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SUMMARY

Nuclear factor (NF)-kB controls the transcriptional response to inflammatory sig-
nals by translocating into the nucleus, but we lack a single-cell characterization of
the resulting transcription dynamics. Here we show that upon tumor necrosis fac-
tor (TNF)-a transcription of NF-kB target genes is heterogeneous in individual
cells but results in an average nascent transcription profile that is prompt (i.e., oc-
curs almost immediately) and sharp (i.e., increases and decreases rapidly)
compared with NF-kB nuclear localization. Using an NF-kB-controlled MS2 re-
porter we show that the single-cell nascent transcription is more heterogeneous
than NF-kB translocation dynamics, with a fraction of synchronized ‘‘first re-
sponders’’ that shape the average transcriptional profile and are more prone to
respond to multiple TNF-a stimulations. A mathematical model combining NF-
kB-mediated gene activation and a gene refractory state is able to reproduce
these features. Our work shows how the expression of target genes induced
by transcriptional activators can be heterogeneous across single cells and yet
time resolved on average.

INTRODUCTION

A tight control of gene expression is assumed to be fundamental for any living system, from prokaryotes to

higher organisms. For this reason, it was surprising to find that the same gene within a clonal population of

identical cells can be translated into different protein levels (Ko et al., 1990), which can fluctuate in time

even within the same cell (Elowitz et al., 2002). The development of accurate techniques allowing to mea-

sure gene expression in single living cells showed that such variability is related to discontinuous transcrip-

tional ‘‘bursts’’ (Tunnacliffe and Chubb, 2020), spurts of RNA production interspersed with periods of no

activity, that emerge from fluctuations of the gene between ‘‘active’’ and ‘‘inactive’’ states whose precise

origin is only partially understood (Chong et al., 2014).

Transcriptional bursts have been observed for a variety of organisms (Golding et al., 2005; Pichon et al.,

2018; Suter et al., 2011), but their functional role is also unclear, although it has been proposed as a natural

mechanism exploited and controlled by cells to either produce variability or robustness in gene expression

programs, presumably in a context-specific way (Raj and van Oudenaarden, 2008). Transcriptional bursts

are indeed modulated by external stimuli (Molina et al., 2013), by the developmental stage of the organism

(Muramoto et al., 2012), and by chromatin state (Nicolas et al., 2018). However, we are still far from having a

complete picture of how the delicate balance between robust control and variability in gene expression is

achieved (Raj and van Oudenaarden, 2008).

Such balance is presumably gene and cell specific and different for different biological processes. For

example, the inflammatory response is characterized by a variable degree of transcriptional heterogeneity

across genes, species, and cell types (Hagai et al., 2018), whose connection to the dynamics of transcrip-

tional bursting is unexplored. Transcription in inflammation depends on the dynamics of its master regu-

lator (Hayden and Ghosh, 2008): the transcription factor nuclear factor (NF)-kB. NF-kB dimers containing

the monomer p65 (that we refer to as NF-kB in what follows) are activated by re-localizing from the
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cytoplasm to the nucleus upon inflammatory stimuli such as tumor necrosis factor alpha (TNF-a). This acti-

vation by nuclear localization is tightly regulated by a system of negative feedbacks (Hoffmann et al., 2002)

so that cells display a variety of nuclear localization dynamics of NF-kB, including oscillations (Nelson et al.,

2004; Tay et al., 2010; Zambrano et al., 2014a). Population-level measurements have shown that NF-kB dy-

namics lead to different dynamical patterns of mRNA expression (Ashall et al., 2009; Nelson et al., 2004;

Sung et al., 2009; Zambrano et al., 2016). The NF-kB-mediated nascent transcriptional response to stimuli

at the population level is, however, fast, comparable with the translocation dynamics of NF-kB (Hao and

Baltimore, 2013; Zambrano et al., 2016) that peaks at 30 min–1 h depending on the cell line and is accom-

panied by a fast binding of NF-kB to the promoter of target genes (Saccani et al., 2001).

Much less is known about how NF-kB dynamics modulates transcriptional variability at the single-cell level.

Time-lapse analysis of NF-kB translocation, followed by analysis of mRNA expression at a single time point

through RNA fluorescence in situ hybridization (FISH) (Lee et al., 2014) and single-cell RNA sequencing

(Lane et al., 2017), has demonstrated that different NF-kB dynamics translate into specific gene expression

programs in single cells. Direct simultaneous observation of NF-kB dynamics and its gene expression prod-

ucts has so far been carried out at the protein level only, using GFP transgenes (Nelson et al., 2004). More

recent studies have begun to interrogate systematically how the NF-kB-mediated transcriptional dynamics

is modulated at the single-cell level by making use of a destabilized GFP transgene under the control of an

HIV-LTR promoter (carrying two binding sites for NF-kB, Stroud et al., 2009). In these studies, TNF-

a-induced gene expression has been shown to occur in bursts that are tuned by the insertion site of the

transgene (Dar et al., 2012) and that are amplified by TAT-mediated positive feedbacks upon viral activa-

tion (Wong et al., 2018). However, as these assays are based on protein reporters with limited temporal res-

olution, the relationship between NF-kB nuclear localization and transcriptional dynamics at single-cell

level and its connection with the population level remains unexplored.

To address this, here we analyzed the cellular response to TNF-a at single-cell level in terms of NF-kB local-

ization and nascent transcription, both for multiple genes in fixed cells (by single-molecule RNA FISH) and

for an MS2 reporter gene controlled by an HIV-LTR promoter (Tantale et al., 2016) in living cells (by time-

lapse imaging). We find that although different genes are expressed with different degrees of variability,

they share common average population dynamics of nascent transcription that is prompt (i.e., occurs simul-

taneously with NF-kB translocation) and sharp (i.e., it is limited in time and decays faster than NF-kB nuclear

localization). Live-cell analysis combined with repeated stimulation using microfluidics reveals that the

population’s sharp response is due to two factors: (1) a fraction of cells, first responders, that respond

promptly and synchronously to TNF-a and are more prone to respond to multiple stimuli and (2) a charac-

teristic gene inactive time, during which the gene is insensitive to reactivation, following each active period.

Mathematical modeling shows that indeed only the combination of transcriptional activity driven by NF-kB

localization and a gene activity module including a refractory state can recapitulate the promptness and the

sharpness of the transcriptional response.

Our results show how the interaction of NF-kB localization dynamics and target gene activity can produce a

timely and gene-specific collective response upon inflammatory stimuli.

RESULTS

Population-Level NF-kB-Mediated Transcription Is Prompt and Sharp, despite Being

Heterogeneous in Single Cells

To characterize transcriptional dynamics of inflammatory genes at single-cell level, HeLa cells were

exposed to TNF-a and mature and nascent transcripts of three NF-kB target genes (NFKBIA coding for

NF-kB main inhibitor IkBa, IL6 for the cytokine interleukin 6, and TNF for the cytokine TNF-a) (Rabani

et al., 2011; Sung et al., 2009; Zambrano et al., 2016) were quantified at different time points (Figure S1) us-

ing single-molecule fluorescence in situ hybridization (Tsanov et al., 2016) (smFISH, see Transparent

Methods). smFISH allows counting both nascent RNA molecules at active transcription sites (TSs), which

appear as one or two bright dots in the nucleus, and mature mRNA molecules, which appear as individual

dots scattered in the nucleus and in the cytoplasm (Figure 1A and Figure S2A). In response to 10 ng/mL

TNF-a, transcription of the three tested genes was induced with different degrees of cell-to-cell variability

(Figures 1A and 1B). Such variability is captured by the Gini coefficient (Shaffer et al., 2017), a metric that

ranges between 0, when all cells express the same number of mRNAs, and 1, when all mRNAs are detected

in just one cell. NFKBIA displayed the most uniform expression (Gini ranging between 0.21 and 0.26,
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Figure 1. Nascent Transcription of NF-kB Target Genes is Prompt and Sharp

(A) Exemplary smFISH acquisitions using probes targeting NFKBIA, IL6, and TNF RNAs 20 min after induction with TNF-a. Maximum projection, scale bar,

10 mm.

(B) MatureMS2 transcripts per cell measured at different times following TNF-a. Also displayed is the Gini coefficient measured at 20 min, 1 h, and 3 h after

stimulation, as an estimate of the heterogeneity in the cell-by-cell expression of the three targets (ncells = 219, 270, 250, 206 for 0 min, 20 min, 1 h, 3 h; IL6:

ncells = 187, 193, 220, 220 for 0 min, 20 min, 1 h, 3 h; TNF: ncells = 117, 90, 157, 140 Kruskal-Wallis test (KW), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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comparable to what was previously reported for housekeeping genes, Shaffer et al., 2017), whereas IL6

(Gini from 0.41 to 0.55) and TNF (Gini from 0.29 to 0.33) were more unevenly expressed. Such different de-

grees of heterogeneity of the analyzed genes can be related to different bursting kinetics (Tunnacliffe and

Chubb, 2020). By fitting the distribution of mature RNAs in single cells to a simple negative binomial model

(Tunnacliffe and Chubb, 2020) whose parameters depend on the bursts’ features (Raj et al., 2006) (Fig-

ure S2B) we estimate a higher relative burst frequency for TNF and NFKBIA than for IL6. The gene activity

at single-cell level, estimated as the fractions of cells carrying active TSs, indeed strongly differed among

the genes considered: after stimulationNFKBIA TSs were detectable in the largest fraction of cells (ranging

from 84% at 20 min to 44% at 3 h post TNF-a) followed by IL6 TSs (ranging from 32% to 21%) and TNF TSs

(from 16% to 9%) (Figure 1C).

Surprisingly, despite the observed heterogeneity in mRNA levels and active TS numbers at single-cell level, the

population average of the nascent transcriptional dynamics was remarkably similar for all genes, peaking at

20 min post stimulation as measured by either smFISH (Figure 1D) or intron-targeted qPCR (Figure S2C and

Transparent Methods). Published models for NF-kB-mediated gene expression suggest that RNAs are gener-

ated proportionally toNF-kB nuclear abundance (Lee et al., 2014; Zambrano et al., 2014b).We tested this notion

by comparing nascent transcriptional dynamics with the abundance of nuclear NF-kB, a classical measure of NF-

kB activation, obtained by immunofluorescence (see Transparent Methods) at different time points. Similar to

previous reports (Lee et al., 2014), nuclear NF-kB accumulated rapidly and rather homogeneously across the

cell population, peaking after 20min and then decreasing in the following 3 h (Figures 1D and S2D). Surprisingly,

following its peak at 20min, average nascent transcription decreased faster than nuclear NF-kB abundance (Fig-

ure 1D): the time t1/2 for the averagenascent RNA signal todecrease tohalf of thepeak value is�30min, whereas

it is �100 min for the average NF-kB nuclear localization (Figure 1D).

Taken together, our data show that the transcriptional activation of NF-kB target genes is gene and cell

dependent. However, at population level their nascent transcription is prompt, because it peaks synchro-

nously with NF-kB nuclear localization within our temporal resolution, and sharp, because it decays faster

than NF-kB nuclear localization. We then decided to investigate further how these population-level fea-

tures emerge from single-cell bursting dynamics using a live-cell reporter for nascent transcription.

A Live-Cell Reporter of NF-kB-Driven Nascent Transcription Recapitulates the Dynamics of

Endogenous Genes

To monitor transcription induced by NF-kB in single living cells we used the HeLa 128xMS2 cell line (Tantale

et al., 2016) (see Transparent Methods). Briefly, these cells harbor a single integration of a reporter gene con-

taining 128 intronic repeats of the MS2 stem loop that are bound by a phage coat protein fused to GFP

(MCP-GFP), such that bright spot within the nucleus denotes an active TSs (Figure 2A). The reporter gene is un-

der the control of theHIV-1 LTR, which contains twoNF-kB-binding sites (Stroud et al., 2009); this compares with

the promoters of classic NF-kB targets, which typically harbor from 1 to 5 binding sites (Siggers et al., 2010).

TNF-a stimulation induces transcription, as assessed by PCR after 1 h of stimulation with 10 ng/mL TNF-a (Fig-

ure S3A). We visualized transcription in our cells using a sensitive wide-field microscope (see Transparent

Methods), which allows to visualize both the TSs and the single molecules of released transcripts (RNAs, see

insets of Figures 2B and 2C). Similar to what is observed for IL6 and TNF, we found active TSs in only a relatively

small fraction of cells (20%) 1 h after TNF-a induction; an additional 20% cells displayed mature RNAs but not

active TSs (Figures 2C and 2D). This fractional response was confirmed by smFISH using probes targeting the

MS2 RNA (Figure S3B) and cannot be ascribed to reporter loss, as active TSs were present in 10 of 10 clonal sub-

populations generated (Figure S3C). Interestingly, as for the endogenous genes, a fraction of unstimulated cells

(5%) also displayed active TSs, whereas 20% displayed only released RNAs (Figures 2B and 2D), suggesting pre-

vious transcriptional activity potentially due to nonzero nuclearNF-kBbasal levels or spontaneous activations, as

reported (Zambrano et al., 2014a), or to infrequent activation of our reporter by independent pathways. Impor-

tantly, the population average of MS2 nascent transcriptional dynamics is similar to that of the selected

Figure 1. Continued

(C) Fraction of cells with 0, 1, 2, or >2 active transcription sites for MS2 measured by smFISH (ncells, statistical tests and p value thresholds as in Figure 1B).

(D) Average number of nascent transcripts per cell measured by smFISH (error bars: SEM. ncells, as in Figures 1B and 1C, KW test—not shown—provides the

same pairwise p values as in Figure 1C) and normalized nuclear NF-kB fluorescence intensity. The transcriptional peak is prompt, as it is almost simultaneous

to that of NF-kB nuclear localization within our temporal resolution, and sharp, as it is sharper than the peak of NF-kB nuclear localization, as evaluated by

linear interpolation as the time t1/2 between maximal activation, max(A), and 0.53max(A) (indicated by a dashed line) (right panel, error bars calculated by

computing the minimal and maximal slope of the lines passing through the 20 min and 1 h time points). See also Figures S1–S2 and Table S1.
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endogenous genes and specifically displays a prompt and sharp response (Figure S3D). Hence, our MS2 re-

porter reproduces both single-cell and population-level features of endogenous NF-kB target genes and

thus can be considered a faithful tool to study NF-kB-regulated transcription.

NF-kB-Mediated Transcriptional Response Is Bursty and Shaped by a Population of ‘‘First

Responders’’

We then used our reporter to characterize nascent transcriptional dynamics by monitoring the TS signal in

single 128xMS2 cells over time, using a confocal microscope (Figure 3A, upper panels). We recorded 3D

stacks of 10 mmdepth every 3 min for 3 h. A custom software allows to track the cell and detect the TSs after

a high-pass filter of the stack maximal projection (see Transparent Methods and Figure S4A). The maximum

signal intensity of the TSs is informative of the total TS intensity, because they correlate (see Figure S4B),

whereas it is independent of the expression level of MCP-GFP in the cell (Figure S4C). The TS signal is then

compared with the MCP-GFP background intensity to distinguish between transcriptionally ‘‘active’’ and

‘‘inactive’’ cells (see Transparent Methods and Figure S4D). Our time-lapse analyses showed that the

MS2 transcriptional activity induced by TNF-a appears as discrete peaks, heterogeneous both in height

and frequency, confirming experimentally the ‘‘bursty’’ feature that has been postulated from indirect mea-

surements (Dar et al., 2012; Wong et al., 2018). In addition, ‘‘active’’ and ‘‘inactive’’ cells coexisted both after

stimulation (Video S1 and Figure 3A) and no stimulation (Video S2 and Figure 3A).

We repeated the time-lapse imaging of our cells for different TNF-a doses andmeasured TS signals in hun-

dreds of cells (Figure 3B). In color plots, each line corresponds to a single TS observed for 180 min and the

color reflects the TS signal intensity. The measured transcriptional response is strongly heterogeneous

(Videos S3, S4, and S5), but controlled by TNF-a, as the timing, the amplitude, and the integrated intensity

of the detected bursts are modulated by the dose (Figure S5A), as reported for bulk populations (Tay et al.,

2010). Shear stress (Baeriswyl et al., 2019) potentially associated to plain addition of TNF-a-free medium

does not lead to observable TS activity (Figure S5B).

C DB

A

Figure 2. Probing NF-kB Transcription in Single Cells Using an MS2 Reporter

(A) The MS2 reporter of TNF-a-induced transcriptional activity. One hundred twenty-eight MS2 stem loop RNAs are

transcribed by the gene under the control of the NF-kB-controlled LTR-HIV1 promoter; RNAs are bound by constitutively

expressed MCP-GFP protein. As a result, a bright spot appears in the cell nuclei. Maximum projecttion, scale bar 10 mm.

(B) Representative image of unstimulated cells observed with a high-illumination microscope, allowing to observe cells

with a visible active TS (inset, red frame), cells with single RNAs but no visible active TSs (inset, green frame), and none

observed (inset, blue frame).

(C) Same for stimulated with 10 ng/mL TNF-a.

(D) Quantification of the fraction of cells with visible RNAs and visible TSs shows statistical difference between TNF

treatment or no treatment (mean and SD of 2 independent experiments is plotted, t test). See also Figure S3.
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Figure 3. Live-Cell Imaging of MS2 Reporter for Different Doses and Stochastic Modeling Highlights a Dose-

Dependent Bursting Behavior and the Existence of a Fraction of First Responders to TNF-a

(A) Exemplary images of a cell stimulated with 10 ng/mL TNF-a and acquired with our live-cell imaging setup (maximum

projection, scale bar, 10 mm). Arrows indicate the detected TS signal. Tracks show TS signal for unstimulated and

stimulated cells, displaying bursts (green) and no bursts (red). Transcribing TSs are identified by having signal above or

below the threshold (dashed black line) established as four times the standard deviation of the background signals.

(B) TS signal for hundreds of cells, either unstimulated or stimulated with 1 or 10 ng/mL TNF-a, sorted for increasing TS signal.
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Following previouswork, we adapted the random telegraphmodel of transcription (Suter et al., 2011) to ourMS2

reporter gene (Figure 3C) (see Transparent Methods) to determine the time span of gene activations and esti-

mate the evolution of the number of nascent transcripts in time, n(t). The model accounts for the promoter

switching between an active and an inactive state with rates kon and koff. Once the promoter is in its active state,

new transcripts are generated with a rate equal to k+ and processed/released with a rate equal to k�. After veri-
fying that the stochastic model could faithfully infer gene activation from synthetically generated TS time traces

(Figure S6A), we fittedour experimental datawith themodel (Figure 3C) by imposing that the average number of

nascent transcripts observed after 20min of stimulation with TNF-a (10 ng/mL) wouldmatch with the average TS

signal observed by smFISH (6 RNAs/cell). As the TS signal of our reporter can decrease in tens of transcripts per

minute (Tantale et al., 2016), the limited temporal resolution of our experimentsdoes not allow to retrieve unique

estimates for k�, with multiple (k+,k�) pairs fitting the data equally well. Only the ratio of k+ and k� that deter-

mines the average burst amplitude could be determined. The behavior of the burst size is indeed informative:

in agreement with our previous analysis, the amplitude of the first burst is modulated by the dose of TNF-a (Fig-

ure 3D) and, more generally, the reporter transcriptional activity (estimated as area under the curve [AUC] of n(t))

increases upon treatment with TNF-a (Figure 3E), due to an increase in the gene activation rate kon and a

decrease in the deactivation rate koff (Figure S6B).

Importantly, we found a fraction of cells responding almost synchronously and within few minutes after

TNF-a stimulation. This first response occurred earlier upon higher doses of TNF-a, as evinced by plotting

the time tmax at which maximal TS activity was observed (Figure 3F). At 10 ng/mL TNF-a, the distribution of

tmax was found to be bimodal (as evidenced by a change in the slope of the cumulative distribution, Fig-

ure 3G) allowing to identify a fraction of cells (approximately 40%) that respond within 30 min post stimu-

lation, that we define as ‘‘first responders’’ (Figure 3G). Surprisingly, first responders display a stronger tran-

scriptional activity than the other cells (Figure 3H), despite being indistinguishable from the rest of the cell

population before stimulation with TNF-a (Figure S6C).

After this first burst of transcription, stochastic bursting dominates the individual cell response, as can be

quantified by the evolution in time of the coefficient of variation of the number of nascent transcripts n(t).

The coefficient of variation has a minimum at 20 min (Figure S6D), which indicates an early synchronous

round of transcription in a fraction of cells. The high synchronicity of bursting of these first responders at

approximately 20 min post TNF-a led to the observed prompt transcriptional response at population level.

First Responders Are More Likely to Respond Strongly to Consecutive Pulses of TNF -a

We next used our live-cell reporter to characterize to what extent cells are capable of responding to

repeated stimulation. Using our previously described microfluidics setup (Zambrano et al., 2016), we chal-

lenged our MS2x128 cells with two independent 1-h pulses of 10 ng/mL TNF-a separated by a 2-h washout

(see Transparent Methods) and followed TS activity in hundreds of cells (Figure 4A). Similarly to what we

observed for a single stimulation, the bursting parameters extracted from this two-pulse experiment

were found to be modulated by TNF-a (Figure S7A). We then determined the fraction of cells responding

to the first, to the second, and to both pulses (Figure 4B and Video S6). A majority of responding cells re-

sponded to both pulses, and a fraction of cells responded to only one. Surprisingly, the fraction of cells re-

sponding to both pulses was significantly higher than what could be expected from statistically indepen-

dent transcriptional activations (Figure 4B and Transparent Methods). Moreover, the maximum TS signal,

expressed as number of nascent transcripts nmax for each pulse, was higher for cells responding to both

TNF-a pulses than for cells responding to only either one of them (Figure 4C); the AUC behaves analo-

gously (Figure S7B). Furthermore, the timing to the maximum TS signal (tmax) after a TNF-a pulse was

Figure 3. Continued

(C) Scheme of the simple mathematical model of nascent transcription n(t) with the activation and inactivation rates of the

gene (kon and koff), the RNA accumulation rate (k+), and the RNA release rate (k�). Example of the inferred transcript levels

n(t) from a time series of TS signal.

(D and E) (D) Transcriptional activity during the first burst, and (E) transcriptional activity during the whole time course

inferred as area under the curve (AUC) of n(t), for the three doses of TNF.

(F) Distribution of the timing of the maximum TS signal tmax, which decreases with the TNF-a dose.

(G) The cumulative distribution of tmax for the cells treated with 10 ng/mL allows defining the fraction of cells as first

responders, as those with tmax < 30 min.

(H) The peak transcriptional activity nmax is higher in first responders. In all panels, statistical significance is calculated with

pairwise Kolmogorov-Smirnov tests. See also Figures S4–S6.
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shorter on average for cells that respond to both pulses than for cells that respond to just one (Figure 4D)

and similar to the tmax of the previously identified ‘‘first responders.’’

Overall, our results suggest that despite an intrinsic variability in gene activation (cells can respond to either

one TNF-a pulse or to both), there is a higher-than-expected proportion of cells that respond to both

pulses, which excludes the statistical independence of the two responses. The data indicate that those cells

are in a ‘‘first responder’’ state lasting longer than 180 min; first responders are activated faster, higher, and

more often than other cells.

The Timing of the Nascent Transcriptional Response Does Not Depend on NF-kB Nuclear

Localization Dynamics at Single-Cell Level

Once we established that the population-level transcriptional response to TNF-a is the result of heteroge-

neous transcriptional activation in single cells, we asked whether the latter emerged from heterogeneous

nuclear localization dynamics of NF-kB.We stably transfected ourMS2x128 cells with a previously validated

RFP-p65 construct (Bosisio et al., 2006) (Figure 5A) andmeasured concomitantly TS signal intensity and NF-

A B

C

D

Figure 4. Pulsed TNF-a Stimulation Shows That Transcriptional Bursts Are Not Purely Stochastic

(A) TS signal for hundreds of cells after two pulses of 1 h of 10 ng/mL TNF-a separated by a 2-h washout, sorted for

increasing TS signal. Cells are clustered as non-responding—within 90 min of each pulse, responding to only one of the

two pulses, or responding to both pulses.

(B) Fraction of cells responding to none of the TNF-a pulses, just the first, or just the second (mean and standard deviation

of three independent experiments), and predicted fraction for statistically independent activation (random).

(C) Maximum TS signal (in number of transcripts) after the first and second pulse for the sub-populations identified above.

Cells responding to both TNF-a pulses display a stronger response to both the first and the second pulses.

(D) The timing of the maximum of the TS signal after each TNF-a pulse, indicating that cells that are primed to response

do so more quickly upon the first pulse than the remaining populations, in particular those responding only to the first or

the second. See also Figure S7. In all the relevant panels, statistical significance is calculated with pairwise Kolmogorov-

Smirnov tests.
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kB nuclear localization in single living cells (see Transparent Methods, Figures 5A and Video S7). Although

NF-kB nuclear localization dynamics varies across single responding cells (see Transparent Methods), as

previously reported (Lee et al., 2014; Tay et al., 2010), we find that the nascent transcriptional response

is evenmore heterogeneous (Videos S8, S9, and S10) as shown in previous experiments, and includes a frac-

tion of ‘‘first responders.’’ Parameters governing the bursting kinetics were found similar to those obtained

from untransfected cells (Figure S8A), excluding an effect of transfection on results. At the single-cell level,

the fold change of NF-kB nuclear abundance does not correlate with the peak value of nascent transcrip-

tion or its integrated value, even when such correlations are evaluated for prompt responders (r2<0.1 for all

of them) (Figures S8B–S8C). This is somehow in contrast with reports showing a correlation between the

fold change of nuclear NF-kB and mature transcriptional output by smFISH (Lee et al., 2014; Wong

A

B C D

Figure 5. Simultaneous Imaging of NF-kB Translocation and MS2 Transcriptional Activity Highlights the

Promptness and Sharpness of the Transcriptional Response

(A) Top: exemplary images of cells stimulated with 10 ng/mL TNF-a before and after 30 min stimulation with 10 ng/mL

TNF-a. Note the activation of NF-kB in all the cells, whereas the TS appears active in the indicated ones (arrows) at that

specific time point. Bottom: TS signal activity and nuclear NF-kB activation for hundreds of cells sorted for increasing TS

signal.

(B) Plot of the normalized average TS signal for three experiments (green, standard deviation is represented),

superimposed with the average NF-kB nuclear intensity assessed by live-cell imaging (red) with standard deviation

inferred from imaging data. The dark green line represents the TS activity of transfected cells, within the range of

variability observed for untransfected cells. The plot indicates that both signals peak simultaneously, but TS activation

decreases more sharply.

(C) The quantification of the timing of the first maximum of NF-kB nuclear localization and of TS activity, showing that the

medians are similar but the latter is more heterogeneous with prompt and late responders.

(D) Estimation of the variability of the decay time t1/2 for the TS signal and NF-kB nuclear localization, obtained from panel

(B). The decay time of the transcription signal is much lower than that of NF-kB, indicating a sharper response. See also

Figure S8
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et al., 2019). This discrepancy can have different experimental sources; the most evident one is that, differ-

ently from smFISH, our live-cell assay has no direct access to the amount of mature RNA released from the

TSs. Another possibility is that, as the ectopic (labeled) NF-kB is expressed heterogeneously across our

population of transfected cells, the proportionality of the fold change of RFP- NF-kB and the endogenous

one varies between cells and this blurs correlations. In any case, our data show how a relatively uniform and

synchronous nuclear translocation of NF-kB drives highly non-uniform transcription at single-cell level,

which highlights the apparent stochastic nature of the transcriptional activation process. Such stochasticity

presumably arises as a combination of the intrinsic molecular noise of the transcriptional process and the

concomitant action of other regulatory players alongside NF-kB, whose activity might further determine

the transcriptional output.

Time-resolved measurements allowed us to quantify more finely the promptness of the transcriptional

response. By superimposing the average data for NF-kB translocation andMS2 reporter transcriptional ac-

tivity we found that both peak almost simultaneously at about 20 min post stimulation (both for transfected

and untransfected cells (Figure 5B). Of note, chromatin immunoprecipitation (ChIP) sequencing data on

macrophage-like cells (Saccani et al., 2001) show a peak 20 min post-lipopolysaccharide stimulation in

NF-kB binding to the promoter of a subset of certain NF-kB target genes, consistent with our observation

for nascent transcription. The time at which NF-kB nuclear translocation peaks (typically the only peak, see

Figure S8D) is relatively uniform compared with the first peak of nascent transcription (Figure 5C). Indeed,

the timing of the peak in NF-kB translocationmatches on average that of the transcriptional response of the

cells previously identified as ‘‘first responders’’(Figure 5C), indicating that nuclear NF-kB might act at pop-

ulation level as a ‘‘limiting factor’’ for transcriptional activation of our reporter. This is compatible with the

observation that NF-kB can find its targets rapidly (search time �2 min), as can be derived from recent sin-

gle-molecule imaging data (Callegari et al., 2019) (see Transparent Methods). Of note, a small fraction of

cells keeps transcribing even if NF-kB nuclear concentration has decreased (see, e.g., Video S9), which

might reflect a population heterogeneity in NF-kB binding to the promoter, as indicated by other studies

(Callegari et al., 2019). We also quantified the sharpness of the nascent transcriptional response and of NF-

kB localization by computing their time t1/2. The TS signal decayed faster than NF-kB nuclear abundance, in

agreement with what was observed for endogenous genes by smFISH. Thus, sharpness is reproduced faith-

fully by time-lapse imaging of our reporter gene (Figure 5D).

In short, these results illustrate how the nascent transcriptional response to TNF-a is more heterogeneous

than NF-kB nuclear localization among the cells in the population. Moreover, we identify a fraction of first

responder cells whose maximum transcriptional activity occurs simultaneously to NF-kB maximum nuclear

translocation and is stronger than for the rest of the cells, so it is responsible for the prompt and sharp tran-

scriptional response emerging at the population level.

A Model Combining NF-kB-Mediated Gene Activation and a Refractory State Recapitulates

the Prompt and Sharp Nascent Transcriptional Response

To gain insights on the origin of the prompt and sharp NF-kB-mediated transcriptional response, we

explored mathematical models for NF-kB-driven transcription. We performed stochastic and deterministic

simulations of gene activity (see Transparent Methods) and compared their results to our experimental

data. A first candidate for our exploration was the random telegraph model of transcription, where the

gene switches between on and off states in a purely stochastic fashion, with constant switching rates.

This model, however, could not recapitulate our experimental data. For example, the experimentally

measured gene off times are described by a unimodal distribution with a shape that varies between unsti-

mulated and stimulated conditions (Figure 6A), rather than by the exponential that would be expected

from the random telegraph model (Model 0, Figure 6B). Two alternative mechanisms have been suggested

to give rise to these unimodal distributions: (1) the presence of a gene refractory state (Molina et al., 2013;

Suter et al., 2011) that prevents the gene from immediately starting a second round of transcription after

the first one is over and (2) an oscillatory modulation of the gene activation (Zambrano et al., 2015). As

shown below, the combination of these two features could reproduce the experimental features that we

observed.

In previous explorations we simulated NF-kB response to TNF-a using a simple mathematical model (Zam-

brano et al., 2014b) (see Figure 6B and Transparent Methods); here, we analyzed the transcriptional dy-

namics of a prototypical target gene by modeling different NF-kB-controlled gene activation-deactivation
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schemes inspired by experimental observations, among which our own. We used deterministic modeling

to simulate population-average gene activity dynamics (Figure S9A) and stochastic modeling to simulate

bursty stochastic transcription at single-cell level, including the distribution of the off times (Figure S9B).

The key parameters considered are the gene inactivation (koff) and activation rates (kon), which we varied

four orders of magnitude around values used in the literature (Tay et al., 2010; Zambrano et al., 2014b)

(see Transparent Methods). To constrain our exploration, we modeled first the gene activation rate as de-

pending linearly (non-cooperatively) on NF-kB nuclear concentration, as proposed in a number of models

(Tay et al., 2010; Zambrano et al., 2014b) and deduced from previous experiments and thermodynamic con-

siderations (Siggers et al., 2010) (Model i, Figure 6B). This model allows to reproduce the non-monotonoc-

ity of the off times observed experimentally (Figure 6B), as predicted (Zambrano et al., 2015), but is unable

to reproduce the prompt and sharp gene activation observed in our experiments (Figure 6C).

A recently proposed mechanism that in principle could rapidly shut down transcriptional activity and pro-

duce ‘‘sharpness’’ is molecular stripping, by which IkBa actively induces the dissociation of NF-kB from its

binding sites on DNA (Dembinski et al., 2017; Potoyan et al., 2016) (Model ii, Figure 6B). A model based on

molecular stripping reproduces the unimodal distribution of the inactivation times (Figure 6B), and we

could indeed identify a sector of parameter space—low kon and high koff values—resulting in sharp tran-

scriptional responses at the population level (Figure 6C). However, these parameters were not compatible

with a prompt transcriptional activation, which was found for high kon values instead (see purple areas in

Figure 6C and examples in Figure S9C). To test these predictions, we co-treated our cells with TNF-a

and cycloheximide (CHX), which blocks protein synthesis and hence IkBa synthesis and stripping. CHX is

effective as demonstrated by the progressive decay observed in the nuclear fluorescence of MCP-GFP

(Video S11) and by higher NF-kB nuclear localization post TNF stimulation (Figure S9D), as expected

from blocking IkB re-synthesis. However, the decay time of the TS signal after reaching its maximum at

tmax is almost unchanged by CHX, indicating that it does not depend on IkBa re-synthesis and stripping

(Figure S9E).

Finally, we tested amodel that combines the two previously mentionedmechanisms: NF-kB-mediated acti-

vation by nuclear translocation and a gene refractory state (Model iii, Figure 6B). It is important to distin-

guish this gene refractory state from the ‘‘refractory state’’ in the NF-kB system arising due to feedback

signaling (via the protein A20); the latter might preclude NF-kB response to consecutive TNF-a pulses

(Adamson et al., 2016; Zhang et al., 2017). Here we do not explore how these two type of refractoriness

might interact, an interaction that deserves future exploration. As previously reported (Molina et al.,

2013), our model with a gene refractory state reproduces the non-monotonous distribution of ‘‘off times’’

of our bursty transcription data (Figure 6B). Interestingly, we find a wide region of parameter space (char-

acterized by high kon and koff) compatible with both prompt and sharp gene activation (see green squared

areas in Figure 6C and examples in Figure S10A). Furthermore, the simulated bursts have a structure clearly

reminiscent of our experimental data, differently from the ones obtained from the other models (Fig-

ure S10B). Importantly, Model iii is able to reproduce two key features: (1) the temporal evolution of the

coefficient of variation of nascent transcription that we observed experimentally, with maximum synchro-

nization of the bursts approximately 20 min post stimulation (Figure S10C), and (2) the presence of a

Figure 6. Identification of a Minimal Mathematical Model Recapitulating NF-kB-Mediated Transcription

Dynamics

(A) Example of the inferred transcript levels n(t) given a TS signal time series. The off times toff are computed as described

(left). Unimodal distribution of the off times obtained from our experimental data (right).

(B) Scheme of a simple mathematical model where gene activation is modulated by NF-kB, whereas inactivation is

governed by the concentration of the inhibitor IkBa. Different possible mechanisms of activation of the target gene are

considered. The classical telegraph model of transcription (Model 0) with constant activation and inactivation rates gives

rise to exponential distribution of the off times (inset) and so cannot describe experimental data. Based on the literature

and our observation we propose alternative models: linear activation (Model i), molecular stripping (Model ii), and gene

with a refractory state (Model iii). All of them reproduce the unimodal distribution of toff (insets).

(C) We screened the timing of the peak of the gene activity (top panels) and the sharpness (bottom panels) of the peak for

Models i–iii, two orders of magnitude above and below reference values (kon,0 and koff,0). The color code indicates the

promptness and the sharpness of the peak, respectively, when compared with the peak of nuclear NF-kB. Model i does

not give prompt and sharp responses. Model ii gives prompt responses in a region that does not overlap with the region

giving a sharp response, both highlighted with a purple square. Finally, Model iii with NF-kB-mediated activation and a

refractory state is the only one giving parameter combination (high kon and koff) leading to a prompt and sharp

transcriptional response, highlighted with a green square. See also Figures S9–S10.
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fraction of first responders in the cell population (Figure S10D). When using the experimentally determined

NF-kB nuclear dynamics as input to simulate the gene activation rates of each single cell following the

scheme of Model iii, we also reproduced a population-level prompt and sharp nascent transcriptional

response (Transparent Methods and Figure S10E).

Hence, a gene refractory state is necessary to recapitulate the experimentally determined features of NF-

kB-mediated nascent transcription upon TNF-a, including a prompt and sharp transcriptional response

emerging from a fraction of first responders.

DISCUSSION

NF-kB dynamics is fundamental for the proper temporal development of inflammation. Previous reports

(Ashall et al., 2009; Nelson et al., 2004; Sung et al., 2009) had shown that the NF-kB-mediated transcrip-

tional response to TNF-a can display a variety of dynamics, including genes whose mature transcripts

peak early (at 30 min) or late (>3 h), and even oscillating and non-oscillating gene expression patterns (Zam-

brano et al., 2016). We and others (Hao and Baltimore, 2013; Zambrano et al., 2016) suggested that such

mRNA expression patterns arise from a common nascent transcriptional response, which peaks typically

20–30 min post stimulation. However, all these observations were based on population-level transcrip-

tional measures, so how single-cell transcriptional response contributes to these features remained an

open question that we have addressed in this work.

Different endogenous genes are expressed with different degrees of variability among individual cells

upon TNF-a, but share a common population-level prompt and sharp nascent transcriptional response.Us-

ing single-cell smRNA-FISH for three bona-fide NF-kB target genes at different time points post TNF-a

stimulation, we found that all of them were expressed heterogeneously across the population, although

NFKBIA (coding for the inhibitor IkBa) was expressed more uniformly than IL6 and TNF, coding for cyto-

kines. Surprisingly, though, we found that the population dynamics of the nascent transcriptional response

was very similar for these three genes, in spite of their marked differences in expression level and variability

at single-cell level, with Gini coefficients ranging from 0.2 to 0.5. Concomitant measurement of NF-kB nu-

clear localization by immunofluorescence showed that their common nascent transcriptional response is

prompt, peaking simultaneously with NF-kB nuclear abundance, and sharp, decaying faster than the

peak of NF-kB nuclear localization.

Population-level promptness and sharpness arises from heterogeneous bursting in single cells, including a

fraction of ‘‘first responders.’’ NF-kB response to TNF-a has been described as ‘‘digital,’’ giving rise to a

transcriptional output proportional to the fraction of cells displaying NF-kB translocation (Tay et al.,

2010), which suggested a relatively uniform transcriptional response across those cells. Instead, using

our MS2 nascent transcription reporter we find that a relatively uniform translocation of NF-kB in our cells

(100% responding to 10 ng/mL of TNF-a, as assessed by immunofluorescence) gives rise to an extremely

heterogeneous transcriptional response. This includes a fraction of ‘‘first responders,’’ cells that reach a

maximum transcriptional response higher and earlier than the other cells, and are more likely to respond

to consecutive pulses of TNF-a. Interestingly, a fraction of ‘‘first responders’’ was identified when studying

cellular responses to viral-activated interferon-beta signaling (Patil et al., 2015). smFISH data for endoge-

nous genes NFKBIA, IL6, and TNF also confirm a peak of TS activity for a fraction of cells within 20 min. We

ascribe the nascent transcriptional response at the population level to first responders that start tran-

scribing earlier and more strongly than the other cells. Such rapid surge in nascent transcription is compat-

ible with a short NF-kB search time on chromatin and transcriptional initiation can indeed occur nearly

simultaneously to NF-kB translocation in the nucleus, as we observe experimentally in some cells.

The transcriptional response to consecutive TNF-a pulses has a stochastic component that is relevant to

HIV latency.When challenging our cells with two pulses of TNF-a we find that whereas some cells respond

to both pulses, some will respond just to the first or the second. Our cells harbor an LTR-HIV1 promoter,

therefore this observation could represent the microscopic equivalent of a recently identified mechanism

involved in HIV1 latency, where proviruses not induced after a first stimulation can be induced by a second

one (Ho et al., 2013). This mechanism leads to a stochastic latency exit, and it is clinically important as it may

prevent curing patients from the virus by the ‘‘shock-and-kill’’ approach. In this context, it important to

point out that negative feedback mediated by the IKK inhibitor A20 (a target of NF-kB) has also been shown

to result in a fraction of cells in which NF-kB does not respond to pulsatile stimulation with TNF-a (Adamson
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et al., 2016; Zhang et al., 2017). Such phenomenon is more evident for pulses separated by less than 100min

(Adamson et al., 2016) and so presumably may be uncoupled from our observed behavior of the first re-

sponders, although the interaction between these different layers of regulation might be important for

pulses on different timescales and deserves further exploration.

Analysis of transcriptional bursts highlights the existence of a characteristic inactive time after each gene

activation.Our live-cell imaging analysis of nascent transcription shows that after gene activations—during

which multiple bursts of transcription can occur—there is typically a gene inactive time of approximately

25 min. This is characterized by a unimodal distribution of the gene ‘‘off’’ times obtained from our stochas-

tic inference framework. Our previous theoretical work (Zambrano et al., 2015) and simulations presented

here show that such characteristic unimodal distribution can in principle arise fromNF-kB-driven gene acti-

vation in a gene that has just two states (2-states model). However, these 2-states models (where inactiva-

tion is either spontaneous or driven by the inhibitor IkBa through ‘‘molecular stripping’’; Potoyan et al.,

2016) were unable to reproduce our key experimental findings of promptness and sharpness.

Only a mathematical model combining both NF-kB-driven gene activation and a refractory state can repro-

duce experimental observations of promptness and sharpness. Unimodal distributions in the gene off

times were also observed by others (Molina et al., 2013; Suter et al., 2011; Tantale et al., 2016) and modeled

by adding an additional gene refractory state (3-states model). A study of our gene reporter under the con-

trol of HIV TAT protein suggested that a non-permissive state on the timescale of tens of minutes can be

related to the dissociation of TBP from the promoter (Tantale et al., 2016). Here, by combining these 3-

states model with NF-kB-mediated activation and a gene refractory state, we could reproduce the exper-

imentally observed dynamics of transcription: a unimodal distribution of off times and a prompt and sharp

response at population level. This model also reproduces other features in our experiments that 2-states

models cannot, such as the existence of a fraction of ‘‘first responders’’ and a peak of bursting synchrony

at 20 min post stimulus. Overall, our model illustrates how a simple 3-states dynamics can produce a het-

erogeneous transcription activity at single-cell level and at the same time a sharp population-level tran-

scriptional output. Furthermore, our results confirm and reinforce recent theoretical modeling indicating

that, counterintuitively, gene refractory states can promote the rapid control of transcription in response

to external stimuli (Li et al., 2018).

Sharp and prompt nascent transcriptional responses emerging from a fraction of ‘‘first responders’’: a gen-

eral feature for inducible transcription factors? Previous population-level work on transcription suggested

that gene-specific NF-kB-driven expression profiles are mostly controlled by mRNA processing and degra-

dation (Hao and Baltimore, 2013, 2009), whereas nascent transcription dynamics are shared among the

different genes (Zambrano et al., 2016). Our work reinforces this viewpoint with a single-cell perspective,

as we show how a uniform transcriptional dynamics emerges from prompt and bursty transcription in single

cells. If mRNA degradation controls the temporal evolution of gene expression, a prompt and sharp peak

of nascent transcription is a better-suited input to generate gene-dependent expression profiles when

compared with a slowly varying transcriptional activity. The observed refractory state might have evolved

from the necessity of sharpening the inherently stochastic transcriptional process, providing an opportunity

window for decision (Zambrano et al., 2016). Furthermore, it is enough to provide a fraction of ‘‘first re-

sponders,’’ which might be useful to temporally stratify the population response to stimuli. It also worth

to speculate what molecular mechanisms could define the ‘‘first responder’’ state. In our analysis, we could

not identify first responders depending on the pre-stimulus transcriptional activity or on the initial NF-kB

nuclear concentration. Therefore, it is possible that for some cells the promoters of NF-kB-dependent

genes are primed in cis to respond rapidly to the increase in NF-kB abundance, for example, through

higher accessibility or the pre-loading of poised polymerase. Of note, recent genome-wide analysis of

NF-kB-mediated nascent transcription in mouse embryonic fibroblasts revealed a class of very early genes

(including TNF), with nascent transcripts peaking as early as 15 min post stimulation (Ngo et al., 2020)—

earlier than the peak in NF-kB nuclear concentration. Detailed ChIP analysis at the promoters of these

genes might therefore shed light on the nature of first responders.

Prompt and sharp transcriptional profiles are observed for other inducible transcriptional programs,

ranging from stress response to nutrient detection and development (Hafner et al., 2020; Senecal et al.,

2014; Stevense et al., 2010). Furthermore, other inducible transcription factors such as p53 have similar

search times (Loffreda et al., 2017) to the one we calculated for NF-kB and produce population-level
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gene-independent nascent transcription dynamics and gene-specific mRNA profiles due to differential

RNA degradation (Hafner et al., 2017; Koh et al., 2019; Porter et al., 2016). It is then tempting to speculate

that other transcription factors that need to respond rapidly to intracellular (e.g., p53) (Hafner et al., 2017) or

extracellular cues (e.g., c-FOS, STAT3, GR)(Alonzi et al., 2001; Stavreva et al., 2019) might exploit a similar

design principle to produce a time-resolved, prompt and sharp nascent transcriptional response.

In conclusion, our data and models show how the expression of NF-kB target genes can be coordinated at

cell population level and yet be heterogeneous across single cells and further provide a framework for un-

derstanding how transcription factors can achieve prompt and sharp transcriptional responses.

Limitations of Study

This study is focused on the transcriptional response of HeLa cells to TNF-a; the behavior of nascent tran-

scription for other cells—including primary cells—might vary from what we report here. We find a popula-

tion-level prompt and sharp response to TNF-a in a panel of representative NF-kB targets and in an MS2

reporter driven by NF-kB; however, we cannot exclude the fact that other NF-kB-controlled genes might

show a different dynamics of the nascent transcriptional response. Finally, to find the precise relation be-

tween NF-kB nuclear abundance and nascent transcriptional output at single-cell level it would be neces-

sary to fluorescently tag the endogenous p65; our use of an ectopic tagged p65 only allows us to establish a

qualitative—population level—relationship between nascent transcriptional dynamics and NF-kB nuclear

localization dynamics.
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Höfer, T. (2018). Frequency modulation of

transcriptional bursting enables sensitive and
rapid gene regulation. Cell Syst 6, 409–423.e11.

Loffreda, A., Jacchetti, E., Antunes, S., Rainone,
P., Daniele, T., Morisaki, T., Bianchi, M.E.,
Tacchetti, C., and Mazza, D. (2017). Live-cell p53
single-molecule binding is modulated by
C-terminal acetylation and correlates with
transcriptional activity. Nat. Commun. 8, 313.

Molina, N., Suter, D.M., Cannavo, R., Zoller, B.,
Gotic, I., and Naef, F. (2013). Stimulus-induced
modulation of transcriptional bursting in a single
mammalian gene. PNAS 110, 20563–20568.

Muramoto, T., Cannon, D., Gierli�nski, M.,
Corrigan, A., Barton, G.J., and Chubb, J.R. (2012).
Live imaging of nascent RNA dynamics reveals
distinct types of transcriptional pulse regulation.
PNAS 109, 7350–7355.

Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson,
J.R., Gibney, C.A., Foreman, B.E., Nelson, G.,
See, V., Horton, C.A., Spiller, D.G., et al. (2004).
Oscillations in NF-kappaB signaling control the
dynamics of gene expression. Science 306,
704–708.

Ngo, K.A., Kishimoto, K., Davis-Turak, J.,
Pimplaskar, A., Cheng, Z., Spreafico, R., Chen,
E.Y., Tam, A., Ghosh, G., Mitchell, S., et al. (2020).
Dissecting the regulatory strategies of NF-kB
RelA target genes in the inflammatory response
reveals differential transactivation logics. Cell
Rep. 30, 2758–2775.e6.

Nicolas, D., Zoller, B., Suter, D.M., and Naef, F.
(2018). Modulation of transcriptional burst
frequency by histone acetylation. PNAS 115,
7153–7158.

Patil, S., Fribourg, M., Ge, Y., Batish, M., Tyagi, S.,
Hayot, F., and Sealfon, S.C. (2015). Single-cell
analysis shows that paracrine signaling by first
responder cells shapes the interferon-b response
to viral infection. Sci. Signal. 8, ra16.

Pichon, X., Lagha, M., Mueller, F., and Bertrand,
E. (2018). A growing toolbox to image gene
expression in single cells: sensitive approaches
for demanding challenges. Mol. Cell 71, 468–480.

Porter, J.R., Fisher, B.E., and Batchelor, E. (2016).
P53 pulses diversify target gene expression
dynamics in an mRNA half-life-dependent
manner and delineate Co-regulated target gene
subnetworks. Cell Syst. 2, 272–282.

Potoyan, D.A., Zheng, W., Komives, E.A., and
Wolynes, P.G. (2016). Molecular stripping in the
NF-kB/IkB/DNA genetic regulatory network.
PNAS 113, 110–115.

Rabani, M., Levin, J.Z., Fan, L., Adiconis, X.,
Raychowdhury, R., Garber, M., Gnirke, A.,
Nusbaum, C., Hacohen, N., Friedman, N., et al.
(2011). Metabolic labeling of RNA uncovers
principles of RNA production and degradation

ll
OPEN ACCESS

16 iScience 23, 101529, September 25, 2020

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref1
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref2
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref3
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref4
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref5
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref6
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref7
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref8
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref9
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref10
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref10
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref10
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref11
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref12
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref12
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref12
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref12
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref12
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref13
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref13
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref13
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref13
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref13
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref14
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref14
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref14
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref14
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref14
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref15
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref15
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref15
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref15
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref16
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref17
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref17
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref18
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref19
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref20
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref21
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref22
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref23
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref24
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref25
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref26
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref27
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref28
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref29
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref30
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref31
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref32
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref33
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref34
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35


dynamics in mammalian cells. Nat. Biotechnol.
29, 436–442.

Raj, A., and van Oudenaarden, A. (2008). Nature,
nurture, or chance: stochastic gene expression
and its consequences. Cell 135, 216–226.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y.,
and Tyagi, S. (2006). Stochastic mRNA synthesis in
mammalian cells. PLoS Biol. 4, e309.

Saccani, S., Pantano, S., andNatoli, G. (2001). Two
waves of nuclear factor kb recruitment to target
promoters. J. Exp. Med. 193, 1351–1360.

Senecal, A., Munsky, B., Proux, F., Ly, N., Braye,
F.E., Zimmer, C., Mueller, F., and Darzacq, X.
(2014). Transcription factors modulate c-Fos
transcriptional bursts. Cell Rep. 8, 75–83.

Shaffer, S.M., Dunagin, M.C., Torborg, S.R.,
Torre, E.A., Emert, B., Krepler, C., Beqiri, M.,
Sproesser, K., Brafford, P.A., Xiao,M., et al. (2017).
Rare cell variability and drug-induced
reprogramming as a mode of cancer drug
resistance. Nature 546, 431–435.

Siggers, L.G.T., Tiana, G., Caprara, G.,
Notarbartolo, S., Corona, T., Pasparakis, M.,
Milani, P., Bulyk, M.L., and Natoli, G. (2010).
Noncooperative interactions between
transcription factors and clustered DNA binding
sites enable graded transcriptional responses to
environmental inputs. Mol. Cell 37, 418–428.

Stavreva, D.A., Garcia, D.A., Fettweis, G., Gudla,
P.R., Zaki, G.F., Soni, V., McGowan, A., Williams,
G., Huynh, A., Palangat, M., et al. (2019).
Transcriptional bursting and Co-bursting
regulation by steroid hormone release pattern
and transcription factor mobility. Mol. Cell 75,
1161–1177.e11.

Stevense, M., Muramoto, T., Müller, I., and
Chubb, J.R. (2010). Digital nature of the
immediate-early transcriptional response.
Development 137, 579–584.

Stroud, J.C., Oltman, A., Han, A., Bates, D.L., and
Chen, L. (2009). Structural basis of HIV-1
activation by NF-kappaB–a higher-order
complex of p50:RelA bound to the HIV-1 LTR.
J. Mol. Biol. 393, 98–112.

Sung, M.H., Salvatore, L., Lorenzi, R.D., Indrawan,
A., Pasparakis, M., Hager, G.L., Bianchi, M.E., and
Agresti, A. (2009). Sustained oscillations of NF-
kappaB produce distinct genome scanning and
gene expression profiles. PLoS One 5, e7163.

Suter, D.M., Molina, N., Gatfield, D., Schneider,
K., Schibler, U., and Naef, F. (2011). Mammalian
genes are transcribed with widely different
bursting kinetics. Science 332, 472–474.

Tantale, K., Mueller, F., Kozulic-Pirher, A., Lesne,
A., Victor, J.-M., Robert, M.-C., Capozi, S.,
Chouaib, R., Bäcker, V., Mateos-Langerak, J.,
et al. (2016). A single-molecule view of
transcription reveals convoys of RNA
polymerases and multi-scale bursting. Nat.
Commun. 7, 12248.

Tay, S., Hughey, J.J., Lee, T.K., Lipniacki, T.,
Quake, S.R., and Covert, M.W. (2010). Single-cell
NF-kappaB dynamics reveal digital activation and
analogue information processing. Nature 466,
267–271.

Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi,
A.-M., Gostan, T., Weber, C., Zimmer, C., Zibara,
K., Walter, T., Peter, M., et al. (2016). smiFISH and
FISH-quant - a flexible single RNA detection
approach with super-resolution capability.
Nucleic Acids Res. 44, e165.

Tunnacliffe, E., and Chubb, J.R. (2020). What is a
transcriptional burst? Trends Genet. 36, 288–297.

Wong, V.C., Bass, V.L., Bullock, M.E., Chavali,
A.K., Lee, R.E.C., Mothes, W., Gaudet, S., and
Miller-Jensen, K. (2018). NF-kB-Chromatin
interactions drive diverse phenotypes by
modulating transcriptional noise. Cell Rep. 22,
585–599.

Wong, V.C., Mathew, S., Ramji, R., Gaudet, S.,
and Miller-Jensen, K. (2019). Fold-change
detection of NF-kB at target genes with different
transcript outputs. Biophys. J. 116, 709–724.

Zambrano, S., Bianchi, M.E., and Agresti, A.
(2014a). High-throughput analysis of NF-kB
dynamics in single cells reveals basal nuclear
localization of NF-kB and spontaneous activation
of oscillations. PLoS One 9, 009104.

Zambrano, S., Bianchi, M.E., and Agresti, A.
(2014b). A simple model of NF-kB dynamics
reproduces experimental observations. J. Theor.
Biol. 347C, 44–53.

Zambrano, S., Bianchi, M.E., Agresti, A., and
Molina, N. (2015). Interplay between stochasticity
and negative feedback leads to pulsed dynamics
and distinct gene activity patterns. Phys. Rev. E
Stat. Nonlin Soft Matter Phys. 92, 022711.

Zambrano, S., de Toma, I., Piffer, A., Bianchi,
M.E., and Agresti, A. (2016). NF-kappaB
oscillations translate into functionally related
patterns of gene expression. Elife 5, e09100.

Zhang, Q., Gupta, S., Schipper, D.L., Kowalczyk,
G.J., Mancini, A.E., Faeder, J.R., and Lee, R.E.C.
(2017). NF-kB dynamics discriminate between
TNF doses in single cells. Cell Syst. 5, 638–645.e5.

ll
OPEN ACCESS

iScience 23, 101529, September 25, 2020 17

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref35
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref36
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref37
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref38
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref39
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref39
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref39
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref39
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref40
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref41
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref42
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref43
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref44
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref45
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref46
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref46
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref46
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref46
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref47
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref48
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref48
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref48
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref48
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref48
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref49
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref50
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref50
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref51
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref52
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref52
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref52
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref52
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref53
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref53
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref53
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref53
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref53
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref54
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref54
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref54
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref54
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref55
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref55
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref55
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref55
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref55
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref56
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref56
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref56
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref56
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref57
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref57
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref57
http://refhub.elsevier.com/S2589-0042(20)30721-5/sref57


iScience, Volume 23

Supplemental Information

First Responders Shape a Prompt

and Sharp NF-kB-Mediated

Transcriptional Response to TNF-a

Samuel Zambrano, Alessia Loffreda, Elena Carelli, Giacomo Stefanelli, Federica
Colombo, Edouard Bertrand, Carlo Tacchetti, Alessandra Agresti, Marco E.
Bianchi, Nacho Molina, and Davide Mazza



Supplemental Figures: 

 

Figure S1. smFISH Exemplary Fields, related to Fig. 1. Exemplary fields of smFISH acquisitions for the 

three different targets at different time-points. Maximum projection displayed. 



 

Figure S2. smFISH quantification approach, bursting estimation and concomitant NF-κB dynamics, 

related to Fig. 1. A. cell displaying two active transcription sites (TS, yellow square) and single RNAs (red 

circles) B. Fitting of the distribution of mature RNAs obtained by smFISH with a negative binomial to 

estimate the relative frequency of transcriptional bursts ���� and the burst size �. C. Nascent RNA estimated 

by qPCR for two NF-kB  targets upon TNF-α, also reproduces the average dynamics described in our single-

cell assays. D. Immunofluorescence against NF-κB for cells stimulated with 10 ng/ml TNF-α. 



 

Figure S3. Basic features of the response to TNF-α of the MS2 reporter, related to Fig. 2. A. PCR 

products of the unspliced (actively transcribed) and spliced form of the reporter’s RNA product, showing a 

shift towards unspliced form in TNF-α stimulated cells after 1 hour, which indicates active transcription. B. 

Exemplary smFISH acquisitions using probes targeting MS2 RNA at different times following TNF-α and 

fraction of cells with either 0,1 or 2 active transcription sites. C. Representative mages of six out of 10 clones 

generated from our cells for which at least 1 clear active TS per image is observed (red arrow). D. Average 

number of nascent MS2 transcripts per cell measured by smFISH (black, error bars SEM, ncells =80, 79, 76, 

106 for 0’, 20’, 1 hour, 3 hours time  -points respectively) and normalized to nuclear-to-cytosolic  NF -κB 

fluorescence intensity assessed by immunofluorescence (red, errorbars, SEM  ncells =326, 225, 212, 211 for 

0’, 20’, 1 hour, 3 hours time-points respectively). Nascent MS2 RNA peaks at 20’ and decays faster than the 

NF-κB nuclear abundancy. 



 

 

Figure S4. Pipeline for the analysis of live-cell imaging of the MS2 system and signal characterization, 

related to Fig. 3. A. Workflow of the live cell imaging approach to study TS activity dynamics. Time lapse 

of the z-stacks are maximal-projected and filtered. The nuclei are segmented using the MCP-GFP signal and 

using a low-pass filter the TS are detected as bright spots (red arrow). The information is combined to track 

the TS within each cell and to obtain the TS signal dynamics for hundreds of cells.  B. Correlation of the TS 

max intensity and the total TS intensity. Each dot corresponds to a single cell’s time series (Pearson’s 

correlation coefficient r2=0.84). C. Absence of correlation between the TS max intensity and the nuclear 

intensity (r2=5·10-5). Each dot corresponds to a single cell’s time series. D. Probability distribution function 

of  the average -normalized background signal around the detected TS (blue line) compared to a normal 

distribution with the same mean and standard deviation (red line). The graph show that the distribution is 

long-tailed so p(ξ> µ+4σ)=2·10-3. When the maximum value of the detected TS is beyond the threshold, the 

gene is considered “active”; with this threshold the probability of observing a false positive in 60 frames is 

below 5%. 

  



Figure S5. Basic characterization of the bursts, related to Fig. 3. A. Features of the detected 

transcriptional bursts from three representative experiments for each TNF-α dose considered. B. TS signal 

for cells to which plain medium was added, confirming that the medium addition itself does not lead to 

significant TS activation.   

  



 

Figure S6. Test of the stochastic inference scheme and resulting burst features, related to Fig. 3. A. 

Example of single-cell traces  generated from a stochastic model of activation-inactivation, on top of which 

our model of transcription initiation and elongation is superimposed giving rise to bursts. Noise was added to 

the signal and then we applied our inference model to deconvolve the signal, obtaining inferred nascent 

transcript and gene activity signals that faithfully reproduce the original ones.  B.  Distributions of burst-sizes 

and parameters obtained from our fittings of the experiments from the three conditions considered. C.  The 

timing of maximal TS response is uncorrelated to the initial TS activity. D. Coefficient of variation (ratio of 

standard deviation over mean) of the cell population as a function of time, showing a decrease at 

approximately 20 mins post-stimulation (probably due to “first responders”) and a return to basal variability 

levels.      



Figure S7. Additional features of the bursts emerging in the two pulses experiment, related to Fig. 4. 

A. Parameters obtained by the stochastic fitting of the experiments obtained upon stimulation with two TNF-

α pulses. B. Transcriptional activity, inferred as area under the curve (AUC) following the first and the 

second TNF-α pulse for cells responding to only one of the two pulses, or to both of them. 

 

 

Figure S8. Features of the bursts for cell with fluorescently labeled NF-κB, related to Fig. 5. A. 

Parameters obtained by the stochastic fitting of the experiments obtained upon stimulation 10ng/ml TNF-α 

are identical for transfected and untransfected cells. B. Maximum TS signal against fold change nuclear NF-

κB showing no correlation when considering  all cells (gray symbols) or just first responders (red symbols). 

C.  Integrated TS signal against fold change nuclear NF-κB showing no correlation when considering  all 

cells (gray symbols) or just first responders (red symbols). D. Distribution of cells having different numbers 

of peaks of NF-κB activation. HeLa cells typically do not display oscillations, so cells with just one peak are 

the most frequent.     



 

Figure S9. Numerical exploration of the two-states models of NF-κB – mediated transcription, related 

to Fig.6. A. Deterministic simulations of NF-κB activation, inhibitor IκBα gene concentration, IκBα gene 

activity and target gene activity for the reference values used in the simulations. B. Stochastic simulations of 

the oscillations and bursts of nascent transcription obtained for the stochastic mathematical model, see 

Transparent Methods. C. Simulations of the dynamics of the target gene activity obtained when 

considering the model with stripping, showing that prompt and sharp response are only obtained for 

parameter values out of the range considered. D. Quantification of the activation of NF-κB alone and in 

combination with cycloheximide (CHX): the latter gives rise to a more sustained activation. E. Decay of the 

maximum TS signal with CHX (blue lines, two independent experiments) and in absence of CHX (lines 

indicate mean and standard deviation of 4 experiments). CHX effect in the decay is negligible, further 

highlighting that stripping is not a plausible mechanism for the sharpness of the transcriptional response. 



 Figure S10. Numerical exploration of the three-states model of NF-κB–mediated transcription, related 

to Fig. 6.  A. Simulations of the dynamics of the target gene activity obtained when considering the model 

with a refractory state, showing that a sharp and prompt response can be obtained within the parameter range 

considered. B. Stochastic simulations performed with the model in which the gene is under stripping 

mechanism and by a refractory state, showing that the latter can reproduce the dynamics observed in the 

experiments. C. The coefficient of variation of simulated n(t) for the same two models, showing that the 

model including a gene refractory state and an NF-κB mediated activation mirrors the behavior observed in 

the experiments. D. The distribution of the timing of the maxima tmax for the simulations of models ii. and iii. 

The one for the gene refractory state (Ref) is reminiscent of the one obtained experimentally, including the 

fraction of first responders. E. Average simulated nascent transcriptional response and inferred gene state 

obtained using the NF-κB nuclear localization dynamics of single cells as driver of gene activation of model 

iii. with a refractory gene state. The prompt and sharp transcriptional response is reproduced. 



Supplemental Tables 
 

NFKBIA IL6 TNF 

AGTAGCCGCTCCTTCTTCAG GGGGTTGAGACTCTAATATT CTACATGGGAACAGCCTATTGTTCAGCTC 

TCGTCTTTCATGGAGTCCAG ATCTCCAGTCCTATATTTAT CAAGTCCTGCAGCATTCTGGCCAGAAC 

CTTGACCATCTGCTCGTACT GAGGGCAGAATGAGCCTCAG GCACTTCACTGTGCAGGCCACACATT 

ATGATGGCCAAGTGCAGGAA TTCTCTTTCGTTCCCGGTGG CTTAAAGTTCTAAGCTTGGGTTCCGACCCTA 

GGTCAGTGCCTTTTCTTCAT GCTCCTGGAGGGGAGATAGA CCTGGGAGTAGATGAGGTACAGGCCCT 

TTCACCTGGCGGATCACTTC TGGAGAAGGAGTTCATAGCT AGAAGATGATCTGACTGCCTGGGCCA 

AGTTGAGGAAGGCCAGGTCT AGAAGGCAACTGGACCGAAG TGGAGCCGTGGGTCAGTATGTGAGAGGAAGA 

AGTCTGCTGCAGGTTGTTCT AAGGCAGCAGGCAACACCAG TCTTTTCTAAGCAAACTTTATTTCTCGCCACT 

TCAGCAATTTCTGGCTGGTT CGGCTACATCTTTGGAATCT GAGGGCTGGGCTCCGTGTCTCAAGGA 

ATTTCCTCGAAAGTCTCGGA AAGAGGTGAGTGGCTGTCTG TCCACTTGTGTCAATTTCTAGGTGAGGTCTT 

TTGGTAGCCTTCAGGATGGA ATTTGTTTGTCAATTCGTTC GGGATCAAAGCTGTAGGCCCCAGTGAG 

TAGACACGTGTGGCCATTGT AGATGCCGTCGAGGATGTAC TGAATCCCAGGTTTCGAAGTGGTGGTCTTGT 

TAGCCATGGATAGAGGCTAA ATGTCTCCTTTCTCAGGGCT GGGAGGCGTTTGGGAAGGTTGGATGTTCGTC 

ATTTTGCAGGTCCACTGCGA TCACACATGTTACTCTTGTT GCCGATTGATCTCAGCGCTGAGTCGG 

ACACTTCAACAGGAGTGACA TTCTGCCAGTGCCTCTTTGC TCTGGCAGGGGCTCTTGATGGCAGAG 

TAACTCTGTTGACATCAGCC TCTTTGGAAGGTTCAGGTTG GAGGTTGACCTTGGTCTGGTAGGAGACGG 

TAGGGAGAATAGCCCTGGTA AAGCATCCATCTTTTTCAGC ATGCGGCTGATGGTGTGGGTGAGGAGC 

TTTTCTAGTGTCAGCTGGCC CTCCTCATTGAATCCAGATT GAGGGGCAGCCTTGGCCCTTGAAGAG 

ACTCTCTGGCAGCATCTGAA TGATGATTTTCACCAGGCAA GGGCTACAGGCTTGTCACTCGGGGTT 

TGTGTCATAGCTCTCCTCAT ACCTCAAACTCCAAAAGACC GGGCTGATTAGAGAGAGGTCCCTGGGG 

TGAACTCCGTGAACTCTGAC TGTTCTGGAGGTACTCTAGG CTCTGGGGGCCGATCACTCCAAAGTG 

AACACACAGTCATCATAGGG TGTTCCTCACTACTCTCAAA CAGGCAGAAGAGCGTGGTGGCGCCTG 

ATAACGTCAGACGCTGGCCT TACTCATCTGCACAGCTCTG CTCATGGTGTCCTTTCCAGGGGAGAGAG 

ATGTTCTTTCAGCCCCTTTG CAGGAACTGGATCAGGACTT TGCCTGGCAGCTTGTCAGGGGATGTG 

 

Table S1. List of smiFISH probes, Related to Fig. 1. To each of the probes the FLAP sequence  5’-

ttacactcggacctcgtcgacatgcatt-3’ was appended. 

 

Transparent Methods 

Cell culture 

A clonal population of HeLa Flp-in H9 cells constitutively expressing MCP-GFP and with a single 

integration of  the HIV-1 reporter gene was created using the Flip-In system (Life Technologies, Carlsbad, 

USA) as previously described (Tantale et al., 2016). Cells were cultured in phenol-red free DMEM, 

supplemented with 10% FCS, 1% L-Glutamine and Pen/Strep at 37°C with humidified 5% CO2.  

Hygromycin (150 µg/ml, Sigma Aldrich, St. Louis, USA) to guarantee the continuity of Flp-In integrants. 

The isolation of individual clones has been obtained by limiting dilution in a 96 well plate. Cells stably 

expressiong RFP-p65 were generated after transfection with the plasmid described in (Bosisio et al., 2006), 

antibiotic selection and sorting. 



TNF-α: Mouse recombinant TNF-α (R&D Systems, Minneapolis, USA) was diluted in cell culture medium 

prior to the injection.  CHX was used at 5mg/ml and diluted in cell culture medium concomitantly to TNF-α. 

Immunofluorescence 

HeLa 128xMS2 plated on glass coverslips were induced with 10 ng/ml of TNF-α and where specified treated 

with CHX. At the indicated time points coverslips were fixed in 4% paraformaldehyde for 10 min a room 

temperature (RT), washed with 150mM of NH4Cl for 15 min and permeabilized with 0.1% Triton X-100. 

Coverslips were blocked in PBS 5% BSA 20% FBS for 1 hour at RT and probed with a p65 antibody (SC-

372, Santa-Cruz Biotechnology Inc, Dallas, USA) diluted 1:200 at 4 °C overnight. Coverslips were washed 

three times in washing buffer (PBS 0,2% BSA 0,05% Tween-20) and incubated for 1 h a RT with the 

secondary anti-rabbit antibody AlexaFluor 633 (Life Technologies) diluted 1:1000. All the antibodies were 

diluted in washing buffer. Following DNA staining with 1 µg ml−1 Hoechst 33342 (Hoechst AG, Frankfurt, 

Germany) in PBS, the coverslips were mounted on glass slides using Vectashield (Vector Laboratories, 

Peterborough, UK) mounting media. Nuclear concentration was quantified for hundreds of cells from these 

images using previously described MATLAB routines (Zambrano et al., 2014), available upon request.  

PCR 

For RNA isolation cell culture samples were collected in Trizol (Invitrogen) and purified using Nucleospin 

RNA kit (Macherey Nagel, Duren, Germany). RNA quantity and purity was checked using a NanoDrop 

fluorometer (Thermo Fisher Scientific, Walrtham, USA) and to control the integrity of total DNA an aliquot 

of the samples was run on a denaturing agarose gel stained with SYBR Safe (Thermo Fisher Scientific). To 

assess co-transcriptional or post-transcriptional splicing, RT was performed with either oligo-dT or with 

random primers using High Capacity cDNA Reverse transcription kit (Thermo Fisher Scientific). 

Competitive 3-primers PCR was performed as described in (Tantale et al., 2016).  

qPCR  

RNA was extracted and quantified as described above. Reverse transcription of 2 µg of RNA was performed 

according to the manufacturer's instructions using the QuantiTect reverse transcription kit (Qiagen, Hilden, 

Germany). The PCR reaction were done in LightCycler 480 SYBR Green I Master mix (Roche, Basel, 

Switzerland). Melting curve analyses were carried out to ensure product specificity, and data were analyzed 

using the 2−∆∆Ct method. Relative nascent RNA expression levels were normalized to 

glyceraldehyde3′phosphate dehydrogenase (GAPDH). The primers used for qPCR were: NFKBIA-FW: 5’-

ACCTGGCCTTCCTCAACTTC-3’; NFKBIA-REV: 5’-AGGATGTGGGCTGATGTGAA-3’; IL6-

FW: TGTGAAAGCAGCAAAGAGGC-3’; IL6-REV: 5’-TGCATGCAAGAGGGAGAAGT-3’; 

MS2-unspliced-FW: 5’-AATGGGCAAGTTTGTGGAATTGGTT-3’; MS-2-spliced-FW: 5’-

CGAACAGGGACTTGAAAGCGA-3’; MS2-REV: 5’- GATACCGTCGAGATCCGTTCA-3’. 

smFISH  

In-situ hybridization was carried out according to the  smiFISH (single molecule inexpensive FISH) 

approach where unlabeled primary probes are prehybridized to a secondary common fluorescently labelled 



probe (Tsanov et al., 2016). Primary smiFISH probes for NFKBIA and IL6 were designed as in (Lee et al., 

2014). smiFISH probes for TNF, were designed with the Stellaris FISH online tool (LGC Biosearch 

Technologies, Oddeson, UK). A FLAP sequence was appended at the 3’ of each probe. The complementary 

FLAP probes, labelled with Cy5, were hybridized to primary probes as described in (Tsanov et al., 2016).  

Cells were fixed in 4% PFA for 10 min at RT, then washed twice in PBS and permeabilized in cold 70% 

EtOH at -20 °C overnight. The day after, coverslips were washed twice with washing buffer I (10% Saline 

Sodium Citrate (SSC) in RNase-free water) and once in washing buffer II (10% SSC, 20% formamide 

solution, diluted in RNase-free water). Cells were incubated overnight with the hybridized flap-structured 

duplex in a humidified chamber at 37 °C. The probes were diluted 1:100 in the hybridization buffer (10% 

(w/v) of dextran sulfate, 10% of SSC-20× buffer and 20% formamide in Rnase-free water). Following the 

hybridization, cells were washed twice in buffer II in the dark for 30 min at 37 °C, then washed in PBS for 5 

min and stained with 1 µg/ml Hoechst 33342 in PBS. The coverslips were then mounted on glass slides using 

Vectashield (Vector Laboratories, Peterborough, UK) mounting media.  The sequences of the probes used 

for smiFISH are provided in Supplementary Table 1. For the MS2 transcripts only,  smFISH was carried out 

using the protocol and the probes described in (Tantale et al., 2016). 

Imaging was performed on a custom-built widefield microscope with single molecule sensitivity, by using a 

led source for illumination (Excelitas Xcite XLED1, Qioptiq, Rhyl, UK), a 60x 1.49NA Olympus objective 

(Olympus Life Science, Segrate, IT), and an Hamamatsu Orca Fusion sCMOS detector (Hamamatsu 

Photonics Italia S.r.l, Arese, Italy) resulting in a pixel size equal to 108nm. For every field a z-stack series of 

images were acquired with 0.3 µm step size, to count the number of mature RNAs for each cell.   

Live-cell imaging  

Widefield Microscopy. 3D Stacks were collected using the microscope described above, using a step-size of 

0.3 µm, a 100x 1.49 NA objective and a Photometrics Evolve EM-CCD camera (Teledyne Technologies 

Inc., Thousand Oaks, USA) resulting in a pixel size of 158 nm. The microscope was equipped with a 

temperature and CO2 control for this purpose (Okolab, Naples, Italy).  

Confocal microscopy: 16 bit- 1024x1024 pixels images were acquired using 63X objective on a Leica SP5 

(Leica Microsystems, Wetzlar, Germany) confocal microscopy with temperature and CO2 control, as 

described elsewhere (Sung et al., 2009). For each time point of our time-lapse (sampled every 3 minutes) and 

for each position of the sample considered we collected z-stacks composed by up to 16 slices, with a step of 

0.7 µm, to acquire the whole thickness of the sample.   

Microfluidics  

We used the CellASIC® ONIX Microfluidic Platform as described previously (Zambrano et al., 2016): cells 

were plated one day before the experiment in CellASIC™ ONIX M04S-03 Microfluidic Plates, consisting of 

microfluidic wells connected through channels to a series of reservoirs (inlets) containing media with 

selected concentrations of TNF-α stimuli that can be flown through the chambers.  To avoid cell stress or 

toxicity, the microfluidic plates are primed with 10%FCS in DMEM for 2–4 hr before cell plating. Then the 



medium from different inlets flow following a programmed sequence through the channels around the 

microfluidic wells and diffuse through a perfusion barrier protecting the cells, minimizing the undesirable 

effect of shear stress. The flow rate obtained of 10 µl/h across the small volume of the well (less than 1 µl) 

allows a replacement of the medium in contact with the cell within minutes.  

Quantification and Statistical Analysis 

Automated analysis of smFISH data. 

The smFISH data displayed in Figure 1 were analyzed using the Matlab-based software FISHquant (Mueller 

et al., 2013). Mature RNA were identified as 3D gaussian spots with peak intensity above an arbitrary 

threshold, which was kept constant for all the stacks belonging to the same RNA specie. Nascent RNAs at 

active TS were quantified by identifying the sites of nascent transcription as bright nuclear foci, setting the 

threshold so that no more than four actively transcribed loci could be found within each nucleus. For each of 

the transcription sites the amount of RNA was calculated by comparing the integrated intensity of the site 

with the average integrated intensity of the spots identified as mature RNAs. Active TS displaying less than 

two transcripts were filtered out from subsequent analysis as they are practically indistinguishable from 

released mature. The smFISH stacks are displayed as maximal projections. Distributions of mature RNAs in 

Figure S1C were fit via a negative binomial model that – under the assumption of the random telegraph 

model (Raj et al., 2006) - provide the probability of observing a certain number of RNAs per cell ���	 as 

function of the relative burst frequency �
�� and burst size � as: 

���|�
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�� + �	
Γ��
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 Details on the statistical analysis are reported in the relevant figure legends.  

Automated analysis of live-cell imaging data. 

To study TS activity dynamics, time lapse of the z-stacks are maximal-projected and filtered. The nuclei are 

segmented using the MCP-GFP signal and using a low-pass filter the TS are detected as bright spots (red 

arrows in Fig. S3A). The information is combined to track the TS within each cell and to obtain the TS 

signal dynamics for hundreds of cells. To quantify NF-κB nuclear localization dynamics in living cells, we 

use the same nuclear mask as for the MCP-GFP signals and quantify the nuclear concentration of NF-κB 

normalized by the cytosolic fluorescence intensity (Ashall et al., 2009; Nelson et al., 2004; Zambrano et al., 

2016). Responding cells are those reaching a nuclear to cytosolic NF-κB ratio greater than one. Routines are 

available at  https://github.com/SZambranoS/ and run on Matlab R2015.  

Stochastic fitting and mathematical modelling. 

Detailed information is provided in the Supplemental Mathematical Notes.  

Stochastic fitting:  Briefly, we adapted our algorithms (Molina et al., 2013; Suter et al., 2011) to compute the 

likelihood of the time traces obtained, considering the TS signal and the standard deviation of the 

background, compared to those generated by a simple stochastic gene expression telegraph-like model. In 



such model, the gene can switch between and active and inactive state and transcription occurs in bursts only 

during the active periods.  MCMC sampling from the posterior distribution was performed to estimate to 

infer gene activity, the signal-to-transcripts scaling, the rates of accumulation and release of new transcripts 

��and	��  and the rates of the gene activation process kon and koff. Calibration was performed by imposing 

an average value of the number of nascent transcripts at t=20 min equal to the value observed by smFISH. 

Existing literature suggest that the decrease of the TS signal can be of tens of transcripts per minute (Tantale 

et al., 2016) so considering our calibration and  our sampling frequency 	�� (which is a combination of 

elongation and processing rates with polymerase convoys interspacing) cannot be accurately estimated and 

we allowed it to freely vary. Deterministic mathematical model of NF-κB mediated gene activation was 

performed using a simple model of NF-κB dynamics using the core negative feedback of the system. ODE 

simulations were performed using Matlab, code is provided as indicated. Stochastic simulations: we 

developed a C++ software, hysim, able to run stochastic simulations using the Gillespie algorithm, provided 

as indicated. We used such software to generate trajectories of the stochastic version of the biochemical 

networks analyzed using the deterministic approach.  We used a similar approach to obtain nascent 

transcription simulation taking as an input the NF-κB nuclear localization dynamics in single cells.  

 



Transparent methods: Supplemental
mathematical notes

A. Stochastic model for parameter inference

To estimate transcriptional kinetic parameters and gene activity patterns of single cells, we devel-
oped a stochastic model of transcription combined with a Bayesian inference approach similar as
in (Suter et al., 2011). Briefly, we described MS2 locus as a stochastic system that is characterized
by two random variables, the gene state g that indicates whether the gene is transcriptionally active
(g = 1, Gon in the main text) or inactive g = 0 (Goff in the main text) and the number of nascent
transcripts n on the TS. Thus, transcription at the MS2 locus can be described as a stochastic
process emerging from the following set of biochemical reactions:

1. Gene activation and deactivation: ḡ
kg→ g, where k1 is the activation (kon in the main text)

rate when the gene is inactive (g = 0) and k0 (koff in the main text) is the inactivation when
the gene is active (g = 1).

2. Linear increase in the number of transcripts on the TS: n
k+→ n+ 1.

3. Linear decrease in the number of transcripts on the TS: n
k−→ n− 1, where ke is an effective

elongation rate.

Note this model is a concise simplification of transcription where many complex processes
are described by single effective reactions. Indeed, the rates kon and k+ summarize chormatin
remodeling, transcription factor binding, preinitation complex formation and RNA polymerase
initiation. In turn, k− represents transcript elongation, splicing and termination. Importantly, we
chose linear increase and decrease of the number of transcripts based on the results shown in
Ref. (Tantale et al., 2016). In short, since RNA polymerases travel in convoys, the transcription
site (TS) displays peaks of intensity that increase and decrease linearly, and whose slopes depend
on the elongation rate and on the interspace between polymerases. Finally, we assumed that the
MCP binding/unbinding process to the MS2 loops is fast compared to the elongation of transcripts
and therefore is not explicitly modeled. In spite of all these simplifications, the model is able to
accurately fit the data and provide information about the dynamics of gene activation/inactivation.

The chemical master equation describing the stochastic dynamics of the system can be written
as,

dPng
dt

= kgPnḡ + k+Pn−1g + k−Pn+1g − (kḡ + k+ + k−)Png (1)

which, truncating the system at a sufficiently large number of transcripts nmax = 100, can be
expressed in matricial form,

dP

dt
= KP. (2)

1



This truncated master equation is then a linear system of ordinary differential equations and there-
fore can be easily solved numerically by calculating the exponential of the rate matrix K. Thus
the propagator of the stochastic system is obtained as:

P (ng|n0g0) =
(
eKt
)
ng,n0g0

(3)

which describes the transition probability from a initial state (n0, g0) to a final state (n, g) in a
given time t.

A.1. Noise model

The next key ingredient for our inference approach is to introduce a noise model that relates the
state of the system at given time with the measured fluorescence signal. A simple but reasonable
and convenient choice is to assume that the expected amount of signal s is proportional to the
number of nascent transcripts n plus a background signal level b. Furthermore, we assumed that
the fluctuations around the expected mean are Gaussian distributed with a standard deviation σ.
Under these assumptions the noise model can be expressed as,

P (s|n) =
1√

2πσ2
e−

(s−(b+αn))2

2σ2 (4)

where α is the scaling factor that relates the number of nascent transcripts with the expected
observed fluorescence signal. Equation 4 can be considered as the emission probability, i.e. the
probability that the system emits a signal s given that is in the state n. Note again that this simple
model does not take into account the MCP dynamics which can be an additional source of noise.

A.2. Inference

The propagator of the system and the noise model introduced above allow us to calculate the
probability of observing an experimental time series consisting ofN measurements of MS2 signal
S = {s1, s2, ..., sN} given the model parameters Θ = {α, σ, kg, k+, k−}. Indeed, this probability
can be expressed as the product of the probability of the signal S given that the system went
through a particular state trajectory times the probability of that trajectory and then summing over
all possible trajectories, i.e:

P (S|Θ) =
∑

Λ

P (S|ΛΘ)P (Λ|Θ) =
∑

Λ

∏
i

P (si|ni)P (nigi|ni−1gi−1) (5)

Importantly, the noise model and the propagator can be considered as emission and transition
probabilities of a Hidden Markov Model and therefore we can use linear programming to effi-
ciently sum over all possible state trajectories (Suter et al., 2011). Then, assuming that cells are
independent of each other, the probability of observing the signal of C cells D = S1, S2, ..., SC
can be written as:

P (D|Θ) =
∑
n

CP (Sn|Θ) (6)

Then, applying Bayes’ theorem we can obtain a posterior distribution over the parameters Θ given
the data D:

P (Θ|D) ∝ P (D|Θ)P (Θ) (7)

where we used a scale invariant prior for the parameters, i.e P (θ) = 1/θ. Finally as the posterior
probability over the parameters cannot be calculated analytically we used Markov Chain Monte
Carlo (MCMC) to sample it and to obtain average and standard deviations for each parameter.



Once the model parameters are estimated we can again apply Bayes’ theorem to obtain a prob-
ability distribution over the hidden state trajectories given a time series of MS2 signal S:

P (Λ|SΘ) =
P (S|ΛΘ)P (Λ|Θ)

P (S|Θ)
(8)

Notice that the number of possible trajectories grows exponential with the number of data points.
However, we can use HMM tools to calculate efficiently the trajectory Λ∗ that maximize the
distribution (Suter et al., 2011).

In conclusion using stochastic modeling of biochemical reaction in combination with a Bayesian
inference approach we were able to estimate effective transcriptional parameters and temporal
profiles of gene activity.

A.3. Statistical independence of the response to consecutive pulses of
TNF-α

Using the approach above it is possible to estimate the periods of gene activation/inactivation
within certain time interval. In particular, in our experiments in which 1 hour 10 ng/ml TNF-
α pulses are followed by 2 hours washouts we can estimate the probability of having a gene
activation in certain time intervals after each TNF-α pulse .

We can call p1 to the fraction of cells displaying a burst at most 2 hours after the beginning of
the first TNF-α pulse, and p2 to the fraction of cells displaying a burst at most 2 hours after the
beginning of the second pulse. Both can be readily estimated from our data. If both events are
independent, the fraction of cells displaying no bursts should be (1− p1) · (1− p2), those with a
burst only after the first TNF-α pulse should be p1 · (1− p2), while the fraction of cells displaying
a burst only after the second TNF-α pulse should be (1 − p1) · p2. Finally, the fraction of cells
with a burst after each TNF-α pulse is p1 · p2. We calculated such theoretical distribution for three
independent experiments and found that it clearly departs from the distribution observed in the
experiments.

B. Deterministic and stochastic modelling NF-κB - mediated
transcription

B.1. Model of the NF-κB system

For our qualitative exploration of NF-κB mediated transcription we used a simple model of the
NF-κB system able to recapitulate the essential features of NF-κB nuclear localization dynamics
upon TNF-α (Zambrano et al., 2014b). In such model for simplicity it is considered that we can
either have free NF-κB (hence nuclear and transcriptionally active) or forming a complex with the
inhibitor IκB, NF-κB:IκB (the cytosolic and transcriptionally inactive form). We represent their
copy number as NFκB and NFκB : IκB. The total amount remains unchanged, so NFκB +
NFκB : IκB = NFκBtot. An external signal (for us, TNF-α) can lead to the activation of
a kinase complex that leads to the degradation of the inhibitor and hence sets free (and active)
NF-κB. For simplicity we assume that an external stimulus produces instantaneously a constant
number of active kinase IKK0>0 in presence of external stimulus, and IKK0=0 for unstimulated
cells. When NF-κB is free, it can activate the genes encoding for the inhibitor, that would go from
inactiveGI,i,off to activeGI,i,on, producing the transcript IκBRNA that is then translated (i = 1, 2
stands for each of the alleles). The copy numbers of the transcript and the inhibitor protein are
written below as IκBRNA and IκB respectively.

The deterministic model for this system (Zambrano et al., 2014b) can be written as:



dNFκB

dt
= −ka ·NFκB · IκB + (kd + dCS · IKK0) · (NFκBtot −NFκB) (9)

dIκB

dt
= −ka ·NFκB ·IκB+kd ·(NFκBtot−NFκB)+kI ·IκBRNA−(dI+dIS ·IKK0)·IκB

(10)

dIκBRNA
dt

= kR ·GI(t)− dR · IκBRNA (11)

dGI
dt

= kon,0 ·NFκB · (2−GI)− koff,0 · IκB ·GI (12)

where GI(t) = G1,on(t) +G2,on(t). The values of the parameters are provided in table B.1

Table B.1: Parameters for the NF-κB system
Name Value Units
IKK0 105 mols
NFκBtot 3104 mols

ka 1.9 · 10−6 mols−1 · s−1

kd 8.4 · 10−5 s−1

dCS 2.5 · 10−8 mols−1 ·s−1

kI 2.5 · 10−1 s−1

dI 6.7 · 10−5 s−1

dIS 5 · 10−9 mols−1·s−1

kR 2 · 10−1 mols · s−1

dR 7.5 · 10−4 s−1

kon,0 6.9 · 10−8 s−1

koff,0 1.4 · 10−8 s−1

B.2. Deterministic, stochastic and hybrid simulations

To simulate the intrinsic variability of the system, an alternative is to take the biochemical reactions
that give rise to the mass action kinetic equations described above (details provided in (Zambrano
et al., 2014b)) and to perform stochastic simulations using e.g. the Gillespie algorithm. However
a less time consuming approach is to perform what we can call hybrid simulations, in which the
evolution in time of the variables with high copy numbers are modelled using ordinary differential
equations while those with low copy numbers are modeled using an approximation of the next-
reaction method (full description is provided in the appendix). This is indeed the approach that
was followed in other works to model variability of the NF-κB nuclear localization dynamics
(Lipniacki et al., 2007; Tay et al., 2010; Paszek et al., 2010) and applied to our model this would
imply to substitute Eq. 12 by the following stochastic process:

GI,i,off
kon,0·NFκB(t)
−−−−−−−−−→ GI,i,on (13)

and of inactivation
GI,i,on

koff,0·IκB(t)
−−−−−−−−→ GI,i,off , (14)

where i = 1, 2.
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Figure B.1: Results in each panel were obtained using hysim to perform stochastic simulations
(gray line), hybrid simulations where only the gene activation/inactivation is modelled
stochastically (black line) and deterministic simulations (—) (a) Example of sustained
oscillations obtained for the stochastic and hybrid simulations, but not for the deter-
ministic. For hybrid and stochastic simulations we obtained the distribution of the
oscillatory periods Tosc that peak at about 1.5 hours and (c) of the peak values of
each oscillation. The distributions of the hybrid simulations that we and others use
for simulating NF-κB signalling and fully stochastic simulations give fairly similar
results.

To our knowledge a comparison between fully stochastic simulations and this “hybrid” has
never been performed. We developed a software called hysim that one can use to flexibly decide
which variables shall be modeled as deterministic and which as stochastic processes. By using it,
we can say that both do provide a fairly similar sustained oscillations (as opposed to the purely
deterministic model, see Fig. B.1(a)). More importantly, the distributions of the peak values and
the peak periods Fig.B.1 (b) and (c), which justifies the use of the hybrid approach for stochastic
simulations.

B.3. Models of NF-κB-mediated transcription of target genes

We used the mathematical model of the NF-κB system described above as an input for the acti-
vation dynamics of a target gene G that can switch between Gon and Goff states following three
schemes. In all of them, following considerations on the non-cooperativity of NF-κB mediated
gene activation (Siggers et al., 2010), we consider that the gene activation probability depends
linearly on the nuclear concentration of NF-κB:

Goff
kon·NFκB(t)−−−−−−−−→ Gon (15)

The models considered differ in their inactivation rates.



For the model i whe have that the inactivation is spontaneous, of the form:

Gon
koff−−→ Goff (16)

Instead, for model ii we consider that the inactivation is mediated by molecular stripping:

Gon
koff ·IκB(t)−−−−−−−→ Goff (17)

Finally, in model iii we consider a refractory state, meaning that the inactivation is spontaneous
but leads to a refractory state Gref so

Gon
koff−−→ Gref (18)

and
Gref

koff,2−−−→ Goff (19)

Table B.2: Reference values of the parameters for the models of NF-κB mediated transcription
model Name Value Units
i,ii,iii kon,0 6.9 · 10−8 mols−1 ·s−1

i,iii koff,0 3.7 · 10−4 s−1

ii koff,0 1.4 · 10−8 mols−1 · s−1

iii koff,2,0 3.7 · 10−4 s−1

The reference values around which we perform our numerical exploration (for up to two orders
of magnitudes above and below) for each model are specified in table B.2. They are based on
those used in our model of the NF-κB system, which were themselves derived from the literature
(details in (Zambrano et al., 2014b)). Since models i and iii do not contemplate stripping, their
effective value of reference inactivation rate (koff,0) is equal to the one of model ii (with stripping)
multiplied by the average IκB levels 3 hours post-stimulation.

To explore the promptness and the sharpness of the gene response at population level we used
fully deterministic simulations of the above equations, which imply to add to the set of equations
9 to 12 the following ones for the gene activity:

- For Model i:
dG

dt
= kon ·NFκB · (1−G)− koff ·G (20)

- For Model ii:
dG

dt
= kon ·NFκB · (1−G)− koff · IκB ·G (21)

- For Model iii:
dG

dt
= kon ·NFκB · (1−G−Gref )− koff ·G (22)

dGref
dt

= koff · (G)− koff,2 ·Gref (23)

Instead, for stochastic simulations we used as an input for the stochastic processes above the
hybrid simulations of the NF-κB system. In all of the models, we allowed the number of nascent
transcripts n to grow and decrease incrementally following the equations:

n
k+−−→ n+ 1 (24)



and decreasing incrementally

n
k−−−→ n− 1 (25)

Where we used values of k+ and k− producing bursts of fast increase and decrease of the signal
as compared to NF-κB translocation dynamics.

Finally, to ensure that the observed result did not depend on the particular shape of the NF-
κB nuclear localization dynamics, performed simulations of the model iii using as an input the
experimentally obtained data of the NF-κB nuclear localization dynamics in single cells. In short,
we used the data to compute the integrals necessary for application of the Gillespie algorithm,
such as Eq. 32 (see Appendix) and produce simulations of nascent transcription for single cells
and averaged across the population.

C. Search time calculation for NF-κB targets

In a recent paper (Callegari et al., 2019), we applied single molecule tracking (SMT) to quantify
the NF-κB binding kinetics at specific and at non-specific binding sites in HeLa cells. Upon stimu-
lation with TNF-α, NF-κB displayed a bound fraction equal to approximately 20 %. Mutant anal-
ysis allowed to identify that NF-κB bound molecules partitioned into a transient non-specifically
bound population ((fns = 96%,τns = 0.5 s) and a more stable population representing specific
binding (fs = 4%,τs = 0.4 s) As described in (Loffreda et al., 2017) we can use these quantities
to estimate the time that it takes for a single NF-κB molecule to reach one of its specific targets.
The average residence time of NF-κB on chromatin can be calculated as:

τ̄ = fsτs + fnsτns = 0.64s (26)

From this, we can then estimate the average free-diffusion time between two binding events as:

τ3D = τ̄
1− Fbound
Fbound

(27)

The search time to find a specific site can then be obtained by knowing the number bind-
ing events that a molecule needs to undergo on average before encountering a specific binding
site:Ntrials = 1

fs
= 25. Each trial round will take a time equal to τ3D + τns , except for the last

one which will last τ3D, after which a specific site is found. We can therefore calculate the search
time as:

τsearch = Ntrialsτ3D + (Ntrials − 1)τns = 80s (28)

This is the average time that it takes for one single NF-kB molecule to find one of its target
sites. By dividing τsearch for published estimates (Zambrano et al., 2014a) of NF-κB molecules
(approx. 30000) and by multiplying it for the number of NF-κB target sites (estimated by the
number of high-confidence peaks obtained by ChIP-seq on NF-κB (Xing et al., 2013) (approx.
50000) we can provide a rough estimate of approximately 2 minutes for the time that it will take
for a specific NF-κB target gene to be found by any of the available NF-κB molecules.

D. Stochastic simulations with hysim

The hybrid simulation approach proposed was described in detail (Zambrano et al., 2015) and is a
simplified version of the approach described in (Salis and Kaznessis, 2005) to study the evolution
in time of a system of biochemical species with a wide variety of copy numbers and reaction
speeds. The formal description of the approach would be as follows: consider that the state of this
system in time t is determined by the vector state X = (X1(t), X2(t), ..., XN (t)), where Xj(t) is



the number of copies of the biochemical species j at time t. Such species can interact through M
biochemical reactions with rates aj(X(t)), so the probability of the j-th reaction taking place in
dt is aj(X(t))dt, while νji denotes the change in species i due to the j-th biochemical reaction.

In (Salis and Kaznessis, 2005) in order to speed up stochastic simulations, it is proposed to
approximate as a Langevin equation the evolution of the variables that satisfy the two following
conditions

aj(X(t))∆t > α� 1 (29)

and
Xi(t) > β|νji|, β � 1 (30)

where the first equation imposes that many reaction events will take place in ∆t, while the second
ensures that the number of molecules is much bigger than the change in the number of molecules
caused by the reaction. The bigger α and β are, the better the approximation to the Langevin
equation is. The remaining species of the system should be modelled as a Markov process, using
for example the Gillespie algorithm (Gillespie, 1977).

In the case of stochastic simulations of genetic circuits, it is clear that certain biochemical
species will not satisfy eqs. 29 and 30: for example, the maximum number of active genes en-
coding for a given protein is (typically) two, so eq. 30 will not be satisfied. The remaining
biochemical species have copy numbers that go from O(100) for the transcripts to O(105) for the
proteins (Milo et al., 2015) so, if eqs. 29 and 30 are fulfilled, they could be modelled using a
Langevin equation. In this case, since the relative fluctuations of these variables shall be small,
an even simpler approximation would be to model the dynamics of variables satisfying eqs. 29
and 30 using ordinary differential equations instead of the proposed Langevin equation (Salis and
Kaznessis, 2005) This idea was used in different works dealing with NF-κB dynamics (Lipniacki
et al., 2007; Tay et al., 2010; Paszek et al., 2010) and it is the same idea that we applied for our
simulations of a simple model of the NF-κB system.

In order to apply this approach to our model and (in principle) to any other models of signaling
pathways through mass action kinetics equations we created a sofware in c++, hysim, that per-
forms hybrid and fully stochastic simulations for an arbitrary biochemical system of reactions by
selecting which variables of the system should be modeled deterministically and which stochas-
tically. The hysim software can be downloaded at https://github.com/MolinaLab-IGBMC/hysim,
where we also provide a userguide.

To describe hysim, we can generalize the hybrid integration scheme by defining the determin-
istic variables vector as D(t) = (X1(t), X2(t), ..., XD(t)) and the stochastic variables vector
S = (XD+1(t), XD+2(t), ..., XN (t)). A possible criterion for this would be to choose for D the
variables that satisfy 29 and 30, and leave the remaining for S. Without loss of generality, we
can say that reactions going from n = 1 to n = NS ≤ M are those that imply a change in the
number of copies of some of the stochastic variables, i.e. that for 1 ≤ n ≤ NS , νni 6= 0 for some
D + 1 ≤ i ≤ N .

In this situation, our hybrid modelling scheme implies that the system evolves in time as pre-
scribed by

dD

dt
= f(D,S(t)) (31)

where the variables of the vector S(t) would evolve stochastically as a Markov process, according
to the next-step Gillespie algorithm (Gillespie, 1977).

In other words, given the state of the system at time t, we generate two random numbers r1 and
r2 in the [0,1] interval and find the time τ at which the next reaction takes place (Gillespie, 1977),
for which ∫ t+τ

t
a0(t)dt = −log(r1) (32)



where a0 is the cumulative probability of a reaction including a stochastic variable taking place, i.
e.

a0(t) =

NS∑
n=1

aj(X(t)). (33)

Once τ is found, the reaction that takes place is selected by choosing the k such that

k−1∑
n=1

an(X(t+ τ)) < r2a0(t+ τ) <
k∑

n=1

an(X(t+ τ)). (34)

Once the change is found the vectors X(t) and S(t) are updated as prescribed by νki, and the
process can be repeated for as long as required. This procedure speeds up simulation consistently
as compared to fully stochastic simulations while giving similar results (see the examples above).
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