBP1 reverse 5′-GCCA
GCCTGAACACTTCGTAG-3′; NRP1 forward 5′-GGCG
CTTTTCGCAACGATAAA -3′, NRP1 reverse 5′-TCGCAT
TTTTCACTTGGGTGAT -3′; MYC forward 5′-ATGCCC
CTCAACGTGAACTTC-3′, MYC reverse 5′-CGCAAC
ATAGGATGGAGAGCA -3′; 18 s forward 5′-TGCGAG
TACTCAACACCAACA-3′, 18 s reverse 5′-GCATATCTT
CGGCCCACA-3′.

The formula RQ = 2 − ΔCT was utilized to calculate gene
expression levels.

2.5. Small Interfering RNA. siRNAs against FUBP1 and
TNPO1 were purchased from Gene Pharma (Shanghai,
China). Transfection according to the manufacture’s proto-
cols uses Lipofectamine 3000. For FUBP1 siRNA: siFUBP1-
1: 5-GGUGUUCGCAUUCAGUUUA-3, siFUBP1-2: 5-
GGUGCUGACAAACCUCUUA-3. For TNPO1 siRNA:
siTNPO1: 5-GUAGGACUCAAGCUCUAAU-3.

2.6. Western Blotting. Whole-cell lysates and separate nucle-
ar/cytoplasmic fractions were extracted from cells according
to routine protocols. Western blotting and coimmunopreci-
pitation were executed as preceding description [21]. The
antibodies against GAPDH (60004-1-Ig), Flag-tag (20543-
1-AP), α-tubulin (11224-1-AP), Lamin B1 (12987-1-AP),
and GST-tag (HRP-66001) were purchased from Protein-
Tech. The antibodies against TNPO1 (ab10303, Abcam)
and FUBP1 (ab181111, Abcam).

2.7. Cell Viability and Colony Formation Assay. MS751 and
Siha cells were transfected with si-FUBP1-1, si-FUBP1-2, or
siNC. CCK-8 assay and colony formation assay were exe-
cuted as preceding description [21].

2.8. Edu Stain and Immunofluorescence Assay. MS751 and
Siha cells, after transfected with siFUBP1-1, siFUBP1-2, or
siNC 48h and cotreatment with 100μL of EdU reagent for
4 h. Cells were fixed using 4% paraformaldehyde for 30min
and permeabilized with 0.3% Triton X-100. Immunofluores-
cence images were acquired by using the confocal micro-
scope (Carl Zeiss, Germany) as the describe of protocol.

2.9. Plasmid DNA. The full-length sequence and mutant con-
structs of human FUBP1 were digestion into the 5′ NheI and
3′ NotI of pcDNA3.1-Flag-EGFP. PY-NLS constructs were
generated into the 5′ BsrGI and 3′ EcoRI restriction sites of
pcDNA3.1-GST-EGFP. The construct of M9M was digested
into 5′ BsrGI and 3′ EcoRI of the pcDNA3.1 vector [22].
Plasmid DNAs were constructed and mutagenized using
standard PCR-based methodologies, and all protein-coding
regions that were generated were verified by DNA
sequencing.

2.10. Statistical Analysis. Data were presented as the mean
± SD. The SPSS 19.0 and GraphPad Prism 8.0 software was
employed for statistical analysis. Student’s t-test was
employed to analyze two groups of data. Values of p < 0:05
were considered statistically significant.
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Figure 1: Continued.
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3. Results

3.1. FUBP1 Overexpression Is Correlated with Poor Prognosis
in CC. The genetic overexpression of FUBP1 was demon-
strated in a multitude of cancers by comparing pan-cancer
gene expression, such as cervical cancer (CC), which indi-
cates that FUBP1 may act as an oncogene (Figure 1(a)). The
expression profiles of FUBP1 in the GSE6791 dataset showed
that FUBP1 expression was significantly upregulated in CC
tissues compared with normal cervix tissues (Figure 1(b)).
Moreover, we indicated that FUBP1 expression was markedly
increased in CC tissues by analyzing other GEO datasets
(GSE9750, GSE7410, and GSE7803) (Figures 1(c)–1(e)).
Meanwhile, high FUBP1mRNA expression was strongly cor-
related with tumor progression and poor survival in CC
patients (Figures 1(f) and 1(g)). FUBP1 upregulation was fur-
ther validated by immunohistochemical staining assay in a
tissue microarray, which included 40 paired CC/paracarci-
noma tissue specimens (Figure 1(h)). Overall, we speculated
that FUBP1 is a particular prooncogenic gene that selectively
contributes to the progression of CC.

3.2. FUBP1 Promoted CC Cell Proliferation and Migration In
Vitro. To validate the roles of FUBP1 in CC development,
two CC cell lines with higher FUBP1 mRNA and protein
levels, MS751 and Siha, were picked up (Figures 1(i) and
1(j)). Knockdown of FUBP1 and overexpression of FUBP1
were confirmed by quantitative real-time PCR and immuno-
blot analysis (Figures 2(a) and 2(b)). To analyze the effect of
FUBP1 on CC cell proliferation, a CCK-8 assay was per-
formed. Knockdown of FUBP1 reduced cell viability
(Figure 2(c)). In contrast, the overexpression of FUBP1
markedly enhanced cell viability (Figure 2(d)). In line with
these findings, the clonogenic assay was utilized to validate
the above results (Figures 2(e) and 2(f)). We also performed
an EdU staining assay to detect cell proliferation. Consis-
tently, the percentage of EdU-positive cells decreased after
FUBP1 knockdown (Figure 2(g)). Meanwhile, we found that
knockdown of FUBP1 reduced the migratory capability of
MS751 and Siha cells, while an enhanced migratory capabil-
ity was demonstrated in the FUBP1 overexpression groups
(Figures 2(h) and 2(i)). Collectively, these data indicated that
FUBP1 promotes CC cell proliferation and migration.
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Figure 1: FUBP1 is upregulated and correlated with a poor prognosis in cervical cancer. (a) Analysis of FUBP1 genetic expression across
various human cancers using TCGA databases. (b–e) Expression profiles of FUBP1 in cervical cancer (CC) and normal cervix (NC)
samples from GSE6791 (b), GSE7410 (c), GSE7803 (d), and GSE9750 (e) datasets. (f) Expression profiles of FUBP1 in FIGO from TCGA
databases. (g) Kaplan-Meier analysis of the overall survival of patients with FUBP1 high or low expression level. (h) Representative
immunohistochemical images and quantification analysis showing FUBP1 expression in CC and paracarcinoma samples from the sixth
hospital. (i, j) The mRNA (i) and protein levels (j) in different CC cell lines. Scale bar: 50 μm. Two-tailed t-test, ∗p < 0:05.
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Figure 2: Continued.
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3.3. FUBP1 Promoted the NRP1 Expression and Contributed
to Tumor Immune Evasion. Immunotherapy has revealed
promise in solid tumor treatment. To further investigate
the function of FUBP1 in CC progression, we first utilized
expression of FUBP1 to analysis the infiltration level of dif-
ferent immune cells in CC tissues by TIMER database. As
expected, the expression of FUBP1 significantly positive
association with Neutrophil, Treg, and CD8+ cells infiltration
(Figure 3(a)). Moreover, we performed the Gene-Immune
Analysis using Sanger box (http://sangerbox.com/Index).
These analysis results demonstrated that the overexpression
of FUBP1 is correlated with Memory CD8+ T cell, Regula-
tory T cell, and Neutrophil immune pathways (Figure 3(b)).
We also found that the high expression of FUBP1 is closely
associated with a various of expression of immune check-
points, especially NRP1 (Figure 3(c)). NRP1 as an immune
checkpoint plays a crucial role in limiting long-term antitu-
mor immunity. We measured the mRNA levels of FUBP1
and NRP1 in the CESC TCGA database and analyzed their
correlations. A positive correlation between FUBP1 and
NRP1 was detected in CC patients (Figure 3(d)). Further-
more, knockdown of FUBP1 remarkedly suppressed NRP1
expression compared to control groups in MS751 and Siha
cells (Figure 3(e)). In contrast, the overexpression of FUBP1
markedly enhanced the expression of NRP1.

3.4. The PY-NLS Motif of FUBP1 Is Necessary and Sufficient
for Nuclear Import. To regulate the expression of NRP1, the
nuclear import of FUBP1 requires nuclear localization signal
(NLS) modulation. We noted the nonclassical PY-NLS motif,
which was recognized by Transportin 1 (TNPO1), within
amino acids FUBP1 486-505, and the motif is highly con-
served in various mammalian species (Figure 4(a)). To further
investigate whether the PY-NLS within the C-terminal
domain of FUBP1 is required for nuclear import, we generated
a deletion mutant lacking the PY-NLS motif (486-505).
Immunoblot analysis of separate nuclear/cytoplasmic frac-
tions and immunofluorescence assay showed nuclear accumu-
lation ofWT FUBP1 and redistribution of the deletionmutant
to the cytoplasm (Figures 4(b) and 4(d)). To test whether the

PY-NLS motif of FUBP1 is not only necessary but also suffi-
cient for active nuclear import, the PY-NLS domain and its
point mutant (P504T/Y505T) were inserted into the C-
terminus of the cytosolic reporter protein GST-GFP
(∼55kDa). In contrast to PY-NLS, results showed that the
point mutant was mostly located in the cytoplasm
(Figures 4(c) and 4(e)). Moreover, the nuclear localization of
WT and PY-NLS were dramatically decreased when the
TNPO1-specific inhibitor small peptide (M9M) was trans-
fected (Figures 4(d) and 4(e)) [23]. Taken together, these
results demonstrate that the PY-NLS within the C-terminus
of FUBP1 is necessary and sufficient for active nuclear import.

3.5. Karyopherin TNPO1 Modulates the Nuclear Import of
FUBP1. The sequence of FUBP1 contained a PY-NLS (pro-
line-tyrosine) motif, which was recognized by Transportin 1
(TNPO1). Therefore, our results demonstrated that FUBP1
was readily coimmunoprecipitated with TNPO1 in MS751
and Siha cells and vice versa (Figures 5(a) and 5(b)). More-
over, immunoblot analysis of separate nuclear/cytoplasmic
fractions and immunofluorescence assay indicated that the
nuclear localization of FUBP1 was decreased when TNPO1
was knocked down (Figures 5(c) and 5(e)). Meanwhile, the
nuclear localization of FUBP1 was decreased when the M9M
construct was expressed in cancer cells (Figures 5(d) and
5(f)). To further explore the effects of blocking nuclear import
on the transcription-correlation function of FUBP1, we exam-
ined the expression of NRP1 and the downstream genes, such
as MYC. As expected, knockdown of TNPO1 or M9M also
remarkedly suppressed the expression of NRP1 and MYC
(Figure 5(i)). The analysis results also revealed that the effects
detected by siFUBP1s were similar (Figures 5(g) and 5(h)), as
shown in previous studies [7]. Collectively, our work demon-
strated that TNPO1 mediates the nuclear import of FUBP1
and regulates transcription-correlation function.

4. Discussion

Human far upstream element binding protein 1 (FUBP1) is
an important regulator of gene transcription and translation
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Figure 2: FUBP1 promotes the cell proliferation and migration of CC in vitro. (a, b) The mRNA and protein level in MS751 and Siha after
FUBP1 knockdown or overexpression. (c, d) CCK-8 analysis of MS751 and Siha cell viability after FUBP1 knockdown or overexpression. (e, f)
Representative colony formation and quantification number of colonies after FUBP1 knockdown or overexpression. (g) Representative EdU
staining image and quantification ratio of proliferation cells after FUBP1 knockdown. (h, i) Representative transwell assay and quantification
analysis after FUBP1 knockdown or overexpression. Error bars represent mean ± standard error of mean. Scar bar: 50μm. Two-tailed t-test,
∗p < 0:05.
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[7]. As a transcription-associated DNA helicase, dysregula-
tion of the FUBP1 gene is a frequently occurring event in a
multitude of malignancies and is associated with tumorigen-
esis and progression, and FUBP1 has increasingly become a
novel pharmacological target for cancer treatment [24]. This
work intends to investigate the biological functions and
molecular mechanisms of FUBP1 in CC progression.

A series of transcription-associated regulators have dem-
onstrated that these genes exhibit both tumorigenic and anti-
tumorigenic functions in different cancers [25]. The “double-
agent” functions of the FUBP1 gene have been identified in a
variety of cancers; for example, genomic loss-of-function

mutations are linked with poor survival in oligodendroglio-
mas, suggesting a tumor-suppressive function of FUBP1
[26]. In contrast, in other tumors, including hepatocellular
carcinoma and ovarian cancer, the more general genomic
alteration of FUBP1 is excessive expression, which is often
inversely correlated with overall survival [2, 27]. In the pres-
ent study, widespread computational bioinformatic analysis
from some independent databases and TAMs results demon-
strated that the expression of FUBP1 was significantly
increased in CC and was associated with poor prognosis.
Moreover, our work demonstrated that knockdown of
FUBP1 suppressed the proliferation and migration of CC
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Figure 3: FUBP1 contributed to tumor immune evasion by regulating NRP1 expression. (a) The abundances of immune infiltrates are
estimated by TIMER algorithm. (b, c) Gene-immune analysis of FUBP1 in CC conducted on Sanger box. (d) The correlation between
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cells. Therefore, we suggest that FUBP1 may play an onco-
genic function in CC progression.

The dysregulated expression of ligands and oncogenes
contributes to tumor immune evasion by activating immune
checkpoints during cancer progression and metastasis [28].
NRP1 exerts coreceptor function for LAP-TGF-β by binding
the Glycoprotein A repetitions predominant, which links to
poor tumor immunity, in breast cancer [29]. Previous studies
demonstrate that an intratumoral expression of NRP-
1/Sema3A blocking biologicals increases antitumor immu-

nity [30]. Checkpoint blockade immunotherapy (ICB) has
revolutionized tumor-treatment, but just a small percentage
(10%-30%) of cancer patients establish lasting clinical
responses [31]. In the harsh tumor microenvironments, the
immunoregulatory receptor Neuropilin-1 (NRP1) is very
important to maintain the function, integrity, and survival
of intertumoral regulatory T cells (Treg cells) [32]. Unlike
other immune checkpoints, such as PD1 and CTLA4,
NRP1 can not only enhances the function of Treg cells but
also inhibits and limits CD8+ T cell memory response during
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an antitumor immune response [33]. In this study, we
found that the expression of FUBP1 associated with many
immune checkpoint proteins, and NRP1 is the most obvi-
ous one. Knockdown of FUBP1 significantly reduced the
expression of NRP1 in CC cells. Whether FUBP1 is
associated with NRP1 expression in tumor-infiltrated lym-
phocytes remains more discussion. These results indicated
that FUBP1 may be contributed to the regulation of tumor
immune inhibitory by increasing the expression of NRP1 in
CC cells.

FUBP1 interacts with single-stranded DNA (ssDNA) and
forms a stable complex through its four K-homology (KH)
motifs [34]. To ensure accurate DNA-binding transcription-
correlation function of FUBP1, FUBP1 is commonly enriched
in the nucleus. FUBP1, as a macromolecular substance, with a
mass of 67kD, and the nuclear-cytoplasmic transport of the
FUBP1 protein requires binding to karyopherin-β proteins
[35]. In the present study, we found a nonclassical PY-NLS
motif within amino acids FUBP1 486-505. Our mutational
analysis suggests that the PY-NLSmotif of FUBP1 is necessary
and sufficiently required for active nuclear import. Moreover,
the immunoblot analysis and immunofluorescence results
revealed for the first time a new molecular mechanism for
the nuclear-cytoplasmic transport of FUBP1, which was mod-
ulated by TNPO1. FUBP1 also endorses oncogenic functions
by activating the transcription of its target oncogenes. Overex-
pression of FUBP1 alters the expression of the oncogeneMYC
to promote cancer cell proliferation by interacting with FUBP
interacting repressor (FIR) and transcription factor IIH
(TFIIH) [36, 37]. In the present study, we found that knock-
down of FUBP1 suppressed the expression ofMYC. Moreover,
we further confirmed the expression change of MYC and
NRP1 associated with knockdown of TNPO1 to block the
nuclear import of FUBP1. Based on the above results, we dem-
onstrated for the first time that TNPO1 mediated the nuclear
import of FUBP1 and then confirmed that FUBP1 regulated
gene transcription.

5. Conclusion

The present study demonstrated that FUBP1 was overex-
pressed and associated with poor prognosis in CC. Knockdown
of FUBP1 impaired CC cell proliferation and migration.
Further studies demonstrated that the nuclear localization of
FUBP1 contributed to tumor immune evasion by regulating
the expression of NRP1. Moreover, we found the nuclear
import of FUBP1 was mediated by TNPO1 and contributed
to regulating the gene transcription of oncogenes. These find-
ings strongly suggest that FUBP1 maybe become a novel ther-
apeutic strategy in CC treatment.
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