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Background. )e loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the
complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts,
fibroblasts, and macrophages. )e complexity within the muscle is further highlighted by the incidence of nonresponsiveness to
current RA treatment strategies.Method. )is study aimed at determining differences in the cellular responses in a novel human
primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naı̈ve (RATN), and
RA treatment-nonresponding (RATNR) patients. Bonemorphogenetic protein-7 (BMP-7) was investigated as a treatment option.
Results. Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR
patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients
demonstrated increased cellular growth (p< 0.001), while both hepatocyte growth factor (p< 0.01) and follistatin (p< 0.001) were
reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, trans-
forming growth factor-β (TGF-β; p< 0.05) and fibronectin (p< 0.001), but increased collagen IV (p< 0.01) was observed
following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-
generating TGF-β (p< 0.05) and fibronectin (p< 0.05). BMP-7 further exhibited protective potential in the RA groups through
reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion. Exposure of the triple
coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which
was reversed by BMP-7 treatment.

1. Introduction

Rheumatoid arthritis (RA) is a systemic inflammatory au-
toimmune disease, whereby, in addition to joint damage,
patients demonstrate changes to body composition, which
includes a reduction in skeletal muscle, with or without the
increase in fat mass (termed rheumatoid cachexia or rheu-
matoid sarcopenia) [1, 2]. Rheumatoid cachexia and rheu-
matoid sarcopenia are terms often used interchangeably, but
while sarcopenia is normally used when referring to the loss

of muscle mass and function in the context of aging, cachexia-
associated loss is usually associated with underlying disease
[1]. )erefore, in this article, the loss of muscle mass will be
referred to as rheumatoid cachexia. Regulation of skeletal
muscle is complex, with the involvement of numerous cell
types and growth factors [3]. )e skeletal muscle contains
stem cells (termed satellite cells), which become activated,
proliferate, differentiate, and fuse to form new myofibers [4].
Among the growth factors involved, hepatocyte growth factor
(HGF) stands out as an activator of SCs [5] and the
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modulation of the myostatin/follistatin axis regulates atrophy
[6]. Muscle cells adhere to the extracellular matrix (ECM), a
vital component for development, functioning, and signalling
within the muscle. Although muscle cells themselves also
secrete numerous ECM components, the main contributor to
ECM formation is the fibroblasts [7]. )is process is largely
regulated by transforming growth factor-β (TGF-β), a protein
secreted by fibroblasts, myoblasts, and macrophages. Mac-
rophages, the third cell type, are resident in the connective
tissue surrounding the myofibers [8]. Upon injury/insult,
these and other circulatory macrophages will be recruited to
the site in order to contribute to the degeneration and re-
generation process [9]. Pro- and anti-inflammatory macro-
phages are vital in different stages of the regenerative process,
and the shift in macrophage phenotype fromM1 to the tissue
remodelling M2 phenotype is vital in repair [10]. However,
during chronic inflammation, as demonstrated in RA, the
balance between M1 and M2, and specifically the persisting
presence of M2b macrophages, disrupts the delicate balance
between catabolism and anabolism, and the proliferation and
differentiation of satellite cells, ultimately resulting in muscle
wasting [3]. Employing an in vitro model using multiple
human cell types to more accurately simulate the cellular
niche and cellular responses may prove beneficial in further
understanding interactions in both a healthy and diseased
muscle environment.

A particular benefit of such a coculture model is the
ability to employ intervention treatments to further probe
signalling responses or to identify potential therapeutic or
preventative modalities. We have selected bone morpho-
genetic protein-7 (BMP-7)—which belongs to the TGF-β
superfamily and which is structurally related to growth and
differentiation factors [11, 12]—as a potential intervention
agent. BMP-7 was initially studied due to its involvement in
osteoblast differentiation and bone formation. However,
several BMPs exhibit multiple biological activities in dif-
ferent cell types [13]. Overall, research into the role of BMP-
7 in RA is limited: while a few studies reported on its role in
reducing joint destruction [14, 15], no studies are available in
the context of targeting rheumatoid cachexia. Based on the
fact that the TGF-β signalling network functions as a major
component in developing skeletal muscle tissue, it is likely
that the BMP axis may also play a pivotal role in muscle mass
regulation. Indeed, the injection of BMP-7 vectors into
mouse muscle was reported to result in increased myofiber
area and diameter [16]. BMP-7 has also been implicated in
the resolution of inflammation [17]. Furthermore, in a
mouse model of renal fibrosis, BMP-7 treatment reduced the
severity of fibrosis and reversed renal pathology [18].
Similarly, RA synovial fluid-stimulated fibroblast-like syn-
oviocytes (FLS) treated with BMP-7 exhibited inhibited
production of α-SMA, a marker expressed on synovial lining
myofibroblasts [14]. Lastly, in a model of zymosan-induced
arthritis (ZIA), direct injection with BMP-7 into the affected
knee inhibited the loss of cartilage matrix and reduced
swelling, as well as attenuating cellular infiltration, reducing
IL-1β and increasing IL-10 levels [15].

In the current study, we developed a novel triple co-
culture model using primary muscle fibroblasts, myoblasts,

and blood-derived polarised M1 macrophages collected
from healthy human donors. )ese standardised cultures
were then exposed to serum from healthy or RA patients to
better understand the interactions of various cell types and
molecular role players in the muscle environment under
conditions of diseased systemic signalling. Secondly, we
report on the capacity of BMP-7 to alter the responses of
relevant cytokines and growth factors in rheumatoid ca-
chexia. )e overall aim of the study was to develop a triple
coculture model that—despite some unavoidable limi-
tations—is more patient-specific, allowing the individualised
assessment of sensitivity to treatment interventions.

2. Methods

2.1. Ethics Statement. Ethical clearance for this study was
obtained from the Stellenbosch University Health Research
Ethics Committee (HREC) for the isolation of myoblasts and
fibroblasts from healthy volunteers (reference N12/08/051)
and the collection of blood from healthy and RA patients
(reference HREC2-2020-13147). Biosafety clearance for the
handling of BSL2 samples was obtained from the Biosafety
and Environmental Ethics Committee at Stellenbosch
University (reference REC:BEE:2020-18524).

2.2. Participant Recruitment for Primary Cell Isolation.
For the isolation of myoblasts and fibroblasts, muscle bi-
opsies were obtained from the vastus lateralis muscle of
healthy, normally active young participants who were nei-
ther diabetic nor using anti-inflammatory medication, and
who did not have recent muscle injury. For the isolation of
primary monocytes, blood was obtained in EDTA-coated
tubes from healthy, young participants who did not have
chronic/acute infections or injuries, smoked, or used anti-
inflammatory medication.

2.3. Participant Recruitment for Rheumatoid Arthritis Study.
Predicting the response of patients to treatment has shown
low success rates with a number of patients not responding
to treatment, developing resistance or treatment-related
adverse events [19, 20]. Blood was obtained in EDTA-coated
and SST tubes from RA patients and healthy participants
based on the following criteria: RA patients that either were
(1) treatment-naı̈ve (RATN) or (2) had moderate to severe,
treatment-nonresponding RA (RATNR) were recruited
from Winelands Rheumatology Centre, Stellenbosch, South
Africa. Patients did not have additional acute/chronic in-
fections, comorbidities, juvenile onset RA, or obesity. RATN
patients were recently clinically diagnosed with ongoing
active rheumatoid arthritis and were not yet being treated
with disease-modifying anti-rheumatic drugs (DMARDs).
RATNR patients were compliant on synthetic or biologic
DMARDs, but presenting with ongoing disease activity
based on clinical signs of active synovitis, suggesting the
failure of mono- or poly-pharmacy DMARD therapy. No
clear differences in either CRP or ESR values (Supple-
mentary data, Table 2) were evident between groups, but as
data were somewhat incomplete, the main classification was
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assessment (longitudinal in the case of RATNR) of clinical
signs of active synovitis by an experienced rheumatologist.
Healthy participants (non-RA control, NC) were age-
matched and excluded according to the same criteria as
above, with the addition of the use of anti-inflammatory
medication as an exclusion criterion in the healthy group.
Six participants/patients were recruited per group.

2.4. Patient/Participant Plasma Analysis. RA patients’ and
healthy participants’ plasma was collected in EDTA tubes
and centrifuged at 400 × g for 10 minutes at room tem-
perature. Plasma was analysed using theMILLIPLEX human
cytokine magnetic bead panel carried out according to the
manufacturer’s instructions. )e following analytes were
assessed: TNF-α, IL-1β, IL-1RA, IL-6, and IL-10 (HCY-
TOMAG-60K; Merck Millipore, Darmstadt, Germany).

2.5. Primary Cell Isolations. Muscle biopsy tissue was ob-
tained from the vastus lateralis muscle of normally healthy
male volunteers not using any medication, under sterile
conditions using a 5-mm trephine biopsy needle (Bergstrom
6 biopsy needle, STILLE, Sweden) with assisted suction,
following standard procedures [21]. Biopsy tissue was im-
mediately placed in cold phosphate-buffered saline (PBS;
P4417, Sigma-Aldrich) with 10% (v/v) penicillin/strepto-
mycin (15070063, Gibco™) and 1% (v/v) gentamycin. Pri-
mary fibroblasts were isolated according to the previously
established consecutive preplating protocol [22] within one
hour of obtaining samples. Briefly, biopsy tissue was digested
in collagenase/dispase solution (10269638001, Sigma-
Aldrich) and placed in ECL-precoated flasks. After allowing
primary fibroblast attachment for 1 hour, media with un-
attached cells was removed was discarded. Primary myo-
blasts were isolated according to the micro-explant
technique [21], in which pieces of muscle biopsy were plated
on entactin-collagen IV-laminin (ECL; 08-110, Merck,
USA)-precoated plates and myoblasts were allowed to mi-
grate out of the tissue. Cells from the third and fourth
subculture were used, as initial cells were a combination of
myoblasts and fibroblasts.

Prepared pure isolates of primary fibroblasts and
myoblasts were cultured in complete Hams-F10 media
(N6908, Sigma-Aldrich) supplemented with 20% foetal
bovine serum (FBS; 10499-044, Life Technologies), 1%
penicillin-streptomycin (P43333, Sigma-Aldrich), and
2.5 ng/ml human recombinant fibroblast growth factor
(hrFGF; G5071, Promega). After sufficient stocks were
created, primary myoblast and fibroblast media were con-
verted to RPMI 1640 media (with GlutaMAX; 61870010,
Gibco) for consistency between the three cell types.

Primary monocytes were isolated from donated blood
using a double gradient centrifugation protocol [23].
Monocytes were cultured in RPMI 1640 media containing
20% FBS and 1% penicillin-streptomycin in 24-well plates
precoated with ECL. Cells were supplemented with 50 ng/ml
of granulocyte macrophage colony-stimulating factor (GM-
CSF; SRP3050, Sigma-Aldrich) to allow predifferentiation to
occur. Cells were allowed to adhere for 24 hours before the

first media change; thereafter, media were changed every
2 days (for 4 additional days). Cells were polarised to a M1
phenotype with 50 ng/ml GM-CSF, 50 ng/ml lipopolysac-
charide (LPS; L2762, Sigma-Aldrich), and 20 ng/ml inter-
feron-c (IFN-c; I3265, Sigma-Aldrich) for 24 hours.

2.6. Cell Phenotype Confirmation. To confirm primary hu-
man myoblast (PHM) and primary human fibroblast (PHF)
phenotype and culture purity, cells were fixed with 4% PFA,
blocked, and stained overnight with desmin (ab15200,
Abcam, UK) and fibronectin (sc80982, Santa Cruz, USA) at
4°C. Cells were then stained with fluorescence-labelled
secondary antibodies (594–150064 and 488–150109, Abcam,
UK) and Hoechst (ab33342 Abcam, UK), mounted with
fluorescent mounting media (53023, DAKO, Denmark), and
imaged on the Zeiss confocal microscope (Carl Zeiss LSM
780, Zeiss, Germany) at 200x magnification. PHM pheno-
type was confirmed by positive staining with desmin only,
while PHF phenotype was confirmed by positive staining
with fibronectin only (Figure 1).

2.7. Triple Coculture with Patient Serum. Patient serum was
collected in SST tubes and after allowing clotting for 30
minutes at room temperature centrifuged at 1500 × g for 10
minutes. Media (RPMI 1640) was prepared with 20% pa-
tient serum and 1% penicillin-streptomycin. Primary
myoblasts and fibroblasts were detached with trypsin
(25200072, Gibco). Primary M1-polarised macrophages
were detached with Accutase® (A6964, Sigma-Aldrich).
Cells were plated on ECL-precoated plates in the patient
serum-containing media in the ratio of 40 000 macro-
phages:10 000 myoblasts:5 000 fibroblasts as determined
with intramuscular cell staining in a rodent collagen-in-
duced arthritis model [24]. ()e number of macrophages
was modified to twice the number present in RA rodents, to
correct for known lack of proliferation capacity of the
terminally differentiated macrophages over the course of
the culture protocol.) Plates were shaken every 15 minutes
over a 90-minute period to allow even distribution of cells.
Triple cocultures were prepared in duplicate for each patient
and treatment condition.

2.8. BMP-7 Treatment of Various Cell Types. After 48 hours
of exposure of triple cocultures to patient serum-condi-
tioned media, media were replaced with serum-conditioned
media and cells treated with 750 ng/ml BMP-7 (prepared in
dH2O) for an additional 48 hours.)e dose of 750 ng/ml was
determined in a pilot dose-response study using single cell
cultures for all cell types (refer to Figures A1–A4, Supple-
mentary data). After 48 hours, cell culture supernatants were
removed and centrifuged at 500 × g for 5 minutes to remove
remaining cells and debris. Images were taken on the
Olympus microscope (CKX41, Olympus Corporation) on
day 2 and day 4 at 40x and 100x magnification. In addition,
100x images were analysed using ImageJ software to mea-
sure the area fraction of cells (measure of confluence) within
each field of view.
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2.9. Supernatant Analysis. Triple coculture clarified super-
natants were analysed using ELISA and Multiplex Quanti-
kine analyses as follows: follistatin (DFN00, R&D Systems),
GDF-8/Myostatin (DGDF80, R&D Systems), decorin
(NBP3-08102, Novus Biologicals), Fibronectin (E-EL-
H0179-96T, E-Lab Bioscience), collagen IV (E-EL-H0178-
96T, E-Lab Bioscience), TGF-β magnetic Luminex
(FCSTM17-01, R&D Systems), and magnetic Luminex for
collagen I alpha 1, HGF, IL-1β, IL-6, IL-10, and TNF-α
(LXSAHM-07, R&D Systems).

2.10. Statistical Analysis. Statistical analysis was performed
on GraphPad Prism v.8. Patient data and plasma results were
assessed for normality using Shapiro–Wilk analysis. Data
were analysed using a one-way ANOVA and Tukey’s
multiple comparisons for parametric data, and the Krus-
kal–Wallis test with Dunn’s multiple comparisons for
nonparametric data. Correlations were performed using
Pearson’s correlation.

3. Results

3.1. Patient Group Characterisation Plasma Cytokine Profiles.
As expected, patient groups exhibited variable and different
duration of diagnosis periods, with treatment näıve patients
reporting having RA for 2.33± 3.67 years (four out of six
were recently diagnosed), and treatment-nonresponding
patients having RA for 11.80± 13.33 years. Affected joints
included wrists, hands, elbows, ankles, and knees in both
groups. Age and body composition did not differ signifi-
cantly between groups: healthy controls (NC) were
50.2± 8.5 yr old (three males, three females; BMI:
29.79± 4.57), treatment-naı̈ve (RATN) patients were

53.7± 18.9 yr old (one male, five females; BMI: 30.79± 7.56),
and RA treatment-nonresponding (RATNR) patients were
59.3± 14.2 yr old (one male, five female; BMI: 24.89± 3.30).
Of the recruited patients, four of the six treatment naı̈ve
patients stated they had a noticeable loss in muscle mass,
whereas two of the six treatment-nonresponding patients
confirmed noticeable muscle loss. However, since neither
BMI nor subjective reporting of muscle loss correlated with
any parameter assessed, these measures are in our opinion
not suitable indicators of cachexia progression. Given the
cross-sectional design of the current study, no patients were
assessed in a quantitative manner for muscle loss over the
period of active disease. In order to assess cachexia accu-
rately, a longitudinal study with accurate dual-energy X-ray
absorptiometry (DEXA) is probably required.

Comparison of groups for patient plasma cytokines
indicated limited number of differences reaching statistical
significance, likely due to large variability among patients
and a small sample size (Figure 2). Nevertheless, the general
picture in both RA groups was in line with a relatively more
pro-inflammatory state. In addition, RATNR patients had a
significantly increased IL-6 plasma concentration (p< 0.05)
compared to RATN patients (Figure 2(c)).

Correlation between IL-10 and IL-6 demonstrated a
statistically significant positive correlation in the NC group
that was lost in the RATN group, whereas the RATNR group
demonstrated a statistically significant negative correlation
(Figure 3).

3.2. Triple Coculture Responses. Qualitatively, healthy par-
ticipants’ cells exhibited a unique response to the serums
from different patient groups, as indicated by the repre-
sentative images in Figure 4. Cells appeared to proliferate at

Desmin + Fibronectin + Hoechst Overlay
PH

M
s

PH
Fs

Figure 1: Cell type confirmation of primary human myoblasts (PHMs) and fibroblasts (PHFs) staining with desmin (red) and fibronectin
(green), respectively. Nuclei are visualised using Hoechst (blue). Images were captured at 200x magnification. )e scale bar represents
100 μm.
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different rates, as is evident from the differences in relative
confluence—RATNR serum resulted in the fastest growth
rate, resulting in cultures appearing fully confluent after
2× 48 hours. Macrophages in the RATNR-exposed cultures
appeared to demonstrate a greater extent of activation
compared to both the other groups. In the RATN group,
patient serum resulted in clustered growth patterns of cells.

Quantification of area fraction (%) as measure of con-
fluence confirmed that cultures treated with RATNR patient
serum proliferated more extensively and therefore exhibited
a significantly higher area fraction than other patient groups,
both with and without BMP-7 treatment (Figure 5).

Luminex analysis of culture supernatants generally
demonstrated very low levels of IL-1β and IL-10. IL-10
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Figure 2: Patient plasma cytokine concentration in healthy (NC), RA treatment näıve (RATN), and RA treatment-nonresponding
(RATNR) patients. (a) TNF-α; (b) IL-1β; (c) IL-6; (d) IL-10; and (e) IL-1Ra. Statistical analysis: one-way ANOVA. ∗ � p< 0.05. n� 6 per
group. Data represented as box and whisker plots indicating the highest and lowest values, and the median and the interquartile range, as
well as individual data points. TNF-α� tumour necrosis factor-α; IL� interleukin.
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Figure 3: Correlation between IL-10 and IL-6 in the different patient groups. (a) Nonarthritic control (NC); (b) RA treatment näıve
(RATN); (c) RA treatment-nonresponding (RATNR). Statistical analysis: Pearson’s correlation. n� 5 per group.
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concentration was below detectable limits in all groups,
while IL-1β concentration only measurable in one RATN-
exposed culture and two RATNR-exposed cultures (data not
shown). )ese data were thus excluded from interpretation.
Similarly, low levels of TNF-α were detected across all
groups. IL-6 was secreted in relatively high quantities, but
appeared similar between groups (Figure 6).

Statistically more significant differences between groups
were evident for muscle growth factors (Figure 7). HGF
concentration was significantly reduced in the media ex-
posed to RATNR serum when compared to the control,
while follistatin concentration was statistically significantly
reduced in both the RATN (p< 0.01) and RATNR serum-
exposed groups (p< 0.001) when compared to the control.
Myostatin demonstrated no significant differences between
the groups.

Turning attention to fibroblast growth factors, TGFβ
concentration was significantly reduced in the RATNR se-
rum-exposed group when compared to both the control
group and RATN group (Figure 8(a)). Decorin levels were
similar in all groups (Figure 8(b)), while fibronectin con-
centration was statistically significantly lower than NC in the
RATN and RATNR groups, as well as lower (p � 0.05) in
RATNR when compared to RATN (Figure 8(c)). Collagen

1a1 levels were greater than the detectable limit for all NC
samples but fell within the detection range for the kit for at
least half the samples of the RATN and RATNR groups,
suggesting that these groups may exhibit lower collagen 1a1
than the healthy controls (Figure 8(d)). Collagen IV con-
centration appeared higher in response of both RA serum
groups, with a statistically significant increase in the RATNR
group compared to healthy controls (Figure 8(e)).

Table 1 presents the effects of BMP-7 on actual con-
centrations in the NC by providing the placebo and the
BMP-7 data. Here, the addition of BMP-7 decreased the
concentration of TGF-β and fibronectin significantly when
the triple culture was cultured in NC serum, suggesting that
its main effect is exerted on the fibroblasts at the concen-
tration of 750 ng/ml.

To compare how the culture groups responded differently
in the presence of BMP-7, data are presented as a percentage
of the placebo condition for each patient, in order to nor-
malise data and maximise measurable effect size. In line with
the generally low culture inflammatory cytokine responses,
neither TNF-α nor IL-6 secretion was significantly affected by
BMP-7 treatment (Figures 9(a) and 9(b)). Follistatin con-
centration, which was significantly decreased as the result of
RA serum exposure in the placebo conditions, demonstrated
a significant increase in concentration when compared to
NC, in the presence of BMP-7 in (Figure 9(d)). A similar
normalisation effect of BMP-7 was seen for several other

200 µm 
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control (NC)

RA treatment
naïve (RATN)

RA treatment
non-responding

(RATNR)

200 µm 

200 µm 

Figure 4: Representative images of the triple cell culture model
indicating examples of the different observed responses to the
patient serum. Images taken at 100x magnification. )e scale bar
represents 200 μm.

0
NC RATN

20

40

60

80

100

Patient group

A
re

a f
ra

ct
io

n 
(%

)

Placebo
BMP7

***

**

**

**

RATNR

Figure 5: Percentage area fraction taken up by the triple culture
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multiple comparisons. ∗∗ � p< 0.01; ∗∗∗ � p< 0.001. Data repre-
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6 International Journal of Inflammation



parameters assessed, for example, with myostatin
(Figure 9(e)) and TGFβ concentration (Figure 9(f)), which
both exhibited significant increases in the RATNR group and
both RA groups, respectively, when compared to the NC
group in the presence of BMP-7. )ere were no significant
differences between the patient groups for both decorin
(Figure 9(g)) or fibronectin (Figure 9(h)). Collagen IV
concentration was increased in the RA group (Figure 8(e))
but significantly decreased in the RATNR group compared to
the NC arguably as a result of BMP-7 treatment (Figure 9(i)).

4. Discussion

Using a novel triple culture technique to simulate the skeletal
muscle niche, current data contribute to our understanding

of rheumatoid cachexia mechanisms in RA and RA treat-
ment failure. Furthermore, the efficacy of BMP-7 as potential
treatment modality is highlighted.

Before interpreting the effect of a normal mixed culture
to patient and control serum, it is necessary to consider
differences between the experimental group plasma profiles.
In terms of plasma characterisation, cytokine profiles
demonstrated the expected interindividual variability in all
groups. Nevertheless, both plasma TNF-α and IL-1β tended
to be more variable between individuals—and somewhat
higher than those of controls—in both RA groups, which is
in line with their known role in the pathogenesis of RA
[25, 26]. Similarly, the barely detectable levels of IL-1Ra in
RATN patients are again in line with literature correlating
this profile with RA disease development [26, 27]. Various
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growth factor.
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treatment options result in the downstream increase in IL-
1Ra [28–30], in line with the results demonstrated in the
RATNR group. Given its major role as myokine [31], IL-6
was also assessed in the current study. However, given the
high variability of this parameter even in the control group,

interpretation of IL-6 data in isolation was not informative
in the current context. However, when correlated with IL-10
levels, important cytokine dysregulation became evident.
Under healthy circumstances, IL-6 results in the upregu-
lation of IL-10 [32, 33]. However, this relationship appears
to be dysregulated in the RATNR group, where a negative
correlation is observed.)is relative failure to upregulate IL-
10 in response to IL-6 is in line with our earlier suggestion of
a failure of RA macrophages to switch to the anti-inflam-
matory M2c phenotype, which is responsible for IL-10 re-
lease [3] as well as our recent study in CIA rats, which
demonstrated decreased IL-10 concentration in muscle to be
a robust marker for rheumatoid cachexia in this model [24].
)is aspect should be elucidated further in longitudinal
studies in human RA patients, to fully evaluate the potential
of IL-10 as a biomarker of disease progression and risk of
muscle cachexia in particular. Taken together, the plasma
profile data confirm that the samples used as stimulus in the
triple cultures were indeed representative of the expected
control and RA cytokine profiles.

Turning attention to the triple culture data, cell growth
patterns between the three serum conditions differed sig-
nificantly. RATNR serum-conditioned media resulted in
increased cellular growth rates when compared to the other
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Figure 8: Triple culture supernatant extracellular matrix factor concentrations comparing healthy (NC), RA treatment-näıve (RATN), and
RA treatment-nonresponding (RATNR) patients. (a) TGFβ; (b) decorin; (c) fibronectin; (d) collagen 1a1; (e) collagen IV. Statistical analysis:
one-way ANOVA (parametric: (a, b, c, d) or Kruskal–Wallis test (nonparametric: e). ∗ � p< 0.05; ∗∗ � p< 0.01; ∗∗∗ � p< 0.001. n� 6 per
group. Data represented as mean± SD. TGFβ� transforming growth factor-β; BMP-7� bone morphogenetic protein 7.

Table 1: Comparison of the concentrations of cytokines and
growth factors in the triple coculture exposed to NC patient serum
after being treated with placebo or BMP-7. Data represented as
mean± SD. ∗ � p< 0.05. n� 6 per group. TNF-α� tumour necrosis
factor-α; IL� interleukin; HGF� hepatocyte growth factor; TGF-
β� transforming growth factor-β.

Treatment
Nonarthritic control (NC)

Placebo BMP-7
TNF-α (pg/ml) 18.52± 2.0 17.15± 1.5
IL-6 (pg/ml) 5561± 1122.8 5710± 1227.4
HGF (pg/ml) 201.6± 25.8 189.4± 20.7
Follistatin (pg/ml) 651.3± 79.3 625.2± 84.9
Myostatin (pg/ml) 1478± 631.0 1381± 319.5
TGF-β (pg/ml) 12017± 1478 10423± 1198∗
Decorin (ng/ml) 5.68± 2.17 5.90± 2.38
Fibronectin (ng/ml) 36633± 10883 19408± 7173∗
Collagen IV (ng/ml) 13.20± 3.71 21.89± 9.30
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groups. However, despite the abundance of cells present in
the RATNR serum-exposed group, the myoblasts did not
attempt to align and begin the differentiation and fusion
process. Additionally, based on their appearance, the
macrophages in this group exhibited a greater extent of
activation. )ese effects were likely the result of various
growth factors and cytokines present in the serum stimu-
lating the proliferation of myoblasts and fibroblasts. )is
aligns with the data observed in the rodent CIAmodel where

increased cellular presence was observed; however, the ratio
between the cells did not differ [24]. While distinguishing
between the cells in single culture was possible due to the low
desmin/high fibronectin expression in fibroblasts and low
fibronectin/high desmin expression in myoblasts, coculture
presents some challenges in this regard. When cultured in
close proximity—as they also grow in vivo—myoblasts and
fibroblasts interact, resulting in high expression levels for
both fibronectin and desmin in both cell types [34–36],
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Figure 9: Cellular responses after treatment with BMP-7 expressed as percentage of response in placebo condition, as assessed in triple
culture supernatant of a fibroblast, myoblast, and M1 macrophage mixed culture exposed to serum of healthy (NC), RA treatment näıve
(RATN), and RA treatment-nonresponding (RATNR) patients. (a) TNF-α; (b) IL-6; (c) HGF; (d) follistatin; (e) myostatin; (f ) TGFβ; (g)
decorin; (h) fibronectin; (i) collagen IV. Statistical analysis: one-way ANOVA (parametric: a–e, g–i) or Kruskal–Wallis test (nonparametric:
f ). ∗ � p< 0.05; ∗∗ � p< 0.01; ∗∗∗ � p< 0.001. n� 6 per group. Data represented as mean± SD. TNF-α� tumour necrosis factor-α;
IL� interleukin; HGF� hepatocyte growth factor; TGFβ� transforming growth factor-β; BMP-7� bone morphogenetic protein 7.

International Journal of Inflammation 9



making differentiation between them impossible. )erefore,
the determination of individual cell type counts was not
possible. Perhaps labelling either fibroblasts or myoblasts
with GFP prior to coculture could clarify specific cell dis-
tribution in future studies. Nevertheless, the most valuable
information to be gained from a coculture model pertains to
the processes at play when different cell types interact in a
tissue niche, such as the changes in nett secretory products in
the muscle niche assessed in the current study. Additionally,
the assessment of tissue-level signalling is very limited in
rheumatoid cachexia research, highlighting the novelty and
importance of the current comprehensive data set.

Our interpretation that the relatively pro-inflammatory
cytokine profile in the RA patients’ plasma may have con-
tributed to the enhanced cellular growth demonstrated in the
coculture is in line with literature reporting that TNF-α, IL-
1β, and IL-6 induce myoblast proliferation [37]. Further-
more, the negative IL-6/IL-10 correlation in the RATNR
plasma contributes to a dysregulated muscle growth pat-
tern—the magnitude of secreted IL-6 in the triple culture is
indicative of a muscle response, rather than an inflammatory
response [31]. Different concentrations of IL-6 have differ-
ential effects on myoblasts—low concentrations result in
proliferation and high concentrations result in differentiation
[38]. Despite a higher plasma IL-6 concentration, the rela-
tively lower secreted IL-6 in the RATNR coculture groupmay
be indicative of an altered response to IL-6, thereby affecting
the ability to differentiate. Extensive myoblast/satellite cell
proliferation and inhibited differentiation is proposed in
chronic inflammatory conditions and RA due to the altered
inflammatory profile [3]. )e same magnitude of secreted
TNF-α is not observed in the triple culture in general, further
confirming that IL-6 secretion is indeed a myoblast response.
)e presence of relatively low TNF-α in the supernatant
across all groups indicates that the macrophage response,
while present, is not as extensive as that of the myoblasts (for
which the IL-6 response is a metabolic and not an inflam-
matory one [39]). Furthermore, an extensive review reports
that muscle and myoblasts have low constitutive expression
of TNF-α and that responses are better observed in the
plasma or serum [40], confirming this interpretation.

In terms of myoblast response, current data illustrate the
significant dysregulation of normal muscle maintenance
signalling in RA. Normally, the release of nitric oxide (NO)
by active skeletal muscle and macrophages would lead to the
release of HGF and subsequent satellite cell activation
[41–43], while IL-6 promotes the production of HGF [44].
NO also induces the expression of follistatin [41, 42] to
contribute to hypertrophy through satellite cell activation,
proliferation, and differentiation [45, 46] and in rodents
demonstrates improved regeneration and reduced fibrosis.
Another factor contributing to myogenesis, TGF-β, is a
multifunctional cytokine exhibiting various effects on dif-
ferent cell types. [47, 48]. )e aberrant downregulated
tendency of IL-6, HGF, follistatin, and TGF-β in the RATNR
serum-exposed group suggests that rheumatoid cachexia
may, at least in part, result from a balance-shift to favour the
proliferation of muscle tissue, while failing to allow for
sufficient differentiation of newly formed cells. In further

support of this interpretation, in epithelial cells, TGF-β has
been reported to repress the expression of the inhibitor of
differentiation (Id) family, including Id2 [49]. )e reduction
in TGF-β observed in this study may thus also have resulted
in an increase in Id2, contributing to inhibition of differ-
entiation. )is is in agreement with a previous rodent
collagen-induced arthritis study by our group, where in-
creased Id2 was indeed observed [24]. )is provides addi-
tional insight into the occurrence of rheumatoid cachexia
despite an increase in myogenic regulatory factors, including
myogenin, as reported by our group and others [50].

)e extracellular environment is another major con-
tributor to signalling, either to enhance or limit tissue
maintenance processes. )emuscle fibres reside in a scaffold
composed of various structural components, referred to as
the extracellular matrix (ECM). )e ECM is vital in nu-
merous physiological processes in the regulation of muscle
development, growth, and repair through its interactions
with various cell types, including fibroblasts and immune
cells [51]. For example, TGF-β is sequestered to the ECM to
upregulate components vital to the structure of the ECM,
providing stability and a site for protein interactions [48].
However, TGF-β also contributes to fibrosis by stimulating
excessive proliferation of fibroblasts and secretion of ECM
components, along with the inhibition of degradation en-
zymes [52]. Of the collagens present in the ECM, types I and
III are the most abundant in the ECM, whereas type IV
provides a network structure to form the basal lamina [51].
Fibronectin, another ECM component, also influences the
balance between differentiation and self-renewal, ultimately
maintaining the regenerative capacity of the muscle [51, 53].
Both myoblasts and fibroblasts are involved in the pro-
duction of collagens and fibronectin [54, 55]. Here, the
reduced TGF-β demonstrated in the RATNR serum-ex-
posed group coincides with the same decreasing trend
observed for collagen 1a1 and fibronectin, ultimately indi-
cating impaired structure and organisation. Reduced fi-
bronectin is also already observed in the RATN group,
indicating impaired ECM early in disease development [56].
However, collagen IV is increased in the RATNR group.
Extensive myoblast proliferation may contribute to the in-
creased collagen IV secretion to form the basal lamina.
However, altered basal lamina production as a result of
increased collagen IV in aged muscle influences the regu-
lation of satellite cell division resulting in impaired satellite
cell numbers [51]. )is suboptimal organisation may be one
of the causes of the functional deficits observed in RA pa-
tients [57, 58]. )e effect of RA serum on the triple coculture
is summarised in Figure 10.

In terms of intervention, the treatment of the coculture
with BMP-7 largely reversed the undesired cellular re-
sponses observed after exposure to RA serum and, more
specifically, normalised the responses of cells treated with
RATNR serum, improving deficits in muscle growth
markers and ECM markers, without increasing the depo-
sition of fibronectin, indicating a beneficial role of this
treatment.

Furthermore, in the context of macrophage phenotype
specifically, pilot data indicate the treatment of primary M1
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macrophages with 500 and 750 ng/ml of BMP-7 for 48 hours
resulted in the increased presence of M2c macrophages
(Figure A1, Supplementary data). )is is in line with lit-
erature reporting similar effects for BMP-7 in non-RA in-
flammation models in cells and rodents [12, 17]. In the triple
coculture model, this benefit of BMP-7 was not evident from
the measured cytokine profile. However, this may have been
the effect of relative overgrowth of myoblasts and fibroblasts
while macrophages don’t proliferate. Although increasing
the proportion of macrophages in this culture even further
may allow for a more representative picture of the macro-
phage signalling, the beneficial effect of BMP-7 on overall
signalling supports a shift to an anti-inflammatory pheno-
type. Given the known lingering presence of M1 and M2b
macrophages in RA [3], current data in single and coculture
warrant further investigation of BMP-7 as a treatment
modality in RA.

When addressing muscle growth changes, fibre hyper-
trophy, as observed following the injection of BMP-7 vectors
into healthy mouse muscle [16], would be beneficial to RA
patients. Preliminary data indicated that when treating
primary myoblasts with different dosages of BMP-7, 750 ng/
ml resulted in a greater myoblast size (Figures A2 and A3,
Supplementary data). )e reversal of both HGF and folli-
statin effects in the RATNR serum-exposed cultures high-
lights a potentially beneficial effect. One conflicting factor
that may inhibit this effect is the increased myostatin in the
RATNR serum-exposed group, due to its ability to bind to
the BMP-7 receptors [59], thereafter inhibiting its effects.

Lastly, based on the increased presence of fibrosis in
rheumatoid cachexia [60] and the above findings of im-
paired ECM formation in RATNR serum-exposed cocul-
tures, BMP-7 altering the ECM challenges would be
beneficial. As observed in the NC serum-exposed group,
BMP-7 has antifibrotic effects through the inhibition of
TGF-β [61] and reduces the accumulation of ECM. )is

could also be through enhanced ECM degradation as a result
of matrix metalloproteinase (MMP) activity [62, 63]. While
the opposite is observed with the RATNR group, this effect is
still the reversal of the outcomes observed with RATNR
serum alone, thereby improving the overall structure of the
ECM and improving the overall outcome.)e effect of BMP-
7 treatment on RA patient-exposed coculture is summarised
in Figure 10.

5. Conclusion

Current data demonstrated plasma cytokine differences
indicative of healthy controls and RA patients, with a more
severe outcome in treatment-nonresponsive patients, which
may be either due to treatment resistance itself, or a longer
duration of disease progression when compared to treat-
ment naı̈ve patients. One of the key factors in the RATNR
group is the dysregulation between plasma IL-6 and IL-10,
which may impact the downstream muscle effects. )rough
the use of a novel, primary triple coculture method, the
RATNR serum-exposed group exhibited an extensive ca-
pacity for cell growth, despite downregulated HGF and
follistatin, and suboptimal ECM organisation when com-
pared to controls. BMP-7 treatment showed beneficial re-
sults by reversing the aberrant tendencies observed in the
cultures exposed to RA serum.

On a practical note, current data generated in response
to patient serum highlight the complexities faced when
interpreting data combining multicell culture with the in
vivo “cocktail” of circulating parameters. However, in our
opinion, such comprehensive, complex investigations are
required in order to understand or address conditions such
as RA and RA cachexia, as these present as equally complex
problems that cannot be accurately simulated in simplified
protocols. In support of this, current data illustrate our novel
coculture model to be an accurate simulation of signalling
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events in RA capable of reflecting treatment resistance and
thus potentially a powerful tool in understanding rheu-
matoid cachexia and developing patient-specific treatment
strategies.
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