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A B S T R A C T

Although rotavirus infection is usually acute and self-limiting, it can cause chronic infection with severe diseases
in immunocompromised patients, including organ transplantation recipients and cancer patients irrespective of
pediatric or adult patients. Since no approved medication against rotavirus infection is available, this study
screened a library of safe-in-man broad-spectrum antivirals. We identified gemcitabine, a widely used anti-
cancer drug, as a potent inhibitor of rotavirus infection. We confirmed this effect in 2D cell cultures and 3D
cultured human intestinal organoids with both laboratory-adapted rotavirus strains and five clinical isolates.
Supplementation of UTP or uridine largely abolished the anti-rotavirus activity of gemcitabine, suggesting its
function through inhibition of pyrimidine biosynthesis pathway. Our results support repositioning of gemcita-
bine for treating rotavirus infection, especially for infected cancer patients.

Rotavirus infection is the leading cause of severe dehydrating gas-
troenteritis among children under five-year-old (Greenberg and Estes,
2009). Although rotavirus infection is usually acute and self-limiting, it
can cause chronic infection with severe diseases in im-
munocompromised patients, in particular organ transplantation re-
cipients irrespective of pediatric or adult patients (Yin et al., 2015b). In
addition, cancer patients have compromised immune system especially
when undergoing chemotherapy or radiotherapy treatment, which
make them prone to infections with worse outcomes (Hotchkiss and
Moldawer, 2014). Rotavirus infections have been widely reported in
pediatric or adult cancer patients causing prolonged diarrhea (Akhtar
et al., 2018; Ghosh et al., 2017). Therefore, specific and effective an-
tiviral treatment is urgently needed for these special populations who
are infected with rotavirus, but there are no FDA-approved medications
available against rotavirus infection.

Developing new drugs usually takes more than ten years with en-
ormous investment and high risk of failure. Given that only the specific
population with rotavirus infection require antiviral treatment, the
pharmaceutical industry will likely not develop new anti-rotavirus
drugs. We propose that repurposing existing drugs represents a cost-
effective approach to identify antiviral treatment that can readily
benefit patients (Qu et al., 2019). In this study, we screened a library of

safe-in-man broad-spectrum antiviral agents (BSAAs, https://drugvirus.
info) (Andersen et al., 2020; Ianevski et al., 2018) on rotavirus infection
in experimental models. These compounds are known to target viruses
belonging to two or more viral families and have passed phase 1 clinical
trials. This greatly enhances the probability of identifying novel activ-
ities of some of these agents against rotavirus infection and facilitates
their clinical translation.

We first screened 94 BSAAs in human intestinal Caco2 cell line in-
fected with simian rotavirus SA11 strain (Table S1). To minimize non-
specific effects on host cells, we used low concentration of 1 μM and
treated for 48 h. By qRT-PCR (primers listed in Table S2) quantification
of rotavirus genomic RNA, we identified 43 candidates exerting over
50% inhibitory effects, and 17 with inhibition over 70% (Fig. 1A).
Among these, gemcitabine was one of the most effective candidates
(Fig. 1A). It is a cytidine analog that has been widely used for cancer
treatment (Cerqueira et al., 2007; Zhang et al., 2019). It has been
shown to inhibit a broad range of RNA viruses including severe acute
respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV), Zika virus and hepatitis C virus
(HCV) in experimental models (Beran et al., 2012; Dyall et al., 2014;
Kuivanen et al., 2017). Nucleotide and nucleoside analogues are ex-
cellent examples of BSAAs that have been widely used in the clinic for
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Fig. 1. Screening BSAAs identified gemcitabine as a potent inhibitor against rotavirus infection. (A) Human intestinal Caco2 cells were infected with SA11
rotavirus. After infection, cells were treated with 94 BSAAs at 1 μM for 48 h qRT-PCR analysis of viral RNA revealed that 43 reagents exerted ≥50% inhibitory
activity, and 17 of them exerted ≥70% inhibitory activity against rotavirus replication. Gemcitabine (GCT) inhibited rotavirus replication by 70%. (B) 50% cytotoxic
concentration (CC50) curves of GCT were determined by MTT assays on Caco2 cell line. (C) Dose-dependent inhibitory activity of GCT on rotavirus infected Caco2 cell
line. qRT-PCR data were normalized to housekeeping gene GAPDH and presented relative to the control (CTR) (set as 1) (n = 6). (D) The supernatant of each well
under GCT treatment was harvested after freezing and thawing for three times, virus titer from different groups was measured by TCID50 assay (n = 6). (E) Rotavirus
infected Caco2 cells were treated by different concentrations of GCT, and protein samples were harvested after 48 h. The expression of viral structural protein VP4
was stained and quantified by Western blot assay (n = 4). (F) Indirect fluorescence microscope analysis of viral structural protein VP6 (red) upon treatment with
GCT. Nuclei were visualized by DAPI (blue). (G) The ratio of VP6 positive cells/total cell number was quantified under 40* vision field (Supplementary Fig. S2)
(n = 6). Data represent means ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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treating infections of RNA and DNA viruses (Ianevski et al., 2018). We
have previously demonstrated that nucleotide, including purine and
pyrimidine, biosynthesis pathways are essential in regulating rotavirus
infection and can be pharmacologically targeted (Chen et al., 2019; Yin
et al., 2016, 2018a). As a cytidine analog, gemcitabine has been re-
ported to inhibit pyrimidine biosynthesis, resulting in nucleotide de-
pletion (Lee et al., 2017). Therefore, we focused on the effects and
mode-of-action of gemcitabine on rotavirus infection in this study.

We next tested a series of gemcitabine concentrations (0.01–10 μM)
in the Caco2 cell model to assess both antiviral and cytotoxic effects.
We confirmed the potent anti-rotavirus effect and observed a large
therapeutic window between cytotoxic and antiviral activities, as
shown the CC50 value of 13.58 mM and IC50 value of 0.12 μM (Fig. 1B
and C). We performed same experiments in the monkey MA104 cell line
that is widely used for propagating rotavirus in laboratory. Similar
trends were observed with CC50 value of 0.36 mM and IC50 value of
3.98 μM (Supplementary Fig. S1). By harvesting supernatant of Caco2
cells at 48 h post-treatment, we performed TCID50 assay to determine
the titers of secreted viruses. Consistently, the titers of produced rota-
virus with infectivity were significantly reduced by gemcitabine treat-
ment (Fig. 1D). At protein level, we found potent inhibition of viral
protein 4 (VP4) expression determined by Western blotting (Fig. 1E).
Furthermore, immunofluorescent staining of viral capsid protein (VP6)
showed significant reduction of the number of infected Caco2 cells by
gemcitabine treatment (Fig. 1F and G, Supplementary Fig. S2).

The responsiveness to antiviral therapy can vary dramatically in
patients. This mainly attributes to host and viral factors. The nucleoside
analog ribavirin has been used for treating HCV infection for decades.
Reduced cellular uptake by the host and mutagenesis of the viral
genome have been linked to treatment resistance in chronic HCV pa-
tients (Ibarra et al., 2011). As recently repositioned for treating chronic
hepatitis E virus (HEV) infection (Kamar et al., 2017), viral mutagenesis
during ribavirin treatment or pre-deposition of resistance mutations are
thought to contribute to treatment failure (Ikram et al., 2018). Our

previous studies have evaluated the effects of the nucleoside analog
ribavirin and mycophenolic acid (MPA), and the antiviral cytokine in-
terferon alpha (IFN-α) on rotavirus in cell culture models. We found the
responsiveness to these agents dramatically vary among different clin-
ical isolates from potent, moderate, minimal to even pro-viral effects
(Yin et al., 2015a, 2016). This imposes major challenges for clinical
application as how to personalize the selection of potential responders.
Thus, we extended our evaluation of gemcitabine to different rotavirus
strains/isolates. We found that gemcitabine significantly inhibits the
replication of rhesus rotavirus RRV strain (Fig. 2A) and five clinical
isolates (Fig. 2B–F). Based on these results, we postulate that the re-
sponse to gemcitabine in rotavirus patients could be universally effec-
tive.

We have previously established modeling of rotavirus infection in
intestinal organoids, which allows the study of virus-host interactions
and assessment of antiviral drugs (Yin et al., 2015a, 2016, 2018a,
2018b). Intestinal organoids, also called mini-gut, are stem cells-de-
rived epithelial cultured in 3D structure. These organoids are much
better in recapitulating the architecture, composition, diversity, orga-
nization and functionality of cell types of the intestine. Treatment with
gemcitabine in rotavirus inoculated human intestinal organoids po-
tently inhibited viral RNA synthesis and secretion of rotaviruses with
approximately 80% inhibitory effects for both at 1 μM concentration
treated for 48 h (Fig. 3A; Supplementary Fig. S3). This effect was fur-
ther confirmed at VP4 protein level by Western blot assay (Fig. 3B).
Importantly, rotavirus infection led to morphological and pathological
changes in organoids. Based on optical imaging, we observed that ro-
tavirus infected organoids without gemcitabine treatment showed
opaque, wizened and disorganized morphology. In contrast, gemcita-
bine treated groups, in particular with 1 μM concentration, most of the
organoids were hyaline and in a spheroidal shape (Fig. 3C upper panel).
In confocal immunostaining, VP6 protein was detected in all groups,
but the intensity and frequency of the viral protein were lower in
treatment groups (Fig. 3C middle panel). Fluorescence staining of cell

Fig. 2. Antiviral effect of gemcitabine against RRV rotavirus strain and clinical isolates. qRT-PCR analysis of rotavirus RNA upon treatment of gemcitabine
(GCT) at 1 μM for 48 h in laboratory rotavirus strain RRV (A), clinically isolated rotavirus strain 026k (B), 1758k (C), 1934 (D), 664k (E), and 2011k (F). Data were
normalized to housekeeping gene GAPDH and are presented relative to the control (CTR) (set as 1). Data represent means ± SEM; n = 6; *P < 0.05; **P < 0.01.

S. Chen, et al. Antiviral Research 180 (2020) 104823

3



(caption on next page)

S. Chen, et al. Antiviral Research 180 (2020) 104823

4



viability by Propidium Iodide (PI) showed that cell death (determined
as described in Supplementary Fig. S4) in un-treated group is more
obvious, and dead cells were diffused in almost all organoids (Fig. 3C
lower panel). This is consistent with the percentage of deteriorated
organoids (Fig. 3D). Thus, inhibition of rotavirus replication by gem-
citabine can protect organoids from rotavirus induced cytopathogen-
esis.

The antiviral activity of gemcitabine has been linked to the inhibi-
tion of pyrimidine biosynthesis pathway, especially in salvage pathway
(Lee et al., 2017). We thus supplemented UTP or uridine to rotavirus
infected Caco2 cell model when treated with gemcitabine. We found
that exogenous supplementation of pyrimidine dose-dependently
abolished the anti-rotavirus effect of gemcitabine. The anti-rotavirus
effect was almost completely abolished by addition of 1000 μM UTP or
uridine (Fig. 4A and B). Hence, the anti-rotavirus activity of gemcita-
bine was largely dependent on the salvage pyrimidine biosynthesis
pathway. Combination approaches are often used in clinic to achieve
optimal antiviral efficacy and avoid resistance development. We finally
assessed the combinatory effects of gemcitabine with ribavirin, MPA or
IFN-α, as we previously have demonstrated the anti-rotavirus effects of
these three agents (Yin et al., 2015a, 2016). We found enhanced anti-
rotavirus activity when combined with ribavirin or IFN-α, but not MPA
(Fig. 4C).

In summary, we have identified gemcitabine as a potent inhibitor
against rotavirus infection through screening of a BSAA library. The
antiviral activity was largely dependent on the pyrimidine biosynthesis
pathway. Because gemcitabine has been widely used as chemotherapy
for cancer patients, and these patients are at risk of infections
(Hotchkiss and Moldawer, 2014). The use of gemcitabine in cancer
patients probably mitigates the risk of viral infections in general. Our
results support repositioning of gemcitabine for treating rotavirus in-
fection, especially in infected cancer patients. Furthermore, the ap-
proach of discovering new antiviral therapy from BSAAs bears essential
implications in combating emerging viral pathogens, such as the on-
going coronavirus disease COVID-19 pandemic (Mahase, 2020).
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