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Abstract: Metastatic osteosarcoma often results in poor prognosis despite the application of surgical
en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis
in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown.
After observing the decrease in cellular viability of three human osteosarcoma U2OS, HOS, and
MG-63 cell lines, and the induction of cellular apoptosis and arrest in sub-G1 phase in U2OS and
HOS cells by HO-3867, the human apoptosis array showed that heme oxygenase (HO)-1 and cleaved
caspase-3 expressions had significant increases after HO-3867 treatment in U2OS cells and vice versa
for cellular inhibitors of apoptosis (cIAP)1 and X-chromosome-linked IAP (XIAP). Western blot
analysis verified the results and showed that HO-3867 activated the initiators of both extrinsic caspase
8 and intrinsic caspase 9, and significantly increased cleaved PARP expression in U2OS and HOS cells.
Moreover, with the addition of HO-3867, ERK1/2, and JNK1/2 phosphorylation were increased in
U2OS and HOS cells. Using the inhibitor of JNK (JNK in 8), HO-3867’s increases in cleaved caspases
3, 8, and 9 could be expectedly suppressed, indicating that JNK signaling is responsible for both
apoptotic pathways, including extrinsic and intrinsic, in U2OS and HOS cells caused by HO-3867.
Through JNK signaling, HO-3867 has proven to be effective in causing both extrinsic and intrinsic
apoptotic pathways of human osteosarcoma cells.

Keywords: apoptosis; curcumin; ERK; HO-3867; JNK; osteosarcoma

1. Introduction

Osteosarcoma, the most common tumor of primary malignant bone tumor, is mostly
found in children and adolescents with a peak of incidence at 11–15 years and about six
in every million children [1,2]. Typically, complete surgical en bloc excision, or extensive
amputation of the affected area, was the most common type of treatment when attempting a
complete radical excision, but it did not provide a good prognosis. Fortunately, chemother-
apy has become a vital part for the treatment of osteosarcoma [3,4]. Using a combination of
chemotherapy and surgery, long-term survival rates of diagnosed patients have improved
to approximately 68–75% at 5 years for diagnosed patients with localized tumor [2,5].
Unfortunately, due to its metastatic ability, lung transfer osteosarcoma is still responsible
for undesirable outcomes and fatalities [6,7]. To prevent this, several approaches to the
development of new compounds containing anticancer mechanisms such as cytotoxic and
antimetastatic activities need to be developed.
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Apoptosis, characterized by several biochemical hallmarks such as chromatin conden-
sation, membrane blebbing, cellular shrinkage, DNA fragmentation, and apoptotic body
formation, is an important aspect of physiological growth control and regulation of the
tissues to lead to programmed cell death [8]. To initiate apoptosis within cancer cells, initia-
tor and effector proteins need to be stimulated through either the intrinsic or the extrinsic
pathway, while the cell senses intracellular stress or signals from outside [9,10]. During
apoptosis, cell signaling often affects many stress-inducible molecules and proteases such as
ERK, JNK, and p38 of mitogen-activated protein kinases (MAPKs), caspases 8 and 9, as well
as their downstream caspases 3 and 7 [11]. Initiator caspases 8 and 9, and effector caspases
3 and 7, contain modulators of apoptosis such as cellular inhibitors of apoptosis 1 and 2
(cIAP1 and 2) as well as X-chromosome-linked IAP (XIAP) [12–14]. As there are several
molecules that can be monitored for its activity, apoptosis is often used as the treatment for
cancer, which can be done through many scenarios [15–17]. However, treatment failures
such as overexpression of IAP can not only potentially lead to cancer survival, disease
progression, and poor prognosis, but the tumor could also potentially develop resistance to
future chemotherapeutic treatments [18]. As such, the underlying mechanisms of apoptosis
must be recognized to guarantee a higher rate of successful treatments.

Curcumin (diferuloylmethane), a compound harvested from Curcuma longa plants,
uses a variety of cellular-signaling pathways to demonstrate a number of uses includ-
ing anti-inflammatory, antioxidant, antiviral, antibacterial, antifungal, and anticancer
mechanisms [19–21]. Through experiments, curcumin has proved to be cytotoxic among
osteosarcoma [22,23]. Despite being safe at high doses in humans, rapid metabolism within
the body leads to low absorption of curcumin, which unfortunately prevents curcumin
from exercising its full potential. To improve the outcomes, multiple approaches have
successfully created adjuvants and structural analogs of curcumin. HO-3867, a novel di-
arylidenylpieperidone (DAP)-inspired analog, possesses enhanced anticancer properties
indicating its potential as a candidate for future chemotherapy treatments [18,24,25]. Al-
though as a curcumin analog that possesses enhanced anticancer properties to its original
counterpart, we lack data on the specific effects of the anticancer mechanisms that HO-3867
possesses on human osteosarcoma. Therefore, a series of in vitro experiments involving
the analog as well as several human osteosarcoma cell lines were conducted to discover the
underlying mechanisms of HO-3867 in terms of its apoptotic ability.

2. Materials and Methods
2.1. Cell Culture and HO-3867 Treatment

All the human osteosarcoma U2OS, HOS, and MG-63 cells were purchased from the
FIRDI (Hsinchu, Taiwan). The U2OS cells were cultured in DMEM and supplemented
with 10% FBS, 5 mL of glutamine, and 1% penicillin. The HOS and MG-63 cells were
cultured in DMEM and supplemented with 10% FBS, 1% penicillin/streptomycin, and
5 mL glutamine. The cell cultures were maintained at 37 ◦C in a humidified atmosphere
of a 5% CO2 incubator. HO-3867 was obtained from Tokyo Chemical Industry Co., Ltd.
(Tokyo, Japan).

2.2. Microculture Tetrazolium Colorimetric (MTT) Assay

To gather data regarding the effects of apoptosis caused by HO-3867 on osteosarcoma
cells, we extracted cells from 8.5 × 104/well of U2OS, of HOS, and of MG-63 and applied
different HO-3867 concentrations (0, 2, 4, 8, 16, and 32 µM) of for 24 h within 24-well
plates. After completing the exposure period, the media was separated and the cells were
washed using phosphate-buffered saline. Then, new medium was added and the cells
were then incubated using MTT [26,27]. Following solubilization with isopropanol, the
viable cell number, directly proportional to the production of formazan, was measured
spectrophotometrically at 563 nm.
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2.3. Flow Cytometric Analysis

We can determine the phases of the cell cycle affected by HO-3867, as well as several
other cellular components such as DNA, using flow cytometry analysis on U2OS and HOS
cells. Summarily, we plated 8 × 105 U2OS and 6 × 105 HOS cells in 6 cm dishes and placed
them in experimental concentration range (0, 2, 4, 8, and 16 µM) of HO-3867 for 24 h. After
propidium iodide (PI) staining, 2 × 105 U2OS and HOS cells were placed in an Eppendorf
tube to analyze the cell cycle using a BD AccuriTM C6 Plus personal flow cytometer [28,29].

2.4. Annexin V-FITC Apoptosis Staining Assay

After going through apoptosis, cells would translocate membrane phospholipid phos-
phatidylserine molecules from the inner to the surface layer of the plasma membrane.
Using Annexin V, a conjugated fluorescent protein with a high affinity for the translocated
molecules, we stained the phospholipid phosphatidylserine molecules, which were now
exposed externally, making it easier to identify apoptosis in earlier stages than other assays,
such as PI staining, which were based on nuclear changes. We treated approximately
8 × 105 U2OS and 6 × 105 HOS cells with experimental concentration range of HO-3867
for 24 h in one 6 cm plate. Following that, trypsinization was used to harvest viable cells
along with floating nonviable cells. Following the protocol given by the manufacturer (BD
Biosciences, San Jose, CA, USA), FITC Annexin V Apoptosis Detection Kit I was adminis-
tered, followed by the analysis of the cell cycle through flow cytometry. Annexin V-FITC
apoptosis staining was used in conjugation with PI staining to determine apoptosis from
necrosis [29,30].

2.5. Human Apoptosis Array

To understand the effects of induced apoptosis, we followed the manufacturer’s proto-
cols and used a Human Apoptosis Array Kit to define protein lysates from a vehicle-8 µM
HO-3867-containing 2.4 × 106 U2OS cells that were treated for 24 h. In total, 35 proteins
related to apoptosis were detected. The proteins were placed on a nitrocellulose membrane,
detected with biotinylated detection antibodies, and then finally visualized through using
chemiluminescent detection reagents.

2.6. Protein Extraction and Western Blot Analysis

We treated 8 × 105 U2OS and 6 × 105 HOS cells within a cell plate with experimental
concentration range of HO-3867. The total cell lysates of U2OS and HOS cells were
gathered and had their proteins extracted. We performed Western blot analysis using
the primary antibodies against both uncleaved and cleaved forms of caspases 3, 8, and
9, as well as the antibodies for both unphosphorylated and phosphorylated forms of the
MAPKs. For the antibody dilution, all antibodies were 1:1000 dilutions, except HO-1
antibody (1:5000 dilution). Horseradish peroxidase goat anti-rabbit and anti-mouse was
then used for incubation before densitometry was used to measure the intensity [26,27].
After the intensity of each band was measured by densitometry, the relative intensities
were calculated by normalizing to β-actin (1:1000 dilution; Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA).

2.7. Statistical Analyses

The data from experiments went through statistical calculations performed by one-
way analysis of variance (ANOVA) along with post hoc Tukey tests for more than two
groups with equal sample sizes per group. Experiments were performed as independent
and at least in triplicate experiments.

3. Results
3.1. HO-3867 Induces Cell Death in Human Osteosarcoma U2OS, HOS, and MG-63 Cells

The chemical structures of curcumin and curcumin analog HO-3867 were drawn in
Figure 1A. To define cytotoxicity of HO-3867 on osteosarcoma U2OS, HOS, and MG-63
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cells, an MTT assay was performed. After treatment with HO-3867 for 24 h, U2OS, HOS,
and MG-63 cells’ viability in concentrations of 2, 4, 8, 16, and 32 µM of HO-3867 was
significantly unlike that of controls (0 µM) and showed dose-dependently (U2OS: p < 0.001;
HOS: p < 0.001; MG-63: p < 0.001). (Figure 1B) After 24 h of HO-3867 (4, 8, and 16 µM)
treatment, cytotoxicity in U2OS and HOS cells had dose-dependent increases, and their half
maximal inhibitory concentrations (IC50) of HO-3867 were 6.91 µM in U2OS cells, 7.60 µM
in HOS cells, and 12.24 µM in MG-63 cells. Moreover, cell proliferation was assessed by
using the CCK-8 method in U2OS and HOS cells. As shown in Figure 1C,D, treatment
of cells with HO-3867 for 24 h significantly decreased the proportion of viable cells in a
concentration-dependent manner. Therefore, we picked the U2OS and HOS cell lines and
used the experimental concentration range (0, 2, 4, 8, and 16 µM) for HO-3867 to explore its
anticancer properties in the subsequent experiments.
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Figure 1. Analysis of cell viability in free and HO-3867-treated U2OS, HOS and MG-63 cells.
(A) The chemical structures of curcumin and curcumin analog HO-3867 were drawn; (B) MTT
assay was employed to detect the viability of U2OS, HOS, and MG-63 cells, which were treated
with HO-3867 (2, 4, 8, 16, and 32 µM) for 24 h. After quantitative analysis, the effects are illustrated.
n = 4. U2OS: F = 913.460, p < 0.001; HOS: F = 1110.912, p < 0.001; MG-63 (n ≥ 4): F = 880.549, p < 0.001;
(C,D) CCk-8 assay was employed to detect the viability of U2OS and HOS cells, which were treated
with HO-3867 (2, 4, 8, 16, and 32 µM) for 24 h. After quantitative analysis, the effects are illustrated.
U2OS: F = 270.171, p < 0.001; HOS: F = 390.389, p < 0.001; a p < 0.05, when compared to 0 µM.
b p < 0.05, when compared to 2 µM. c p < 0.05, when compared to 4 µM. d p < 0.05, when compared to
8 µM. e p < 0.05, when compared to 16 µM.

3.2. HO-3867 Induces Cell Apoptosis and Arrest in the Sub-G1 Phase of U2OS and HOS Cells

To investigate the unknown mechanisms of HO-3867 inhibition of U2OS and HOS cell
proliferation, flow cytometry was performed to examine the cell cycle. After being stained
with PI, flow cytometry showed that 8 µM of HO-3867 drastically increased sub-G1 phase
cell cycle accumulation from 1.7% to 48.7% in U2OS cells and 3.9% to 35.1% in HOS cells,
suggesting that HO-3967 causes sub-G1 phase arrest in U2OS and HOS cells (Figure 2A–C).
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Additionally, detecting apoptosis at earlier stages, before gross morphological changes,
is crucial for understanding the signaling pathways of programmed cell death. To verify
whether or not the suppressive effects of HO-3867 on cell growth were caused by apoptosis
and not others such as necrosis, Annexin V-FITC/PI apoptosis assay was used. Using
both Annexin V-FITCH with PI staining, flow cytometry ensured that HO-3867 induced
apoptosis of U2OS and HOS cells (Figure 3A,B).
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experimental concentration range of HO-3867 for 24 h, flow cytometry after PI was performed to
determine DNA contents in U2OS and HOS cells; (B,C) The cell cycle profile of flow cytometry was
subsequently quantified.
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Figure 3. Analysis of cell apoptosis in HO-3867-treated U2OS and HOS cells. (A) After treatment with
experimental concentration range of HO-3867 for 24 h, Annexin V-FITC/PI staining was performed to
analyze DNA contents in U2OS and HOS cells. (B,C) The Annexin V-positive cells were subsequently
quantified. U2OS: n = 6, F = 355.589, p < 0.001; HOS: n = 5, F = 18.887, p < 0.001. a Significantly
different, p < 0.05, when compared to control. b Significantly different, p < 0.05, when compared to
2 µM. c Significantly different, p < 0.05, when compared to 4 µM. d Significantly different, p < 0.05,
when compared to 8 µM.

3.3. HO-3867 Increases the Cleaved Caspase 3 and Heme Oxygenase (HO)-1 Expression but
Decreases XIAP and cIAP1 Expression in U2OS and HOS Cells

To demonstrate the mechanisms of apoptosis in U2OS cells caused by HO-3867, the
human apoptosis array kit was used for determining apoptosis-related proteins. The
human apoptosis array was performed on the U2OS cells that were treated with HO-3867
for 24 h, and the results showed increases in the cleaved caspase 3 and HO-1 proteins
and decreases in cIAP1 and XIAP proteins (Figure 4A). To confirm the findings, Western
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blotting and quantitative analysis showed a significant increase in HO-1 (U2OS: p < 0.001;
HOS: p < 0.001) but significant decreases in XIAP and cIAP1 in U2OS (XIAP: p < 0.001;
cIAP1: p < 0.001) and HOS cells (XIAP: p < 0.001; cIAP1: p < 0.001) (Figure 4B).
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Within the tested proteins in the human apoptosis array, cleaved caspase 3 increased
the most, meaning that the caspase 3 effector is the one responsible for dismantling U2OS
and HOS cells. To identify the underlying effects of the caspase cascade caused by HO-
3867, Western blotting was used to discover the effector caspase 3 as well as its upstream
initiator caspases 8 and 9, and their cleaved forms. U2OS and HOS cells were then treated
with experimental concentration range of HO-3867 for 24 h, the results dose-dependently
showed fewer levels of pro-caspases 3, 8, and 9 dose-dependently (U2OS: p < 0.001;
p < 0.001; p < 0.001; HOS: p < 0.001; p < 0.001; p < 0.001) and more expressions of cleaved
caspases 3, 8, and 9 within higher concentrations (U2OS: p < 0.001; p < 0.001; p < 0.001; HOS:
p < 0.001; p < 0.001; p < 0.001) (Figure 5A,B). We then discovered that HO-3867 activates
extrinsic caspase 8 and intrinsic caspase 9 along with the downstream effector, caspase 3, to
causes apoptosis in U2OS and HOS cells.
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Figure 5. Analysis of activation of caspases 8, 9, and 3 in free and HO-3867-treated U2OS and HOS
cells. After experimental concentration range of HO-3867 treatment for 24 h, Western blot analysis
was performed to measure expressions of caspases 8, 9, and 3, and PARP as well as their active forms
in (A,B) U2OS and (C,D) HOS cells. Then, quantitative analysis was assessed. n = 3. Caspase 8: U2OS:
F = 4689.887, p < 0.001; HOS: F = 310.316, p < 0.001; caspase 9: U2OS: F = 1818.961, p < 0.001; HOS:
F = 212.948, p < 0.001; caspase 3: U2OS: F = 7609.925, p < 0.001; HOS: F = 1718.653, p < 0.001; PARP:
U2OS: F = 406.910, p < 0.001; HOS: F = 528.206, p < 0.001. Cleaved caspase 8: U2OS: F = 326.549,
p = 0.01; HOS: F = 689.730, p < 0.001; cleaved caspase 9: U2OS: F = 36.155, p < 0.001; HOS: F = 96.503,
p < 0.001; cleaved caspase 3: U2OS: F = 9138.156, p < 0.001; HOS: F = 10,315.365, p < 0.001; cleaved
PARP: U2OS: F = 729.355, p < 0.001; HOS: F = 405.954, p < 0.001. a Significantly different, p < 0.05,
when compared to control. b Significantly different, p < 0.05, when compared to 2 µM. c Significantly
different, p < 0.05, when compared to 4 µM. d Significantly different, p < 0.05, when compared
to 8 µM.

3.4. HO-3867 Activates Apoptotic Processes via the JNK-Signaling Pathway in U2OS and
HOS Cells

MAPK pathways play an important role in regulating apoptosis by chemotherapeutic
drugs as well as also being the upstream signaling of caspases 3, 8, and 9. To investigate
further molecular mechanisms, Western blot analysis was then administered. As displayed
in Figure 6A–D, HO-3867 was shown in increasing the phosphorylation of ERK 1/2 as well
as JNK 1/2 dose-dependently within U2OS (p < 0.001; p < 0.001) and HOS cells (p < 0.001;
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p < 0.001), which indicates that HO-3867 activated the phosphorylation of the ERK 1/2
and JNK 1/2 pathways in the osteosarcoma cells. Yet, the phosphorylation of p38 showed
inconsistent decreases after the application of HO-3867 in U2OS (p < 0.001) and HOS cells
(p < 0.001).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 10 of 15 
 

 
 

Figure 6. Analysis of phosphorylation of ERK1/2, JNK1/2, and p38 in HO-3867-treated cells.
(A,B) After experimental concentration range of HO-3867 treatment for 24 h, Western blot anal-
ysis was performed to measure expressions of MAPKs, as well as their phosphorylation in (A) U2OS
and (B) HOS cells. (C,D) Next, quantitative analysis was assessed. n = 3. p-ERK: U2OS: F = 661.501,
p < 0.001; HOS: F = 4585.730, p < 0.001; p-JNK: U2OS: F = 494.446, p < 0.001; HOS: F = 855.033,
p < 0.001; p-p38: U2OS: F = 33.591, p < 0.001; HOS: F = 23.845, p < 0.001. a Significantly different,
p < 0.05, when compared to control. b Significantly different, p < 0.05, when compared to 2 µM.
c Significantly different, p < 0.05, when compared to 4 µM. d Significantly different, p < 0.05, when
compared to 8 µM.



Pharmaceutics 2022, 14, 1257 10 of 14

To identify whether the activated phosphorylation of ERK 1/2 and JNK 1/2 by HO-
3867 would affect the intrinsic and extrinsic processes of U2OS and HOS cells through
caspases 3, 8, and 9, a combination of the inhibitors of ERK 1/2 (U0126) and JNK 1/2
(JNK-IN-8) with or without treatment was used in Western blot analysis. Cleaved caspases
3, 8, and 9 were expectedly activated by 8 µM of HO-3867 (p < 0.001, p < 0.001, and p < 0.001)
(Figure 7A,B). Additionally, the inhibitors of JNK1/2 significantly repressed the increase in
cleaved caspases 3, 8, and 9 caused by the treatment of HO-3867 in U2OS and HOS cells.
However, the inhibitor of ERK did not show suppressive effects on the increased levels of
caspases 3, 8, and 9 caused by the treatment of HO-3867. These findings suggest that the
JNK1/2 pathway is critical in the HO-3867-mediated apoptosis of extrinsic and intrinsic
pathways as well as the downstream effector in U2OS and HOS cells.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

Figure 6. Analysis of phosphorylation of ERK1/2, JNK1/2, and p38 in HO-3867-treated cells. (A,B) 

After experimental concentration range of HO-3867 treatment for 24 h, Western blot analysis was 

performed to measure expressions of MAPKs, as well as their phosphorylation in (A) U2OS and (B) 

HOS cells. (C,D) Next, quantitative analysis was assessed. n = 3. p-ERK: U2OS: F = 661.501, p < 0.001; 

HOS: F = 4585.730, p < 0.001; p-JNK: U2OS: F = 494.446, p < 0.001; HOS: F = 855.033, p < 0.001; p-p38: 

U2OS: F = 33.591, p < 0.001; HOS: F = 23.845, p < 0.001. a Significantly different, p < 0.05, when com-

pared to control. b Significantly different, p < 0.05, when compared to 2 μM. c Significantly different, 

p < 0.05, when compared to 4 μM. d Significantly different, p < 0.05, when compared to 8 μM. 

 

Figure 7. Analysis of HO-3867 on cleaved caspases 8, 9 and 3 expressions in HO-3867 with or with-

out inhibitors of ERK1/2 (U0126)- and JNK1/2 (JNK-IN-8)-treated U2OS and HOS cells. (A) After 

pretreatment with or without 10 μM of U0126 and 1 μM of JNK-IN-8 for 1 h followed by 8 μM or 

no HO-3867 treatment for an additional 24 h, Western blot analysis was performed to measure ex-

pressions of cleaved caspases 3, 8, and 9 in U2OS and HOS cells; (B) Subsequently, quantitative 

analysis was assessed. n = 3. Cleaved caspase 8: U2OS: F = 536.028, p < 0.001; HOS: F = 719.244, p < 

0.001; cleaved caspase 9: F = 550.879, p < 0.001; HOS: F = 436.343, p < 0.001; cleaved caspase 3: U2OS: 

F = 693.877, p < 0.001; HOS: F = 2338.671, p < 0.001. a Significantly different, p < 0.05, when compared 

Figure 7. Analysis of HO-3867 on cleaved caspases 8, 9 and 3 expressions in HO-3867 with or without
inhibitors of ERK1/2 (U0126)- and JNK1/2 (JNK-IN-8)-treated U2OS and HOS cells. (A) After
pretreatment with or without 10 µM of U0126 and 1 µM of JNK-IN-8 for 1 h followed by 8 µM
or no HO-3867 treatment for an additional 24 h, Western blot analysis was performed to measure
expressions of cleaved caspases 3, 8, and 9 in U2OS and HOS cells; (B) Subsequently, quantitative
analysis was assessed. n = 3. Cleaved caspase 8: U2OS: F = 536.028, p < 0.001; HOS: F = 719.244,
p < 0.001; cleaved caspase 9: F = 550.879, p < 0.001; HOS: F = 436.343, p < 0.001; cleaved caspase
3: U2OS: F = 693.877, p < 0.001; HOS: F = 2338.671, p < 0.001. a Significantly different, p < 0.05,
when compared to control. b Significantly different, p < 0.05, when compared to 8 µM HO-3867.
c Significantly different, p < 0.05, when compared to U0126. d Significantly different, p < 0.05, when
compared to U0126 and HO-3867 treatment. e Significantly different, p < 0.05, when compared
to JNK-IN-8.
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4. Discussion

The high mortality and the main cause of most treatment failures rates of osteosar-
coma is its highly metastatic potential [4,31] and failed chemotherapeutic treatments can
result in the development of resistance within the tumor for future attempts of treat-
ments [15,16,32]. Hence, to minimize the possibility of failed treatments, we conducted
experiments and explored the underlying mechanisms of HO-3867, which is a synthesized
curcumin analog for improving bioavailability compared to its original counterpart of
curcumin, known for its apoptotic mechanisms at the molecular level [32]. Several studies
have mentioned that curcumin is already considered to have a good anticancer effect [33,34].
In this study, we studied and demonstrated that HO-3867 possesses anticancer properties in
human osteosarcoma.

HO-3867 has previously been known to cause apoptosis to cancer cells through the
targeting of several key growth-regulatory proteins such as the Janus kinase (JAK) as well
as STAT3 pathway to cause apoptosis among oral, ovarian, endometrial, and pancreatic
cancers [35–38]. The compound has also been researched in terms of its ability to repress
migration and invasion activity [39]. Moreover, HO-3867 has been shown to regulate the
expression of FAS, FAK, and VEGF in order to suppress metastasis of ovarian carcinoma
cells [40]. Overall, HO-3867 is versatile and has demonstrated an ability to initiate apoptosis
or regulate metastasis in cancer cells by regulating various proteins in cancers.

Knowing from previous studies that HO-3867 is associated with apoptosis through
various pathways in other cancer types, we focused on the effects of HO-3867 of various
concentrations on various cell lines of human osteosarcoma. Results from flow cytometry
showed that HO-3867 initiated apoptosis and decreased cell viability in human osteosar-
coma U2OS, HOS, and MG-63 cells through the sub-G1 phase. As apoptosis can be initiated
through various ways, we narrowed down the pathway after discovering an increase in
HO-1 and a decrease in cIAP1 and XIAP. This is a crucial step in allowing us to identify that
MAPK was utilized by HO-3867 for the results previously mentioned. Moreover, HO-3867
is widely considered as a selective STAT3 inhibitor [18,24]. Numerous studies have re-
ported that STAT3 inhibitor exerts anticancer activity via different MAPK pathways [41–43].
However, the detailed mechanisms of how HO-3867 activates ERK 1/2 and diminishes p38
in U2OS and HOS cells still require further investigation.

Although p53 is an important tumor suppressor gene, it is one of the most frequently
mutated genes in cancer, implicated in more than half of all human cancers [44,45]. Mutant
p53 (p53MT) loses the activity of wild-type p53 or expresses mutant proteins to inhibit the
activity of the genome-guarding function through multiple mechanisms, which depend
on different types of cancer and cell lines, even in the same cancer [44–46]. However,
wild-type p53 (p53WT) is paradoxically retained in certain types or cell lines of cancers,
such as p53WT U2OS and p53MT HOS cells [45,47]. HO-3867 covalently binds to mutant
p53 to convert the mutant p53 protein to transcriptionally activate the wild-type p53
anticancer genetic response [44], whereas we interestingly found that HO-3867 suppressed
p53 expression in both p53WT U2OS and p53MT HOS cells (Supplementary Figure S1).
Whether p53 can regulate the antiapoptotic effect of HO-3867 by activating several targets,
including p21, Slug, and Krüppel-like factor 4 (KLF4) in human osteosarcoma, should be
extensively investigated.

To improve the bioavailability and potency of curcumin, the new synthetic curcumi-
noid HO-3867 was developed to target cytotoxicity toward cancer cells without influencing
normal cells [18,25,26,36]. Using various experimental practices, we discovered that the
addition of HO-3867 activates apoptotic processes via extrinsic and intrinsic pathways
through an activation of the caspase cascade, IAPs, and the phosphorylation of MAPK
pathways. Although the phosphorylation of ERK 1/2 and JNK 1/2 was observed in the
study, we applied different combinations of inhibitors to confirm the exact pathway used
by the analog to initiate apoptosis. Although the application of HO-3867 expectedly in-
creased cleaved caspases 3, 8, 9, the additional application of the JNK inhibitor significantly
repressed the increased values of the proteins while the co-treatment of the inhibitor of
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ERK did not show any suppressive effects. These findings suggest that the JNK-signaling
pathway plays a critical role in the activation of apoptosis within the osteosarcoma U2OS
and HOS cell lines through intrinsic and extrinsic processes, after treatment with HO-3867
but not through the ERK-signaling pathway. However, further studies are required to
investigate whether the detailed results in vivo are similar to those in vitro and the positive
efficacy of HO-3867 on human osteosarcoma could be obtained in clinical trials.

5. Conclusions

In conclusion, through our research and experiments, we investigated the anticancer
efficacy of HO-3867 and investigated its mechanisms on human osteosarcoma cells. As
shown by the results of the study, HO-3867 demonstrated its apoptotic mechanisms in
human osteosarcoma; the combined results of HO-3867 on cancer from previous as well as
the current study suggests the usefulness of HO-3867 for treating osteosarcoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics14061257/s1, Figure S1: Analysis of p53 expression in HO-3867 treated U2OS
and HOS cells.
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