
Autonomous Robots (2018) 42:1477–1495
https://doi.org/10.1007/s10514-018-9742-5

Solving the task variant allocation problem in distributed robotics

José Cano1 · David R. White3 · Alejandro Bordallo1 · Ciaran McCreesh2 · Anna Lito Michala2 · Jeremy Singer2 ·
Vijay Nagarajan1

Received: 1 March 2017 / Accepted: 2 April 2018 / Published online: 25 April 2018
© The Author(s) 2018

Abstract
Weconsider the problemof assigning software processes (or tasks) to hardware processors in distributed robotics environments.
We introduce the notion of a task variant, which supports the adaptation of software to specific hardware configurations. Task
variants facilitate the trade-off of functional quality versus the requisite capacity and type of target execution processors. We
formalise the problem of assigning task variants to processors as a mathematical model that incorporates typical constraints
found in robotics applications; the model is a constrained form of a multi-objective, multi-dimensional, multiple-choice
knapsack problem. We propose and evaluate three different solution methods to the problem: constraint programming, a
constructive greedy heuristic and a local search metaheuristic. Furthermore, we demonstrate the use of task variants in a
real instance of a distributed interactive multi-agent navigation system, showing that our best solution method (constraint
programming) improves the system’s quality of service, as compared to the local search metaheuristic, the greedy heuristic
and a randomised solution, by an average of 16, 31 and 56% respectively.

Keywords Task allocation · Distributed robotics · Multi-robot systems · Multi-objective optimisation

1 Introduction

Modern robotics systems are increasingly distributed, het-
erogeneous and collaborative, incorporating multiple inde-
pendent agents that communicate via message passing and
distributed protocols. A distributed approach can offer desir-
able qualities such as improved performance. Heterogeneity
refers to the type and amount of hardware resources (e.g. sen-
sors, CPU capacity) available on each agent in the system. In
such systems, the efficient allocation of software processes
(referred to as tasks) to hardware processors is of paramount
importance in ensuring optimality. Previous works (Lee et al.
2014; Liu and Shell 2012) generally take an approach that

This is one of several papers published in Autonomous Robots
comprising the “Special Issue on Robotics Science and Systems”.

B José Cano
jcanore@inf.ed.ac.uk

1 School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, UK

2 School of Computing Science, University of Glasgow,
Glasgow G12 8RZ, UK

3 Department of Computer Science, University College
London, London WC1E 6BT, UK

considers only a fixed set of tasks, equivalent to a “one size
fits all” architecture, limiting the ability of a system to adapt
to different hardware configurations, and reducing the oppor-
tunities for optimisation.

Instead, we advocate the development of systems based on
the selection and allocation of what we term “task variants”.
Task variants are interchangeable software components that
offer configurable levels of quality of service (QoS) with a
corresponding difference in the amount and/or type of com-
puting resources they demand; such variants naturally arise in
many scenarios, and often deployed systems consist of a par-
ticular subset of variants that have been implicitly chosen by
a system architect. For example, consider alternative feature
detection algorithms to solve a common task in a robotics
vision pipeline: different algorithms provide increasingly
sophisticated recognition methods but at the cost of increas-
ing CPU load. Similarly, a variant may offer accelerated
processing by targeting specialised hardware (e.g. GPUs,
FPGAs).

Currently, the crucial step of selecting and allocating such
task variants is typically performed using ad-hoc methods,
which provide no guarantee of optimality and may thus lead
to inefficient allocation. In this paper, we take a more sys-
tematic approach. We formalise the task variant allocation

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9742-5&domain=pdf
http://orcid.org/0000-0002-2243-389X

1478 Autonomous Robots (2018) 42:1477–1495

Fig. 1 Case study: multi-agent navigation system composed of
autonomous robots (KUKA youBots), humans, and network cameras

problem and propose three different solution methods that
are able to efficiently exploit the available resources with the
objective of maximising QoS while ensuring system correct-
ness.

We focus on distributed heterogeneous robotics systems
where variants are naturally available for several tasks. In
particular, our work has been driven by a case study (Fig. 1),
in the form of a distributed system of agents running on ROS
(Quigley et al. 2009). The application implements a frame-
work for inferring and planningwith respect to themovement
of goal-oriented agents in an interactive multi-agent setup—
full details can be found in Bordallo et al. (2015). There are
two types of agents navigating in the same physical space:
autonomous robots represented byKUKAyouBots (Bischoff
et al. 2011) and humans. Each agent is pursuing a goal (a
specific spatial position in the scenario) while avoiding col-
lisions with other agents, based on online sensor processing
and beliefs concerning the latent goals of other agents.

Specific tasks are used to accomplish this objective in
a distributed fashion. For example, robots infer navigation
goals of other agents fromnetwork camera feeds, provided by
at least one Tracker task—meanwhile humans act indepen-
dently and are assumed to navigate as a rational goal-oriented
agent through the space. Some tasks can be configured via
parameter values (e.g. the camera frame rate for the Tracker
task) that translate into variants for that task. Each of these
variants produces a different level of QoS, which we assume
is quantified by an expert system user. Thus, the objective is
to select task variants and allocate them to processors so as
to maximise the overall QoS while agents reach their goals.

The contributions of the paper are as follows: (i) we intro-
duce a mathematical model that represents the task variant
selection and allocation problem; (ii) we propose three differ-
ent solution methods (constraint programming, local search

metaheuristic, greedy heuristic) to the problem; (iii) we eval-
uate and compare the solution methods through simulation;
(iv) we validate the solution methods in a real-world inter-
active multi-agent navigation system, showing how our best
solution method (constraint programming) clearly outper-
forms the average QoS of the local search metaheuristic by
16%, the greedy heuristic by 31%, and a random allocation
by 56%. To the best of our knowledge, we are the first to
address task allocation in the presence of variants in dis-
tributed robotics.

2 Problem formulation

We now model the problem of task variant allocation in dis-
tributed robotics, in a general formulation that also applies
to the specifics of our case study. We consider allocation
as a constrained type of multi-objective, multi-dimensional,
multiple-choice knapsack problem.Whilst instances of these
three problems are individually common in the literature
(Kellerer et al. 2004; Martello and Toth 1990), the com-
bination is not. In addition, we allow for a number of
unusual constraints describing task variants that distinguish
this formulation from previous work (e.g. the specific type of
hardware required to run a variant). Note that in this work we
consider task allocation from a static point of view, although
a dynamic case could be addressed as a process of repeated
static allocations, or a more sophisticated method could be
developed. We leave the dynamic case for future work.

Our formulation of the problem divides cleanly into three
parts: the software architecture of the system, including infor-
mation about task variants; the hardware configuration that is
being targeted as a deployment platform; and the constraints
and goals of task selection and allocation, which may be
augmented by a system architect.

2.1 Softwaremodel

A software architecture is defined by a directed graph of
tasks, (T , M) where the set of tasks T = {τ1 . . . τn} and
each task τi is a unit of abstract functionality that must
be performed by the system. Tasks communicate through
message-passing: edges mi, j = (τi , τ j) ∈ M ⊆ T × T
areweighted by the ‘size’ of the correspondingmessage type,
defined by a function S : mi, j → N; this is an abstract
measure of the bandwidth required between two tasks to
communicate effectively.

Tasks are fulfilled by one or more task variants. Each task
must have at least one variant. Different variants of the same
task reflect different trade-offs between resource require-
ments and the QoS provided. Thus a task τi is denoted as
set of indexed variants: τi = {vi

1 . . . vi
n}, τi �= ∅. For con-

venience, we define V = ∪i τi , such that V is the set of all

123

Autonomous Robots (2018) 42:1477–1495 1479

variants across all tasks. For simplicity, we make the conser-
vative assumption that the maximum message size for a task
τi is the same across all variants vi

j of that task, and we use
this maximum value when calculating bandwidth usage for
any task variant. Note that this assumption could only impact
the overall solution in highly constrained networks, which is
very unlikely nowadays. For example, in our case study the
maximum data rates required are very low (45KB/s) com-
pared to the available bandwidth (300MB/s).

A given task variant vi
j is characterised by its processor

utilisation and the QoS it provides, represented by the func-
tions U , Q : vi

j → N. The utilisation of all task variants is
expressed normalised to a ‘standard’ processor; the capac-
ity of all processors is similarly expressed. QoS values can
be manually (Sect. 5.1) or automatically generated (future
work), although this is orthogonal to the problem addressed.

2.2 Hardwaremodel

The deployment hardware for a specific system is modelled
as an undirected graph of processors, (P, L) where the set
of processors P = {p1 . . . pn} and each processor pk has a
given processing capacity defined by a function D : pk → N.
A bidirectional network link between two processors pk and
pm is defined as lk,m = (pk, pm) ∈ L ⊆ P × P , so
that each link between processors will support one or more
message-passing edges between tasks. The capacity of a link
is given by its maximum bandwidth and is defined by a func-
tion B : lk,m → N. If in a particular system instancemultiple
processors share a single network link, we rely on the system
architect responsible for specifying the problem to partition
network resources between processors, such as simply divid-
ing it equally between processor pairs.

2.3 Selection and allocation problem

The problem hence is to find a partial function A : V → P ,
that is, an assignment of task variants to processors that sat-
isfies the system constraints (i.e. a feasible solution), whilst
maximising the QoS across all tasks, and also maximising
efficiency (i.e. minimising the average processor utilisation)
across all processors. As A is a partial function, we must
check for domain membership of each task variant, repre-
sented as dom(A), to determine which variants are allocated.

We assume that if a processor is not overloaded then each
task running on the processor is able to complete its function
in a timely manner, hence we defer the detailed scheduling
policy to the designer of a particular system.

An optimal allocation of task variants, A∗, must maximise
the average QoS across all tasks (i.e. the global QoS):

max 1/|T |
∑

vi
j ∈dom(A)

Q(vi
j) (1)

Whilst minimising the average utilisation across all pro-
cessors as a secondary goal:

min1/|P|
∑

pk∈P

∑

vi
j ∈dom(A): A(vi

j)=pk

U (vi
j) (2)

Exactly one variant of each task must be allocated:

∀τi ∈ T , ∀vi
j , v

i
k ∈ τi :

(vi
j ∈ dom(A) ∧ vi

k ∈ dom(A)) �⇒ j = k (3)

The capacity of any processor must not be exceeded:

∀pk ∈ P : (∑

vi
j ∈dom(A): A(vi

j)=pk

U (vi
j)

) ≤ D(pk) (4)

The bandwidth of any network link must not be exceeded:

∀lq,r ∈ L :
(∑

i :A(vi
j)=pq

∑

k:A(vk
l)=pr

S(mi,k)+S(mk,i)
)

≤ B(lq,r)

(5)

In addition, residence constraints restrict the particular
processors to which a given task variant vi

j may be allocated,

to a subset Ri
j ⊆ P . This is desirable, for example, when

requisite sensors are located on a given robot, or because
specialised hardware such as a GPU is used by the variant:

vi
j ∈ dom(A) �⇒ A(vi

j) = pk ∈ Ri
j (6)

Coresidence constraints limit any assignment such that
the selected variants for two given tasks must always reside
on the same processor. In practice, this may be because the
latency of a network connection is not tolerable. The set of
coresidence constraints is a set of pairs (τi , τk) for which:

∀vi
j ∈ τi ,∀vk

l ∈ τk : (vi
j ∈ dom(A) ∧ vk

l ∈ dom(A))

�⇒ A(vi
j) = A(vk

l) (7)

3 Solutionmethods

We now propose and describe our three different centralised
approaches to solving the problem of task variant alloca-
tion1: constraint programming (CP), a greedy heuristic (GH),
and local search metaheuristic (LS). These are three broadly
representative search techniques from diverse families of
solution methods, as outlined by Gulwani (2010).

1 All the source code can be found online (White and Cano 2017).

123

1480 Autonomous Robots (2018) 42:1477–1495

3.1 Constraint programming

We expressed the problem in MiniZinc 2.0.11 (Nethercote
et al. 2007), a declarative optimisation modelling language
for constraint programming. A MiniZinc model is described
in terms of variables, constraints, and an objective.Ourmodel
has a variable for each variant, stating the processor it is to
be assigned to; since we are constructing a partial mapping,
we add a special processor to signify an unassigned variant.
Matrices are used to represent the bandwidth of the network
and the sizes of messages exchanged between tasks.

Most constraints are a direct translation of those in
Sect. 2.3 although the constraint given by Eq. 3 is expressed
by saying that the sum of the variants allocated to any given
task is one—this natural mapping is why we selectedMiniZ-
inc, rather than (for example) encoding to mixed integer
programming (Wolsey 2008). The development of a model
that allows MiniZinc to search efficiently is key to its suc-
cess, and we spent some time refining our approach to reduce
solution time. However, the model could be further refined.
For example, we could investigate non-default variable and
value ordering heuristics, or introduce a custom propagator
which avoids the O(n4) space associated with encoding the
bandwidth constraints.

There are two objectives to be optimised, and we achieve
this by implementing a two-passmethod: first the QoS objec-
tive is maximised, we parse the results, and then MiniZinc
is re-executed after encoding the found optimal value as
a hard constraint whilst attempting to minimise processor
utilisation—note that the MiniZinc model doesn’t include
the 1/|P| and 1/|T | terms in the objective, since floats or
divisions affect constraint programming performance con-
siderably. Instead, we apply these terms in the Python
program that calls MiniZinc.

The full model is available online (White and Cano 2017),
but to give a flavour, we show our variables, a constraint, and
the first objective:

array[1..nVariants] of
var 0..nProcessors: assignments;

constraint forall (p in 1..nProcessors) (
sum([if assignments[v] == p

then utilisations[v]
else 0
endif

| v in 1..nVariants])
<= capacities[p]);

solve maximize sum(
[if assignments[v] != 0
then qos[v]
else 0
endif
| v in 1..nVariants]);

MiniZinc allows instance data to be separated from the
model. Part of a data file looks like this:

nProcessors = 3;
capacities = [100, 100, 223];
links = [| -1, 17745, 17676

| 17745, -1, 17929
| 17676, 17929, -1 |];

To solve instances, we used the Gecode (Gecode Team
2006) constraint programming toolkit, which combines
backtracking search with specialised inference algorithms.
We used the default search rules, and only employ standard
toolkit constraints. It addition to being used as an exact solver,
Gecode can also run in anytime fashion, such that it reports
the best solution found so far. Our system reports its progress
in terms of the best-known solution at any point during the
execution of the solver, as well as the optimal result, where
found. In our evaluation we consider both the standardmode,
which returns the global optimum after an unrestricted run-
time (Sect. 5.3), and also this anytime mode that returns the
best result found so far (Sect. 5.5).

3.2 Greedy heuristic

Our second solution method is a non-exact greedy algorithm
that uses a heuristic developed from an algorithm origi-
nally designed for solving amuch simpler allocation problem
(Cano et al. 2015). The procedure is described in Algorithm
1, and attempts to obey constraints, then allocate the most
CPU intensive tasks possible to those processors with the
greatest capacity.

First, the smallest task variants with residency constraints
are allocated to processors (lines 3–7), beginning with the
largest capacity processor if the subset Ri

j for a given task

variant vi
j contains more than one element. Next, the small-

est variants of any tasks with coresidency constraints are
assigned selecting processors from Pmax (lines 8–10). Then,
the smallest variants of any remaining, unallocated, tasks
are allocated, again preferring processors with more capac-
ity (lines 11–13). Finally, the algorithm iteratively attempts
to substitute smaller variants with larger ones on the same
processor (lines 14–17). Note that the way in which the next
processor (from Ri

j , Pmax) or variant is selected must also
ensure that allocations will not result in a violation of any
previously satisfied constraints.

The greedy heuristic is not guaranteed to find a solution,
but if it finds one it is always feasible, i.e. satisfies the sys-
tem constraints. The ability to provide solutions is greatly
determined by residency and coresidency constraints.

123

Autonomous Robots (2018) 42:1477–1495 1481

Algorithm 1 Greedy Heuristic
1: Pmax = sort processors by max capacity
2: Tmax = sort tasks by max variant size

Allocate variants with residency constraints
3: for task in Tmax do
4: Vmin = sort variants of task by min variant size
5: for variant in Vmin do
6: if variant has residency constraints AND task has no

variant assigned then
7: Allocate variant to processor from Rtask

variant
Allocate variants with coresidency constraints

8: for task in Tmax do
9: if task has coresidency constraints AND task has no variant

assigned then
10: Allocate smallest variant to processor from Pmax

Allocate remaining variants
11: for task in Tmax do
12: if task has no variant assigned then
13: Allocate smallest variant to processor from Pmax

Upgrade variants where possible
14: while there are task with variants to explore do
15: for task in Tmax do
16: if sufficient capacity in assigned processor then
17: Allocate next larger variant of task
18: if all tasks assigned then
19: return allocation

Algorithm 2 Local Search Metaheuristic
1: current ← random assignment
2: while time < timeout do
3: for n in neighbours(current) do
4: if n is superior to current then
5: current ← n
6: if no improvement then
7: current ← random assignment

3.3 Local searchmetaheuristic

The third algorithm we propose is a simple local search
metaheuristic employing random restarts. The process is
described by Algorithm 2. Initially, a random assignment
is generated by allocating a random variant for each task to a
randomprocessor (line 1), and all choices aremadeuniformly
random. There is no guarantee a randomly generated alloca-
tion will satisfy the constraints of the model, and indeed the
search algorithm is not guaranteed to find a feasible solution.
Neighbouring solutions are generated (line 3) and accepted
if the resulting allocation is superior to the incumbent one
(lines 4–5). As there is no way to determine if the global
optimum has been found, the algorithm continues to search
the space of assignments until a given timeout is reached.
The search may find a local optimum, in which case a ran-
dom restart is used to explore other parts of the search space
(lines 6–7).

The neighbourhood of a solution in the space of alloca-
tions is defined as all those solutions that can be generated by
substituting another variant of the same task for one already
allocated, or alternatively by moving a single variant to a

different processor. In order to determine if one solution is
preferable to another, a priority ordering amongst the con-
straints and objectives is established, in order of importance:

1. No processors should be overloaded.
2. The network should not be overloaded.
3. Residency constraints must be satisfied.
4. Coresidency constraints must be satisfied.
5. Average QoS per task should be maximised.
6. Average free capacity per CPU should be maximised.

A solution is feasible if the first four constraints are sat-
isfied, after which the search will try to optimise QoS and
then reduce processor utilisation to free up capacity. This
priority ordering method is preferred over the alternative
of a weighted sum objective, an approach found elsewhere
in the literature (Marler and Arora 2009). Weighted sum
approaches require the user to precisely quantify the rel-
ative importance of objectives and constraints, which is a
somewhat inelegant approach to this problem, as it can be
unrealistic in many scenarios (e.g. when considering factors
such as execution time, energy consumption, and functional
performance). Furthermore, it is known that some members
of the pareto front will not be found when using such an
approach (Coello et al. 2006; Das and Dennis 1997). As we
prioritise functional performance over non-functional con-
cerns, a two-stage approach ismore appropriate. For the same
reason, we prefer local search over simulated annealing (Tin-
dell et al. 1992), an algorithm we also experimented with,
which relies on a numerical gradient in the constrained objec-
tive space as a measure of absolute quality (i.e. it requires to
provide weightings in the same manner as a weighted sum
approach, which suffers from the problems given above).

3.4 Computational complexity

In the worst case, hill-climbing has time complexity O(∞),
i.e. it may never find the global optimum. Our implementa-
tion of hill-climbing (i.e. local search metaheuristic) uses the
random restart strategy, that is, it commences a new search
once it has found a local optima, but this still does not guaran-
tee it will find the global optimum. Similarly, greedy-search
cannot provide such a guarantee. Finally, the worst-case
complexity of the constraint programming approach is in
principle exponential, but our results show that this does not
occur in practice on the datasets analysed.

4 Example case study

Our case study serves as a specific instantiation of the general
formulation presented, with which we can test our algorith-
mic solutions in a real system. We first present a baseline

123

1482 Autonomous Robots (2018) 42:1477–1495

Experiment

Environment Environment ...

Planner

10Hz

10Hz

10Hz

10Hz

10Hz

10Hz

2-20Hz

YouBot
Core

50Hz

Task (ROS Node)
Robot domain
Server domain
Other instances
Task Variants
Topic (asynch)
Services (synch)

+

1-3Hz

Tracker ...

10-25Hz

Robot
Domain

Server
domain

10-25Hz

Tracker
+

Model
+

Navigation
+

AMCL
+

Fig. 2 Case study software architecture, composed of one Tracker
instance per camera, one instance of each task in the Robot domain
per robot, and one Experiment instance for the complete system

instance of the system, consisting of a single robot, person,
server and camera. This simplified configuration illustrates
the system components and the constraints imposed on them.
Each robot or human agent is pursuing a spatial goal. The
application’s overarching QoS metric is a combination of
essential requirements (e.g. avoid collisions between agents,
minimise travel time to reach target goals), as well as more
sophisticated preferences (e.g. minimise close-encounters
and hindrance between navigating agents, minimise the time
taken to infer the true agent goal). Therefore, task variants
must be selected and allocated across available processors
with the objective of optimising global QoS based on the
selected variants’ individual QoS values.

4.1 Software architecture

Figure 2 shows a high-level diagram representing the soft-
ware architecture of the case study. It is composed ofmultiple
tasks and their message connections. In the figure, con-
nections are labelled with message frequencies, which can
be obtained from the maximum bandwidth requirement
described in Sect. 2.1. The QoS values for the variants of
a given task represent the proportional benefit of running
that task variant; a variant that has a higher QoS, however,
would typically incur a higher CPU usage. We rely on an
expert system user to estimate QoS values for task variants.

We now describe for each task in our case study, the cor-
responding variants (see Table 1 for details):

– Tracker A component of a distributed person tracking
algorithm that fuses multiple-camera beliefs using a par-
ticle filter. The variants for this task are based on the input
image resolution and the output frame rate given a fixed
number of cameras. The higher the output frame rate the
more accurate the tracking.

– Experiment A small synchronous task that coordinates
all robots taking part in the experiment. Ta

bl
e
1

Ta
sk

va
ri
an
ts
ch
ar
ac
te
ri
sa
tio

n

Ta
sk

V
ar
ia
nt
s

Pa
ra
m
et
er
s

C
PU

Fr
eq

(H
z)

B
W

(K
B
/s
)

R
es

C
oR

es
Q
oS

E
xp
er
im

en
t

1
–

1
10

1
Se
rv
er

–
1

T
ra
ck
er

4
O
ut
pu
tf
re
q.

(2
5
20

15
10
)

20
0
16
0
12
0
80

25
20

15
10

2.
5
2
1.
5
1

Se
rv
er

–
10
0
90

70
40

E
nv
ir
on
m
en
t

1
–

1
10

0.
5

–
–

1

M
od
el

3
N
um

.g
oa
ls
(1
00
00

35
00

4)
59

39
17

10
10

10
5
5
5

–
–

10
0
60

20

Pl
an
ne
r

1
–

1
10

0.
5

–
N
av
ig
.

1

A
M
C
L

3
Pa
rt
ic
le
s
(3
00
0
50
0
20
0)

66
41

19
2.
5
2.
5
2.
5

1
1
1

–
–

10
0
75

50

N
av
ig
at
io
n

3
C
on
tr
ol
le
r
fr
eq
.(
20

10
2)

50
39

25
20

10
2

1
0.
5
0.
1

–
Pl
an
ne
r

10
0
67

33

Y
ou
bo
t_
C
or
e

1
–

16
10

0.
5

R
ob
ot

–
1

123

Autonomous Robots (2018) 42:1477–1495 1483

– Environment A local processing task required by each
robot. This task combines information generated by the
local robot, other robots, and elsewhere in the system (i.e.
Tracker, Experiment).

– ModelAn intention-awaremodel for predicting the future
motion of interactively navigating agents, both robots and
humans. The variants for this task are based on the num-
ber of hypothetical goals considered given a fixed number
of agents. A higher number of modelled agent goals will
lead to more accurate goal estimates.

– Adaptive Monte Carlo Localisation (AMCL) Localisa-
tion relying on laser data and a map of the environment
(Pfaff et al. 2006). The variants of this task vary with the
number of particles used during navigation, since a larger
number increases localisation robustness and accuracy in
environments populatedwith othermoving obstacles.We
assume the robot moves on average at the preferred speed
of 0.3 m/s (min 0.1 m/s, max 0.6 m/s).

– Planner Generates an interactive costmap, which pre-
dicts the future motion of all agents with relation to other
agents’ motion given their inferred target goals. Since
the costmap is used by the Navigation task for calculat-
ing the trajectory to be executed, the two tasks have a
coresidence constraint to guarantee a proper behaviour.

– Navigation This task avoids detected obstacles and
attempts to plan a path given the interactive costmap of
the agents in the environment, ultimately producing the
output velocity the robot platform must take. The vari-
ants of Navigation depend on the controller frequency,
that is, the number of times per second the task produces
a velocity command. The higher the frequency, the more
reactive and smooth the robot navigation becomes.

– YouBot_Core A set of ROS packages and nodes that
enable the robot to function, for example etherCAT motor
connectivity, internal kinematic transformations, and a
laser scanner sensor. This task must always run in the
corresponding robot (i.e. it has a residence constraint).

Finally, we assume that a robot is capable of executing a
full set of its tasks, at the very least by selecting their least-
demanding variants. Those tasks are represented within the
robot domain in Fig. 2. This is critical to ensure a contin-
ued service in periods of network outage in future dynamic
scenarios, albeit at lower levels of QoS.

4.2 Hardware architecture

The hardware integrating the baseline system is composed
of a single network camera and two processors, that is, a
robot with onboard processor and a remote server. Robot and
server communicate through a wireless network, and camera
and server through a wired network. In practice the network
bandwidth is currently not a limiting factor, as both networks

are dedicated and private in our lab. The same applies to the
latency/quality of the wireless signals.

5 Evaluation

In this section, we first describe the results of an empirical
characterisation of the baseline system, which is mandatory
to evaluate both the solution methods and the case study
itself. We then extend this characterisation to define a set of
system instances of increasing size and complexity. Having
established these benchmark problems, we employ them to
evaluate the utility of our solution methods, in two stages.

In the first stage, we compare the quality of solutions
returned by the three proposed methods to answer the fol-
lowing research questions:

– RQ1A Is it possible to find globally optimal variant selec-
tions and allocations using constraint programming?

– RQ1B How well can a straightforward greedy heuristic
and the local search metaheuristic perform on this prob-
lem, relative to the constraint programming method?

– RQ1C How does the solution time scale with the size and
complexity of the example system instances?

– RQ1D How well do the results produced by the three
solution methods translate to deployment on the physical
system outlined in Sect. 4?

– RQ1E How effective are the allocations proposed by our
solution methods compared to random allocations?

In the second stage, we compare the constraint program-
ming solver configured in anytime mode against the local
searchmetaheuristic, to explore their performance over time.
Our research questions are as follows:

– RQ2A How do local search metaheuristic and “anytime”
constraint programming compare in terms of their solu-
tions quality after a given period of run-time?

– RQ2B Could these two “anytime” methods be used in
future dynamic scenarios?

5.1 System characterisation

We performed an offline characterisation of the baseline sys-
tem shown in Fig. 2 using common monitoring utilities from
ROS (e.g. rqt, which provides average values) andLinux (e.g.
htop, visually inspecting it during execution). The objective
was to obtain for each unique task variant in the system the
following values: (i) the average percentage of CPU utilisa-
tion required; (ii) the average frequency at which messages
published are sent to other tasks; and (iii) the average network
bandwidth required.

123

1484 Autonomous Robots (2018) 42:1477–1495

Table 1 summarises the values obtained. Column two rep-
resents the number of variants for each task, and column
three the value of the parameters that create the task variants
(see Sect. 4.1). The next three columns include the average
values of CPU utilisation, frequency and bandwidth for each
taskvariant—note that themaximumvalues for frequency are
shown in Fig. 2. The CPU values for the Tracker task assume
only one person in the environment. Columns seven and eight
show the residence and coresidence constraints for each vari-
ant and task respectively. Finally, the last column represents
the normalised QoS associated with each task variant, where
100 is the maximum value. Note that we have assigned QoS
value “1” to single variant tasks because they have much less
impact in the system behaviour, which is reflected in low
CPU utilisation values in Table 1. The focus of this work
is task variant allocation, for which we require QoS values
as inputs. Although QoS values were manually generated
based on real system measurements, they may be automati-
cally generated, but we leave this for future work. It is worth
noting that the user is required to provide QoS values only
“once” for each task variant. Therefore, when the system is
scaled up by replicating tasks on more robots or cameras,
no further manual characterisation work is required from the
user.

Finally, we specify the hardware characteristics of the
baseline system. The robot’s on-board processor is an Intel
Atom, 2 cores@1.6GHz, 2GBRAM.The server’s processor
is an Intel i5-3340, Quad Core @ 3.30 GHz (Turbo), 16 GB
RAM. Note that all CPU measurements are normalised to
the robot CPU capacity (assumed as 100). From this, we can
understand why the Tracker instances (which have a high
CPU requirement) can only run in the server, translating into
a residence constraint. The networks employed are a wire-
less IEEE 802.11ac network at 300Mbps, and awired 1Gbps
Ethernet network.

5.2 System instances

In order to obtain more complex instances of the baseline
system shown in Fig. 2, we only need to add processors (i.e.
robots, servers) and/or cameras, allowing the system to cope
with a more complex environment and complete more dif-
ficult challenges. As these parameters are varied, the total
number of tasks and variants changes accordingly, but the
number of variants for each task is fixed.

Table 2 summarises the set of instances comprising our
benchmarks, which includes the number of tasks and variants
generated for each case—note that only one server with a
capacity of 400 is used for all cases. In order to provide
an estimate of the search space size, an approximate upper
bound Nk for the number of possible variant assignments for
a given problem instance k is calculated as follows:

Table 2 System instances considered

Inst. Proc. Robots Cam Tasks Var. S. space Nk

1 2 1 1 8 17 1728

2 2 1 2 9 21 6912

3 2 1 3 10 25 27,648

4 3 2 1 14 29 1.91 × 105

5 3 2 2 15 33 7.65 × 105

6 3 2 3 16 37 3.06 × 108

7 4 3 1 20 41 1.32 × 1012

8 4 3 2 21 45 5.28 × 1012

9 4 3 3 22 49 2.11 × 1013

10 4 3 4 23 53 8.45 × 1013

11 5 4 1 26 53 4.45 × 1014

12 5 4 2 27 57 1.78 × 1015

13 5 4 3 28 61 7.12 × 1015

14 5 4 4 29 65 2.85 × 1016

Nk =
∏

τi ∈ T

|P(τi)| · |τi | (8)

where |P(τi)| is the number of possible processors on which
a task τi can be allocated without violating residency and
coresidency constraints, and |τi | is the size of the set of vari-
ants of the task. The size of the search space Nk for the
instances considered is shown in the last column of Table 2.

5.3 Simulation results

We now analyse and compare the QoS and CPU utilisa-
tion values of solutions provided by the three proposed
methods (since these are simulation results,2 we call them
expected values). Remember that the allocation ofmore pow-
erful variants translates into higher global QoS values, and
strongly correlates with improved overall system behaviour.
For example, switching from the least to most powerful vari-
ant of the T racker task (QoS values 40 and 100 in Table 1)
actually provides more accurate and faster tracking of people
in the environment. This in turn provides the Planner and
Model tasks with better data, improving the robots ability to
navigate (e.g. avoiding collisions).

We execute Python programs implementing the three pro-
posed methods for the instances described in Table 2. All
simulation experiments were performed on a 2.8 GHz Intel
Core i7 with 4 GB RAM (Table 3 shows the total execution
times). Answering RQ1A, we found that constraint program-
ming finds the globally optimal solution for all instances
analysed. In other words, for each instance this method pro-

2 Note that we simulate the QoS and CPU loads given the characterised
values in Table 1. No physics/robot simulation was used.

123

Autonomous Robots (2018) 42:1477–1495 1485

Table 3 Total execution time of greedy heuristic (GH), local search (LS), and constraint programming (CP) for the system instances considered

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GH 3 ms 5 ms 6 ms 10 ms 13 ms 14 ms 21 ms 23 ms 22 ms 25 ms 30 ms 29 ms 33 ms 37 ms

CP/LS 340 ms 340 ms 390 ms 1.36 s 2.34 s 3.54 s 14.20 s 9.6 m 33 m 17 m 10.1 h 6.19 d 2 w 6.81 d

ms milliseconds, s seconds, m minutes, h hours, d days, w weeks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg

N
or

m
al

is
ed

 e
xp

ec
te

d
Q

oS

Instance

GH LS CP

Fig. 3 Expected QoS for greedy heuristic (GH), local search (LS), and
constraint programming (CP). Values are normalised to the optimal
solution (=1). Server capacity=400

vides the allocationof task variants to processorswith the best
possible average QoS and minimum CPU utilisation. Since
constraint programming provides the best possible QoS, we
normalise the QoS provided by the greedy and local search
methods to the optimum. Figure 3 shows results compar-
ing the QoS of the three methods—note that values for local
search are actually the average of three independent runswith
a timeout set to be equal to the time required by the con-
straint programming method. Therefore, answering RQ1B,
we observe that local search and greedy heuristic achieve an
average of 14 and 46% lesser QoS than constraint program-
ming respectively.

Figure 4 shows the results for CPU utilisation, where the
values indicated refer to the total utilisation of the sum of all
CPU capacities. On average, constraint programming utilises
3 and 20% more CPU capacity than local search and greedy
respectively, but as shown in Fig. 3, the differences in QoS
aremuch greater (14% and 46%). There are two special cases
in Fig. 4 where local search utilises more CPU capacity
than constraint programming while providing lesser QoS.
For I nstance 10, the reason is that local search finds an
infeasible solution. However for I nstance 11 the solution
found is feasible, which further demonstrates that constraint
programming provides better solutions—recall that it uses a
two-pass method.

Since we maintain the server capacity (= 400) across all
instances analysed, the problem becomes more constrained
as the total number of task variants increases. As an exam-
ple, constraint programming and the greedy heuristic solve
I nstance 1 allocating the most powerful variant for all tasks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg

N
or

m
al

is
ed

 e
xp

ec
te

d
CP

U
 u

�l

Instance

GH LS CP

Fig. 4 Expected CPU utilisation for greedy heuristic (GH), local search
(LS), and constraint programming (CP). Values are normalised to the
corresponding total CPU capacity (= 1). Server capacity = 400

Table 4 I nstance 1 (1 robot, 1 camera): task variant selection (V is
the variant, smaller numbers indicate more powerful) and allocation (P
is the processor, biggest number is the server) for each solution method

Tasks (8) VG H PG H VL S PL S VC P PC P

Experiment 1 2 1 2 1 2

Tracker 1 2 3 2 1 2

Environment 1 2 1 2 1 1

Model 1 2 1 1 1 2

Planner 1 2 1 2 1 1

AMCL 1 2 1 2 1 2

Navigation 1 2 1 2 1 1

Youbot_Core 1 1 1 1 1 1

(VC P = 1 and VG H = 1 in Table 4). Note how constraint
programming balances much better the allocation of task
across the available processors (PC P and PG H in Table 4).
However for I nstance 10 (Table 5), some tasks need to use
less powerful variants in order to satisfy the CPU capacity
constraint (e.g. the four T racker tasks use the least pow-
erful variant for constraint programming, VC P = 4). In
Table 5 we also see how local search allocates T racker_1
to Processor 3 (PL S = 3), thus providing the infeasible
solution commented previously. Since the T racker task has
a residence constraint, it can only be allocated to the server,
which is Processor 4 for this instance.

Finally, and answering RQ1C, we see that the solu-
tion times for constraint programming are reasonable up to
I nstance 10 (Table 3), which is actually a big system in

123

1486 Autonomous Robots (2018) 42:1477–1495

Table 5 I nstance 10 (3 robots, 4 cameras): task variant selection (V is
the variant, smaller numbers indicate more powerful) and allocation (P
is the processor, biggest number is the server) for each solution method

Tasks (23) VG H PG H VL S PL S VC P PC P

Experiment 1 4 1 4 1 4

Tracker_1 4 4 4 3 4 4

Tracker_2 4 4 3 4 4 4

Tracker_3 4 4 4 4 4 4

Tracker_4 4 4 4 4 4 4

Environment_1 1 2 1 3 1 1

Model_1 2 3 3 3 2 3

Planner_1 1 4 1 1 1 2

AMCL_1 3 2 2 1 3 3

Navigation_1 3 4 2 4 1 2

Youbot_Core_1 1 1 1 1 1 1

Environment_2 1 4 1 2 1 1

Model_2 3 2 1 4 2 4

Planner_2 1 4 1 2 1 1

AMCL_2 3 2 1 2 3 2

Navigation _2 3 4 3 4 2 1

Youbot_Core_2 1 2 1 2 1 2

Environment_3 1 2 1 3 1 1

Model_3 2 3 3 1 2 4

Planner_3 1 4 1 3 1 1

AMCL_3 3 2 3 4 3 3

Navigation_3 3 4 3 1 2 1

Youbot_Core_3 1 3 1 2 1 3

terms of the search space (Table 2). At this point, the times
start to become intractable (we analyse the anytimebehaviour
in Sect. 5.5). Thus, we don’t report results for larger sys-
tem instances. We leave further refinements to our MiniZinc
model as future work, which could potentially allow scal-
ing to larger instances. On the other hand, the solution times
for the greedy heuristic are small (milliseconds) and scale
well, although it provides inferior QoS values to constraint
programming, as previously discussed.

5.4 Analysis of case study behaviour

Having obtained the simulation results, our next step is to
validate that the expected QoS values obtained via simula-
tion match the behaviour of the real system. To do this, we
performed experiments for instances 1–6 from Table 2 in our
case study environment. For each instance, we configured
the allocation of task variants to processors computed by
the solution methods—note that only a single human agent
is present in the environment for all experiments. Then, the
measuredQoSvalue for each instance andmethod is obtained

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 Avg

N
or

m
al

is
ed

 m
ea

su
re

d
Q

oS

Instance

GH LS CP RC

Fig. 5 Validation of simulation results on the physical system: mea-
sured QoS for greedy heuristic (GH), local search (LS), constraint
programming (CP), and random allocations (RA). Error bars represent
the deviation from the expected QoS values

by applying the following formula:

QoSmeasured =
∑

τ∈T

QoSτ × Fo
τ

Fe
τ

(9)

where QoSτ is the expectedQoS value for task τ as predicted
by our solution methods, Fo

τ is the observed frequency of
messages produced by task τ on the real system and Fe

τ is the
expected frequency associated with task τ (Table 1). These
two frequencies can differ due to overloaded processors (for
infeasible solutions) and/or approximation errors in the sys-
tem characterisation. Therefore, this frequency ratio deter-
mines the effectiveness of a task variant in the real system.

Figure 5 shows the results. The black error bar for each
column denotes the difference between measured QoS (top
of column) obtained with Eq. 9, and expected QoS (error bar
upper end) obtained by simulation. Answering RQ1D, the
measured QoS values for local search, constraint program-
ming and the greedy heuristic only deviate by 8, 7 and 5%
on average respectively from the expected values. This result
validates the accuracy of our methodology.

Finally, we also examined the system behaviour consider-
ing random allocations of task variants to processors—note
that this could be the best choice for users with little knowl-
edge of the system or for large system instances. Figure 5
also includes these results (RA), where each bar actually
corresponds to the average QoS of three randomly gener-
ated allocations. AnsweringRQ1E, we see how themeasured
QoS values for random allocations deviate much more from
the expected ones, by an average of 22%, than those for the
proposed solution methods. The reason is that our solution
methods produced feasible allocations for the six instances
analysed (i.e. satisfying system constraints), thus differences
are only due to approximation errors in the system character-
isation. However, some of the random allocations produced

123

Autonomous Robots (2018) 42:1477–1495 1487

infeasible solutions,which translated into overloaded proces-
sors and therefore larger differenceswith the expected values.

In summary, constraint programming improves the over-
all QoS of the real system by 16, 31, and 56% on average
over local search metaheuristic, greedy heuristic and random
allocations respectively.

5.5 Anytime approaches

In this section, we consider the task allocation problem from
a different point of view. If we are to apply our approach
to larger systems, or select and allocate task variants at sys-
tem boot, or even at run-time, then the time taken to find a
good allocation takes ongreater precedence.Both theGecode
constraint programming solver and local search solution
methods can be used as anytime algorithms, where the best
allocation currently known can be returned at any point dur-
ing their execution.The twoalgorithms approach the problem
differently, because constraint programming requires a two-
pass procedure where each objective is optimised in turn,
whereas the local search metaheuristic attempts to optimise
both objectives simultaneously. Therefore, the relative per-
formance of the two algorithms is of interest.

For our anytime analysis, we selected the instances that
resulted in significant runtimes for constraint programming
(Table 3), that is, from I nstance 7 to I nstance 14. Then,
we executed the Gecode solver and the local search method
for these instanceswith increasing timeout values, to evaluate
how the solutions they found improved over time. Figure 6b–
i show the results. The graphs show two objectives: firstly,
the Quality of Service objective as defined by Eq. 1, and
secondly the Utilisation objective as defined by Eq. 2. Each
intermediary result is from an independent run of the algo-
rithms, avoiding the problem of autocorrelation. All results
in Fig. 6 are normalised to the optimal solution (“1"), which
represents: (i) for QoS, the best possible value; (ii) for CPU
utilisation, unutilised processors (free capacity of 100%).
Note that for I nstances 11 to 14 we only show the execution
time for the first 4000 s, but in all cases the QoS obtained is
greater than the 80% of the optimal value.

As can be observed for all the instances in Fig. 6, there is
a certain amount of variance in the results produced by local
search, based on the seed provided. For example, the fifth
value for local search QoS in Fig. 6b is lower than the pre-
ceding and following values. Tomeasure the variance for this
instance, we repeated the experiment ten times, and present
the results in Fig. 6a. This underlines the fact that the perfor-
mance of local search is quite variable, although it generally
makes steady progress over time.

The graphs in Fig. 6 illustrate a clear trend that answers
RQ2A: in most cases, constraint programming produces
superior results in the same amount of time, and is our pre-
ferred anytime solution method. The only exception in our

results is I nstance 12, where local search provides better
QoS values for the last six points of the graph (Fig. 6g)—
note that heuristic-based methods can randomly provide a
good solution. For the first point (t ime = 10 s) local search
provides an infeasible solution. The other instances con-
taining points where local search is better than constraint
programming (i.e. Fig. 6d, e, h, i) also correspond to infea-
sible solutions.

Answering RQ2B, constraint programming also produces
high quality results within a short timeframe, which may
enable dynamic optimisation in the future and also increases
our confidence in its ability to scale to larger systems. Fig-
ure 7 shows the first feasible solution provided by constraint
programming normalised to the optimum. This first result is
provided after 4 s for I nstances 7–10, and after 10 s for
I nstances 11–14. The figure also shows the value for the
greedy heuristic, just to have a clear idea of how good con-
straint programming is for these short times, a 32% better on
average.Note that local search is not shownbecause after 10 s
it provides infeasible solutions for almost all the instances.

Finally, note that since our local search algorithm is
implemented in Python, it may be argued that constraint
programming has an unfair advantage in that the MiniZinc
solvers arewritten in C; however, the highly optimised nature
of constraint solvers is actually a strong argument in favour
of adopting them, particularly as they improve through con-
tinuous development over time.

6 Related work

Much work has been performed in the area of task allocation
in distributed robotics, where different types of optimisation
problems have been addressed. A comprehensive taxonomy
can be found in Korsah et al. (2013), where problems are
categorised based on: (i) the degree of interdependence of
agent-task utilities; and (ii) the system configuration, which
in turn is based on an earlier taxonomy Gerkey and Matarić
(2004) that considers the type of: agents, tasks and allocation.
According to these taxonomies, the task variant allocation
problem presented in this paper falls in the category of Cross-
schedule Dependencies (XD), that is, the effective utility of
each individual task-agent allocation depends on both the
other tasks an agent is performing, and the tasks other agents
are performing. Several types of system configurations are
supported within this category—e.g. MT–SR–IA considers
multi-task robots (MT), single-robot tasks (SR), and instan-
taneous task assignment (IA). Furthermore, problems in this
category can be formulatedwith different types ofmathemat-
ical models. In our case, we use a special form of knapsack
formulation (Sect. 2).

Section 6.1 presents a systematic literature review of the
area. Our key goals are to:

123

1488 Autonomous Robots (2018) 42:1477–1495

Time (s)

N
or

m
al

is
ed

 Q
oS

+ + ++++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + ++++

o

o

o

o

o

o

o

o

o o

o

o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+

+

+

+++++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + + +++++

o

o

o

o o
o o o

o

o
o

o o oo o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+

+

+

+ + +++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + + +
+

++ +

o
o o

o

o

o
o o

o o
o o o

oo o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+

+ ++++++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + ++++++

o

o

o
o

o

o

o
o

o
o o o

o
o o o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+
+

++

+ ++ +

Time (s)
N

or
m

al
is

ed
 O

bj
ec

tiv
e

V
al

ue

+ + ++ + ++ +

o

o

o o

oo o
o

o o
o

o o o
o o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+

+
+

+
+

+++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + + + + +++

o

o

o

o
o

o
o o

o

o

o o o
o o o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+

+
++

+ + ++

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ + ++ + + ++

o

o
o

o

o

o

o
o

o o
o

o o o o
o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

+
+++++++

3 9 12 15 18 5 10 15 0 100 200 300 400 500

0 500 1000 1500 2000 0 200 400 600 800 1000 0 1000 2000 3000 4000

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

N
or

m
al

is
ed

 O
bj

ec
tiv

e
V

al
ue

+ +++++++

o

o
o

o
o

o o

o

o o o o o o o
o

+
+
o
o

CP QoS
CP Util
LS QoS
LS Util

6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Anytime results for constraint programming (CP) and local search (LS): a Distribution on I nstance 7 with 10 Repetitions; b I nstance 7;
c I nstance 8; d I nstance 9; e I nstance 10; f I nstance 11; g I nstance 12; h I nstance 13; i I nstance 14

1. Quantify the size of typical search spaces for robot task
allocation case studies.

2. Characterise the general solution methods used for task
allocation in this domain.

This survey shows that our problem search spaces are
larger than previous work, and our constraint programming
optimisation technique is novel.

Section 6.2 proceeds to study key related work in dis-
tributed robotics falling in the same category as our work.
We highlight how our work differs from past research.3 In
systems like our case study, where task variants are instan-
tiated by parameter configurations, it might be interesting to

3 Note that this paper is an extension of our previous work (Cano et al.
2016b).

123

Autonomous Robots (2018) 42:1477–1495 1489

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

7 8 9 10 11 12 13 14 Avg

N
or

m
al

is
ed

 e
xp

ec
te

d
Q

oS

Instance

GH CP (1st result)

Fig. 7 Expected QoS for for greedy heuristic (GH), and the first result
provided by constraint programming (CP 1st result). Values are nor-
malised to the optimal solution (=1). Server capacity = 400

consider a greater number of variants for each task (even a
continuumset), but then the allocationproblemwould require
different solution methods, as shown in Cano et al. (2016a).

6.1 Systematic review

This section presents a systematic review of the literature,
following standard practice in the discipline (Kitchenham
2004). The research is performed to establish the search
spaceboundaries in optimisationof task allocation for robotic
applications. The survey was conducted so that we can
quantitatively assess the maximum experiment size (either
actual or simulated) of each published work included. This
approach provides a comparative base between the scalabil-
ity of existingwork and ourmethod in practice. In that respect
we attempt a characterisation of limitations of task allocation
approaches in the domain in comparison with the limitations
of our approach.

Initially, three types of robotic systems were identified.
The first type involved a larger number of robots performing
less demanding tasks such as swarm systems. The second
involved a moderate number of robots (10–30) (Sugiyama
et al. 2016; Cheng et al. 2016). The third included a low
number of robots performingvery complex tasks (Khalfi et al.
2016; Wang et al. 2016; Hongli et al. 2016).

The strategy used for the systematic review involved
searching for journal and conference publications through
three well established databases and with a predefined com-
bination of keywords. The databases are IEEE Xplore (IEEE
2016), ScienceDirect (Elsevier 2016) and ACM Digital
Library (The Association for Computing Machinery 2016).
Moreover, proceedings of well known conferences were
reviewed and in particular IROS, AAMAS, ICRA and RSS.
The search pattern used was robot AND (“task allocation”
OR “resource allocation”) AND (optimisation OR optimiza-
tion). Moreover, to limit the search only the first 10 pages
of results were examined for each of the databases. Further

we restricted publications based on inclusion, exclusion and
quality criteria below.

The inclusion criteria for published articles to be reviewed
were:

1. Complex tasks.
2. Independently operating robots.
3. Task allocation either automated or manual.

The exclusion criteria were:

1. Simplistic tasks.
2. Small robots e.g. ant, swarm robots operating as a crowd.
3. Literature review and survey papers not describing eval-

uation approaches.
4. Papers where the experimental setup was not clearly pre-

sented.

Each paper was assessed for inclusion by two of the
authors. Disagreements were arbitrated by a third author, at
which point the decision was final. Additionally, to restrict
the search scope we established quality criteria. As the
extracted information relates to experimental setup and not
results of any of the reviewed articles, no publication bias is
expected and thus no measures were designed in this proto-
col to avoid it. On the other hand, only conferences included
in the highest rank of three ranking systems were included
(AMiner 2017; Wirtschaftsinformatik 2017; CORE 2017).
By looking at three ranking systems we attempt to remove
bias and error from the rankingmethod. The ranking systems
were accessed online on 19 January 2017. For journal publi-
cations a 2 year JCR impact factor higher than 2 was selected
as a qualitative criterion for selection.

The information extracted from each paper is:

1. Number of robots used in the experiment.
2. Total number of tasks to be allocated.
3. Number of tasks per robot.
4. Allocation method.

Allocation methods were categorised as static when they
were performed ahead of time or dynamic when tasks were
allocated in the duration of the experiment. Moreover, the
methods were categorised as centralised or distributed. Each
publicationwas then characterised based on the extended tax-
onomy found in Korsah et al. (2013). From this information
the search space Nmax was calculated for each publication
using Eq. 8, based on the largest experiment or maximum
possible search space. This formula was simplified for auc-
tion and negotiation methods to:

Nmax = n × τ 2 (10)

123

1490 Autonomous Robots (2018) 42:1477–1495

Table 6 Systematic review for robot task allocation. Plus publications reviewed in Cano et al. (2016b)

Reference Category (cf. Korsah
et al. (2013))

Search Space
(Nmax)

Allocation Method

Kim et al. (2012) ND–MR–ST–IA 1.6 × 105 Dynamic/simulated Auction, distributed

Sikora et al. (2017) ND–MR–ST–TA 1.7 × 105 Static–dynamic/actual Sub-optimal, time limited,
centralised

Prescott et al. (2006) ID–SR–MT–IA 1.6 × 102 Dynamic/actual Neural networks, distributed

Szomiki (2015) ID–SR–MT–IA 2.6 × 102 Dynamic/simulated Agent, distributed

Girard et al. (2008) ID–SR–MT–IA 4.4 × 104 Static/simulated Neural networks, distributed

Franceschelli et al.
(2013)

ID–SR–MT–IA 5.0× 106 Static+dynamic/simulated Gossip algorithm, centralised +
distributed

Nam and Shell (2015) XD–SR–ST–IA 2.7× 101 Static/simulated Ranking algorithm/hungarian
method, centralised

Liu and Shell (2012) XD–SR–ST–IA 2.2× 102 Dynamic/actual Hungarian algorithm, centralised

Guo and Zhang (2010) XD–SR–ST–IA 2.1× 104 Dynamic/simulated AI/auction, distributed

Hu and Xu (2013) XD–SR–ST–IA 4.7× 104 Dynamic/simulated Cooperative control, distributed

Nam and Shell (2015) XD–SR–ST–IA 1.0× 106 Static/actual Ranking algorithm/hungarian
method, centralised

Liu and Shell (2011) XD–SR–ST–IA 3.4× 106 Dynamic/simulated Multi-level partitioning,
distributed

Liu and Shell (2012) XD–SR–ST–IA 2.7× 107 Dynamic/simulated Hungarian algorithm, centralised

Liu and Shell (2013) XD–SR–ST–IA 1.0 × 109 Dynamic/simulated Auction, distributed

Liu and Shell (2012) XD–SR–ST–IA 1.0 × 1012 Dynamic/simulated Swap, distributed

Suemitsu et al. (2016) XD–SR–ST–TA 1.0× 102 Static/actual Genetic algorithm, centralised

Chu and ElMaraghy
(1993)

XD–SR–ST–TA 1.6× 104 Static/actual Heuristic, centralised

Caraballo et al. (2017) XD–SR–ST–TA 8.0× 104 Dynamic/simulated Negotiation, distributed

Dias and Stentz (2002) XD–MR–ST–IA 8.0× 102 Static/simulated Market-trading, distributed

Giordani et al. (2013) XD–MR–ST–IA 7.5× 105 Dynamic/simulated Auction/hungarian method,
distributed

Chen and Sun (2011) XD–MR–ST–IA 6.3× 103 Static+dynamic/actual Coalition-based, distributed

Zhang and Parker (2013) XD–MR–ST–IA 7.4× 109 Dynamic/simulated Heuristic, distributed

Parker and Gini (2014) XD–MR–ST–TA 1.0× 104 Dynamic/simulated Heuristic, distributed

Agarwal et al. (2015) XD–MR–ST–TA 6.3× 104 Dynamic/simulated Coalition based, centralised

Miyata et al. (2002) XD–SR–MT–IA 3.2 × 102 Static/actual Priority-based, centralised

Lagoudakis et al. (2004) XD–SR–MT–IA 1.2× 103 Dynamic/simulated Auction, distributed

Lozenguez et al. (2013) XD–SR–MT–IA 1.6× 104 Dynamic/simulated Auctions/markov decision,
distributed

Sujit et al. (2006) XD–SR–MT–IA 1.8× 104 Dynamic/simulated Negotiation, distributed

Zhao et al. (2016) XD–SR–MT–IA 6.6× 104 Dynamic/simulated Heuristic, distributed

Luo et al. (2015) XD–SR–MT–IA 1.4 × 106 Dynamic/simulated Auction, distributed

Nunes et al. (2012) XD–SR–MT–IA 2.5 × 106 Static/simulated Auction, distributed

Mosteo and Montano
(2007)

XD–SR–MT–IA 5.2× 106 Dynamic/simulated Auction, distributed

Tolmidis and Petrou
(2013)

XD–SR–MT–IA 7.2× 107 Dynamic/simulated Auction/genetic algorithm,
centralised + distributed

123

Autonomous Robots (2018) 42:1477–1495 1491

Table 6 continued

Reference Category (cf. Korsah
et al. (2013))

Search Space
(Nmax)

Allocation Method

Okamoto et al. (2011) XD–SR–MT–IA 8.0× 108 Dynamic/simulated Peer-to-peer token passing,
distributed

Balakirsky et al. (2007) XD–SR–MT–TA 2.0 × 103 Dynamic/simulated Auction, distributed

Zorbas et al. (2016) XD–SR–MT-TA 1.3× 105 Static/simulated Greedy heuristic, centralised

Italics represent to the original conference paper

where τ is the number of tasks that can be allocated, and n is
the number of robots negotiating or bidding for tasks. Simi-
larly, there is another simplified formula for Neural Network
methods:

Nmax =
∏

i∈layers

nodesi (11)

where layers denote the layers of the Neural Network and
nodesi the number of nodes in the i th layer. Finally, when an
explicit formula was presented in a publication that formula
took precedence as long as it respected the constraints in
Eq. 8.

As a result of this systematic survey, Table 6 presents the
papers reviewed and a summary of information extracted.
The selection of articles was performed 16–31 January 2017
with the information extraction and review of articles per-
formed by 15 February 2017. Entries are sorted primarily by
taxonomic classification, then by search space size. Thework
presented in the earlier sections of this paper is classified as
XD–SR–MT–IA. Thus, by comparison, the search space of
our work is several orders of magnitude larger than the max-
imum search space presented in related work in this category
(Lagoudakis et al. 2004; Lozenguez et al. 2013; Luo et al.
2015; Miyata et al. 2002; Sujit et al. 2006; Zhao et al. 2016;
Nunes et al. 2012; Mosteo and Montano 2007; Tolmidis and
Petrou 2013; Okamoto et al. 2011).

6.2 Comparative analysis

The purpose of the systematic survey was primarily to quan-
tify the search space of prior robotic case studies. In this
section, we provide a deeper comparison of our work with
the most closely related previous research.

The first difference arises from the number of tasks and
agents considered. Prior work based on the linear assignment
problem (Pentico 2007) assumes a single task per agent (Nam
and Shell 2015; Luo et al. 2015; Liu and Shell 2013, 2012).
In our case, the number of tasks is equal to or greater than the
number of agents (and the number of variants is greater still).
A second point is related to the number of agents simulta-

neously completing tasks. In Chen and Sun (2011), Zhang
and Parker (2013), Balakirsky et al. (2007) several agents
are required, while in our work only one agent is completing
each task. Another consideration is that our system is fully
heterogeneous, i.e. all tasks and processors may be different.
Some past work does assume heterogeneous tasks and mul-
tiple instances of every task (Miyata et al. 2002), but does
not consider different variants of the same task, which is the
principal addition to the problem here.

On the other hand, Aleti et al. (2013) provide a high-
level general survey of software architecture optimisation
techniques. In their taxonomy, our work is in the problem
domain of design-time optimisation of embedded systems.
We explore optimisation strategies that are both approximate
and exact. We evaluate our work via both benchmark prob-
lems and a case study. In terms of the taxonomy in Aleti et al.
(2013) our work is particularly wideranging.

Finally, Huang et al. (2012) consider the selection and
placement of task variants for reconfigurable computing
applications. They represent applications as directed acyclic
graphs of tasks, where each task node can be synthesised
using one of four task variants. The variants trade off hard-
ware logic resource utilisation with execution time. Huang et
al. use an approximate optimisation strategy based on genetic
algorithms to synthesise the task graph on a single FPGA
device.

To summarise, no existing work in the robotics field
addresses all of the considerations that our proposal does, i.e.
a constrained, distributed, heterogeneous system with more
tasks than nodes and different variants for the tasks.

7 Conclusion

We have addressed a unique generalisation of the task
allocation problem in distributed systems, with a specific
application to robotics. We advocate the use of task variants,
which provide trade-offs betweenQoS and resource usage by
employing different parameter configurations, and/or algo-
rithms, and/or taking advantage of heterogeneous hardware.
We have presented a mathematical formulation of variant
selection and allocation, and evaluated three solution meth-

123

1492 Autonomous Robots (2018) 42:1477–1495

ods on system instances obtained from a robotics case study.
We conclude that constraint programming is the best solu-
tion method, being very effective in selecting and allocating
variants such that QoS is maximised and resource usage
minimised. In addition, we find that our solutions meth-
ods translate well to real systems, providing a useful tool
for the system architect. We also analysed two solution
methods in anytime mode, concluding that constraint pro-
gramming might be used in dynamic scenarios. Finally, we
performed a comprehensive literature survey on prior case
studies and found that the maximum search space of our
case study is much larger than those in previous work. We
believe future work on constraint programming can further
extend the boundaries of what has been handled in this
work.

Acknowledgements This work was supported by the AnyScale Appli-
cations project under the EPSRCGrant EP/L000725/1, and partially by
the EPSRC Grants EP/F500385/1 and EP/K503058/1, and the BBSRC
Grant BB/F529254/1. We thank Ornela Dardha and Patrick Prosser for
their valuable help in the problem formulation.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Agarwal, M., Agrawal, N., Sharma, S., Vig, L., & Kumar, N. (2015).
Parallel multi-objective multi-robot coalition formation. Expert
Systems with Applications, 42(21), 7797–7811.

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I.
(2013). Software architecture optimization methods: A system-
atic literature review. IEEE Transactions on Software Engineering,
39(5), 658–683.

AMiner. (2017). Computer science. https://aminer.org/ranks/conf.
Accessed January 19, 2017.

Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J.,
et al. (2007). Towards heterogeneous robot teams for disaster mit-
igation: Results and performance metrics from RoboCup rescue:
Field reports. Journal of Field Robotics, 24(11–12), 943–967.

Bischoff, R., Huggenberger, U., & Prassler, E. (2011). KUKA youBot:
A mobile manipulator for research and education. In IEEE Inter-
national conference on robotics and automation (pp. 1–4).

Bordallo, A., Previtali, F., Nardelli, N., & Ramamoorthy, S. (2015).
Counterfactual reasoning about intent for interactive navigation in
dynamic environments. In IEEE/RSJ international conference on
intelligent robots and systems (pp. 2943–2950). IEEE.

Cano, J., Bordallo,A.,Nagarajan,V., Ramamoorthy, S.,&Vijayakumar,
S. (2016). Automatic configuration of ROS applications for near-
optimal performance. In IEEE/RSJ international conference on
intelligent robots and systems (pp. 2217–2223).

Cano, J., Molinos, E., Nagarajan, V., & Vijayakumar, S. (2015).
Dynamic process migration in heterogeneous ROS-based envi-
ronments. In International conference on advanced robotics (pp.
518–523).

Cano, J., White, D. R., Bordallo, A., McCreesh, C., Prosser, P., Singer,
J., & Nagarajan, V. (2016). Task variant allocation in distributed
robotics. In Proceedings of robotics: Science and systems.

Caraballo, L., Daz-Bez, J., Maza, I., & Ollero, A. (2017). The block-
information-sharing strategy for task allocation: A case study for
structure assembly with aerial robots. European Journal of Oper-
ational Research, 260(2), 725–738.

Chen, J., & Sun, D. (2011). Resource constrained multirobot task
allocation based on leaderfollower coalition methodology. The
International Journal of Robotics Research, 30(12), 1423–1434.

Cheng, Q., Yin, D., Yang, J., & Shen, L. (2016). An auction-based mul-
tiple constraints task allocation algorithm for multi-UAV system.
In International conference on cybernetics, robotics and control
(pp. 1–5).

Chu, H., & ElMaraghy, H. (1993). Integration of task planning and
motion control in a multi-robot assembly workcell. Robotics and
Computer-Integrated Manufacturing, 10(3), 235–255.

Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2006). Evolu-
tionary algorithms for solving multi-objective problems (genetic
and evolutionary computation). New York: Springer.

CORE. (2017). Computing research & education conference portal.
http://portal.core.edu.au/conf-ranks/. Accessed January 19, 2017.

Das, I.,&Dennis, J. E. (1997).Acloser look at drawbacks ofminimizing
weighted sums of objectives for Pareto set generation inmulticrite-
ria optimization problems. Structural Optimization, 14(1), 63–69.
https://doi.org/10.1007/BF01197559.

Dias,M.B.,&Stentz,A. (2002).Opportunistic optimization formarket-
basedmultirobot control. In IEEE/RSJ international conference on
intelligent robots and systems (Vol. 3, pp. 2714–2720).

Elsevier B. V. (2016). ScienceDirect digital library. http://www.
sciencedirect.com/. Accessed January 23, 2016.

Franceschelli, M., Rosa, D., Seatzu, C., & Bullo, F. (2013). Gos-
sip algorithms for heterogeneous multi-vehicle routing problems.
Nonlinear Analysis: Hybrid Systems, 10, 156–174. Special issue
related to IFAC conference on analysis and design of hybrid sys-
tems (ADHS 12).

Gecode Team. (2006). Gecode: Generic constraint development envi-
ronment. http://www.gecode.org. Accessed October 23, 2017.

Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxon-
omy of task allocation in multi-robot systems. The International
Journal of Robotics Research, 23(9), 939–954.

Giordani, S., Lujak, M., & Martinelli, F. (2013). A distributed multi-
agent production planning and scheduling framework for mobile
robots. Computers and Industrial Engineering, 64(1), 19–30.

Girard, B., Tabareau, N., Pham, Q., Berthoz, A., & Slotine, J. J. (2008).
Where neuroscience and dynamic system theorymeet autonomous
robotics: A contracting basal ganglia model for action selection.
Neural Networks, 21(4), 628–641.

Gulwani, S. (2010). Dimensions in program synthesis. In ACM SIG-
PLAN symposium on principles and practice of declarative pro-
gramming (pp. 13–24).

Guo, Q., & Zhang, M. (2010). An agent-oriented approach to resolve
scheduling optimization in intelligent manufacturing. Robotics
and Computer-Integrated Manufacturing, 26(1), 39–45.

Hongli, L., Hongjian, W., Qing, L., & Hongfei, Y. (2016). Task alloca-
tion of multiple autonomous underwater vehicle system based on
multi-objective optimization. In IEEE international conference on
mechatronics and automation (pp. 2512–2517)

Hu, J., & Xu, Z. (2013). Brief paper: Distributed cooperative control
for deployment and task allocation of unmanned aerial vehicle
networks. IET Control Theory Applications, 7(11), 1574–1582.

Huang, M., Narayana, V., Bakhouya, M., Gaber, J., & El-Ghazawi,
T. (2012). Efficient mapping of task graphs onto reconfigurable
hardware using architectural variants. IEEE Transactions on Com-
puters, 61(9), 1354–1360.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://aminer.org/ranks/conf
http://portal.core.edu.au/conf-ranks/
https://doi.org/10.1007/BF01197559
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.gecode.org

Autonomous Robots (2018) 42:1477–1495 1493

IEEE. (2016). IEEE Xplore digital library. http://ieeexplore.ieee.org/
Xplore/. Accessed January 23, 2016.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems.
Berlin: Springer.

Khalfi, E. M., Jamont, J. P., Mrissa, M., &Mdini, L. (2016). A RESTful
task allocation mechanism for the Web of Things. In Interna-
tional Conference on Computing Communication Technologies,
Research, Innovation, and Vision for the Future, pp. 73–78.

Kim, M. H., Kim, S. P., & Lee, S. (2012). Social-welfare based task
allocation for multi-robot systems with resource constraints.Com-
puters & Industrial Engineering, 63(4), 994–1002.

Kitchenham, B. (2004). Procedures for performing systematic reviews.
Technical report TR/SE-0401, Software Engineering Group,
Department of Computer Science, Keele University, Keele, Staffs,
ST5 5BG, UK

Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive tax-
onomy for multi-robot task allocation. The International Journal
of Robotics Research, 32(12), 1495–1512.

Lagoudakis, M. G., Berhault, M., Koenig, S., Keskinocak, P., & Kley-
wegt, A. J. (2004). Simple auctions with performance guarantees
for multi-robot task allocation. In IEEE/RSJ international confer-
ence on intelligent robots and systems (Vol. 1, pp. 698–705).

Lee, D. H., Zaheer, S., & Kim, J. H. (2014). Ad hoc network-based
task allocation with resource-aware cost generation for multirobot
systems. IEEE Transactions on Industrial Electronics, 61(12),
6871–6881.

Liu, L., & Shell, D. (2011). Multi-level partitioning and distribution of
the assignment problem for large-scalemulti-robot task allocation.
In Proceedings of robotics: science and systems. https://doi.org/
10.15607/RSS.2011.VII.026.

Liu, L., & Shell, D. (2012). A distributable and computation-flexible
assignment algorithm: from local task swapping to global optimal-
ity. In Proceedings of robotics: science and systems.

Liu, L., & Shell, D. (2013). Optimal market-based multi-robot task
allocation via strategic pricing. InProceedings of robotics: science
and systems.

Liu, L., & Shell, D. A. (2012). Tunable routing solutions for multi-robot
navigation via the assignment problem: A 3D representation of the
matching graph. In IEEE international conference on robotics and
automation, pp. 4800–4805.

Lozenguez, G., Mouaddib, A. I., Beynier, A., Adouane, L., &Martinet,
P. (2013). Simultaneous auctions for “Rendez-Vous” coordination
phases inmulti-robotmulti-taskmission. In IEEE/WIC/ACM inter-
national joint conferences on web intelligence (WI) and intelligent
agent technologies (IAT) WI-IAT ’13, (pp. 67–74). IEEEComputer
Society.

Luo, L., Chakraborty, N., & Sycara, K. (2015). Provably-good dis-
tributed algorithm for constrained multi-robot task assignment for
grouped tasks. IEEE Transactions on Robotics, 31(1), 19–30.

Marler, R. T., & Arora, J. S. (2009). The weighted sum method for
multi-objective optimization: new insights. Structural and Multi-
disciplinary Optimization, 41(6), 853–862.

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and
computer implementations. Hoboken: Wiley.

Miyata, N., Ota, J., Arai, T., & Asama, H. (2002). Cooperative trans-
port by multiple mobile robots in unknown static environments
associated with real-time task assignment. IEEE Transactions on
Robotics and Automation, 18(5), 769–780.

Mosteo, A. R., & Montano, L. (2007). Comparative experiments on
optimization criteria and algorithms for auction based multi-robot
task allocation. In IEEE international conference on robotics and
automation, pp. 3345–3350.

Nam, C., & Shell, D. A. (2015). Assignment algorithms for modeling
resource contention in multirobot task allocation. IEEE Transac-
tions on Automation Science and Engineering, 12(3), 889–900.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., &
Tack, G. (2007). MiniZinc: Towards a standard CP modelling lan-
guage. In International conference on principles and practice of
constraint programming, CP’07.

Nunes, E., Nanjanath, M., & Gini, M. (2012). Auctioning robotic tasks
with overlapping time windows. In International conference on
autonomous agents and multiagent systems, AAMAS ’12, (pp.
1211–1212). International Foundation for Autonomous Agents
and Multiagent Systems.

Okamoto, S., Brooks, N., Owens, S., Sycara, K., & Scerri, P. (2011).
Allocating spatially distributed tasks in large, dynamic robot
teams. In International conference on autonomous agents and
multiagent systems, AAMAS ’11, (pp. 1245–1246). International
Foundation for Autonomous Agents and Multiagent Systems.

Parker, J., & Gini, M. (2014). Tasks with cost growing over time
and agent reallocation delays. In International conference on
autonomous agents and multi-agent systems, AAMAS ’14, (pp.
381–388). International Foundation for Autonomous Agents and
Multiagent Systems.

Pentico, D. W. (2007). Assignment problems: A golden anniversary
survey. European Journal of Operational Research, 176(2), 774–
793.

Pfaff, P., Burgard, W., & Fox, D. (2006). Robust monte-carlo local-
ization using adaptive likelihood models. In European robotics
symposium, (pp. 181–194). Springer.

Prescott, T. J., Gonzlez, F. M. M., Gurney, K., Humphries, M. D., &
Redgrave, P. (2006). A robot model of the basal ganglia: Behavior
and intrinsic processing. Neural Networks, 19(1), 31–61.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. (2009). ROS: An open-source robot oper-
ating system. In ICRA workshop on open source software.

Sikora, C. G. S., Lopes, T. C., & Magatão, L. (2017). Traveling worker
assembly line (re) balancing problem: Model, reduction tech-
niques, and real case studies. European Journal of Operational
Research, 259(3), 949–971.

Suemitsu, I., Izui, K., Yamada, T., Nishiwaki, S., Noda, A., &Nagatani,
T. (2016). Simultaneous optimization of layout and task schedule
for robotic cellular manufacturing systems. Computers & Indus-
trial Engineering, 102, 396–407.

Sugiyama, A., Sea, V., & Sugawara, T. (2016). Effective task alloca-
tion by enhancingdivisional cooperation inmulti-agent continuous
patrolling tasks. In International conference on tools with artificial
intelligence, pp. 33–40.

Sujit, P. B., Sinha,A.,&Ghose,D. (2006).MultipleUAV task allocation
using negotiation. In International joint conference on autonomous
agents and multiagent systems, AAMAS ’06, (pp. 471–478). ACM

Szomiki, S., Turek, W., Abiska, M., & Cetnarowicz, K. (2015). Multi-
variant planing for dynamic problems with agent-based signal
modeling. Procedia Computer Science, 51, 1033–1042.

The Association for Computing Machinery: ACM Digital Library.
http://dl.acm.org/ (2016). Accessed January 23, 2016.

Tindell, K.W., Burns, A.,&Wellings, A. J. (1992). Allocating hard real-
time tasks: An NP-Hard problem made easy. Real-Time Systems,
4(2), 145–165.

Tolmidis, A. T., & Petrou, L. (2013). Multi-objective optimization
for dynamic task allocation in a multi-robot system. Engineering
Applications of Artificial Intelligence, 26(56), 1458–1468.

Wang, Z., Li, M., Li, J., Cao, J., & Wang, H. (2016). A task allocation
algorithm based on market mechanism for multiple robot sys-
tems. In IEEE international conference on real-time computing
and robotics, pp. 150–155.

White, D., & Cano, J. (2017). Task variant allocation repository. https://
github.com/ipab-rad/task_alloc Accessed October 23, 2017.

Wirtschaftsinformatik. (2017). Conference ranking. http://www.
wi2.fau.de/_fileuploads/research/generic/ranking/index.html Ac-
cessed January 19, 2017, http://web.archive.org.

123

http://ieeexplore.ieee.org/Xplore/
http://ieeexplore.ieee.org/Xplore/
https://doi.org/10.15607/RSS.2011.VII.026
https://doi.org/10.15607/RSS.2011.VII.026
http://dl.acm.org/
https://github.com/ipab-rad/task_alloc
https://github.com/ipab-rad/task_alloc
http://www.wi2.fau.de/_fileuploads/research/generic/ranking/index.html
http://www.wi2.fau.de/_fileuploads/research/generic/ranking/index.html
http://web.archive.org

1494 Autonomous Robots (2018) 42:1477–1495

Wolsey, L. A. (2008). Mixed integer programming. Wiley encyclopedia
of computer science and engineering. Hoboken, NJ: John Wiley
& Sons, Inc.

Zhang, Y., & Parker, L. E. (2013). Considering inter-task resource con-
straints in task allocation. Autonomous Agents and Multi-Agent
Systems, 26(3), 389–419.

Zhao, W., Meng, Q., & Chung, P. W. H. (2016). A heuristic distributed
task allocation method for multivehicle multitask problems and its
application to search and rescue scenario. IEEE Transactions on
Cybernetics, 46(4), 902–915.

Zorbas, D., Pugliese, L. D. P., Razafindralambo, T., & Guerriero, F.
(2016). Optimal drone placement and cost-efficient target cover-
age. Journal of Network and Computer Applications, 75, 16–31.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

José Cano is a research asso-
ciate at the Institute for Comput-
ing Systems Architecture in the
School of Informatics at Univer-
sity of Edinburgh since January
2014. He received his Ph.D. in
Computer Science from Univer-
sitat Politècnica de València in
2012. He was a postdoctoral res-
earcher in the Department of Com-
puter Architecture at Universitat
Politècnica de Catalunya for two
years. His research interests are
in the areas of computer systems,
computer architecture, and sys-

tems/architectural support for robotics and deep learning. He is mem-
ber of IEEE and ACM.

David R. White is a researcher in
the Department of Computer Sci-
ence at UCL. He has a Ph.D. in
Computer Science from the Uni-
versity of York, where he pub-
lished some of the seminal papers
on both creating and improving
software using heuristic search.
He subsequently worked as a
SICSA Research Fellow at the
University of Glasgow, where he
led the Raspberry Pi Cloud pro-
ject, and later worked on the
EPSRC AnyScale project. At
UCL, he is part of the EPSRC

DAASE project in automated and adaptive software engineering. His
research interests include program synthesis through heuristic search
and the optimisation of non-functional properties of mbedded systems.

Alejandro Bordallo received the
MEng degree in Robotics and
Cybertronics engineering from
Heriot-Watt University, Edinburgh,
UK, in 2011, and the MRes degree
in Neuroinformatics and Compu-
tational Neuroscience from the
University of Edinburgh, UK, in
2012. He is currently finishing the
Ph.D. degree in robotics at the
Robust Autonomy and Decisions
group (RAD), from the Univer-
sity of Edinburgh, UK, in 2017.
He is currently working in Robot-
ical Ltd., an educational robotics

startup, as Chief Robotics Officer in UK from 2016, and in FiveAI,
an autonomous driving startup in UK from 2017. His current research
interests include intention-aware motion planning, autonomous navi-
gation, counterfactual reasoning, human–robot interaction.

Ciaran McCreesh is a Research
Associate at the University of Glas-
gow. His primary research inter-
ests are in practical parallel algo-
rithms, particularly in relation to
hard subgraph problems. His pub-
lications cover combinatorial
search, parallel algorithms, and
constraint programming.

Anna Lito Michala is currently
a Ph.D. Researcher at the Univer-
sity of Strathclyde and a Research
Assistant at the University of
Glasgow. She is at the third year
of her studies and has also con-
tributed to various European
projects through software devel-
opment. Her previous work expe-
rience as a software engineer inc-
ludes development of industrial
data acquisition systems, software
and firmware development as well
testing and verification. Her res-
earch interests include Embedded

Software, Data Acquisition, Monitoring and IoT applications. She has
worked across the stack of software development from drivers to web
based user interface.

123

Autonomous Robots (2018) 42:1477–1495 1495

Jeremy Singer is a lecturer in
Complex Systems Engineering.
His research interests include Java
runtime systems and compiler
optimisations for multi-cores. He
obtained his Ph.D. from Cambri-
dge in 2006 and algorithms descri-
bed in his thesis have been adopted
by the widely used LLVM com-
piler. He has published over 30
papers covering parallelism, mem-
ory management and cloud com-
puting. His research has been
funded by Amazon and the Lon-
don Mathematical Society. He is

on the organising committee for major international conferences
(ASPLOS, LCTES, ISMM) and a member of the UK Memory Man-
agement Network steering committee, the HiPEAC and SICSA net-
works.

VijayNagarajan is a Reader (Asso-
ciate Professor) at University of
Edinburgh. Dr. Nagarajan recei-
ved his Ph.D. from University of
California, Riverside and M.S.
from University of Arizona. He is
a recipient of Intel Early Career
Faculty Award and a best-paper
award at PACT.

123

	Solving the task variant allocation problem in distributed robotics
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Software model
	2.2 Hardware model
	2.3 Selection and allocation problem

	3 Solution methods
	3.1 Constraint programming
	3.2 Greedy heuristic
	3.3 Local search metaheuristic
	3.4 Computational complexity

	4 Example case study
	4.1 Software architecture
	4.2 Hardware architecture

	5 Evaluation
	5.1 System characterisation
	5.2 System instances
	5.3 Simulation results
	5.4 Analysis of case study behaviour
	5.5 Anytime approaches

	6 Related work
	6.1 Systematic review
	6.2 Comparative analysis

	7 Conclusion
	Acknowledgements
	References

