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Introduction
In evolutionary biology, statistical models are used to investi-
gate the evolutionary processes that generated the vast diversity 
of life. Our current understanding of evolution stems from the 
work of many biologists who derived theoretical models from 
the observations in nature, such as selection, genetic drift, 
migration, and speciation.1–5 However, these models are estab-
lished under some assumptions that simplify the underlying 
principles, as most biological processes are dynamic and com-
plex. For example, the Wright-Fisher model is one of the fun-
damental population genetic models, which represents the 
process of genetic drift as a binomial sampling of 2N gene cop-
ies between generations in an idealized population of N.2,3 This 
idealized population has no overlapping generations, and each 
gene copy is independently drawn to the next generation at 
random in a fixed population. Despite these simplifying 
assumptions, the Wright-Fisher model is still widely used in 
population genetic methods, for instance in a recent analysis of 
forward processes in time-sampled datasets.6–8 Some assump-
tions of the model are valid in most applications, as the model 
has been proved to give intuitive approximations of more com-
plex real cases.9 However, the assumption of independent 
alleles is problematic in many cases, particularly as advances in 
molecular genetics unveil how alleles interact in intricate net-
works to produce unexpected outcomes, even for viruses with 
comparatively small and simple genomes.10–13 Furthermore, 

advances in sequencing technologies generate datasets such as 
whole-genome sequences where the relations between alleles 
can potentially be investigated, particularly in time-serial 
cases.6–8,14 To investigate these complex interactions, we pro-
pose to represent alleles as distributed vectors that encode for 
relationships with other alleles in the course of evolution, rather 
than as discrete entities as in the case of conventional models 
like the Wright-Fisher model. This novel concept of represent-
ing alleles with distributed vectors is inspired from artificial 
neural networks (ANNs) and natural language processing 
(NLP), and we use a model-free approach to learn these dis-
tributed vectors of alleles directly from genetic sequence data.

Artificial neural networks are biologically inspired com-
puting elements that can be interconnected to process and 
learn multiple levels of representation from external input 
information such as sound, image, or characters. Artificial 
neural networks are becoming increasingly popular in many 
fields, as they provide a flexible framework where learned fea-
tures are easy to adapt and learn, without manual over-speci-
fication of features like other machine learning techniques. 
For instance, popular machine learning algorithms such as 
logistic regression or naive Bayes depend heavily on the rep-
resentation of raw data, as the choice of representation has a 
critical effect on the performance of these algorithms. Since 
2010, multilayer neural networks started outperforming other 
machine learning techniques in speech and vision with the 
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availability of big data and faster machines.15 There has been 
a recent interest to apply ANNs in medicine and biology due 
to the exponential growth in data production with techno-
logical advances, such as in structural biology, regulatory 
genomics, drug discovery, and cell imaging.16,17 However, in 
the evolutionary context, only a few attempts have been made 
to apply ANNs in classic population genetic problems such 
as inference of selection and demography from natural 
populations.18 Here, we use ANNs in the evolutionary frame-
work to exploit their ability to learn from high-dimensional 
biological data without explicit programming or modeling or 
prior knowledge through feature learning. The algorithms 
and training methods are derived from the skip-gram neural 
network model in NLP that aims to represent the meaning of 
a word in distributed vectors rather than treating words as 
atomic units.19,20 As opposed to discrete representations 
where there is no natural notion of similarity, distributed rep-
resentations capture the context of a word over a large vector 
space. Distributional similarity-based representations define 
a word by means of its neighbors, where a word vector is 
trained using ANNs to predict neighboring words given a 
center word in the skip-gram neural network model. In a 
similar approach, we attempt to represent alleles by distribu-
tional similarity-based representations by predicting between 
a center allele and its neighboring alleles, with the aim of 
deciphering genetic interactions between these alleles along 
the course of a time-serial experimental evolution.

Viruses are the most straightforward experimental models 
to study the interactions between alleles, and they have been 
investigated through theoretical modeling and empirical analy-
sis using site-directed mutagenesis and mutation-accumulation 
experiments.21–25 These studies reveal that virus genomes 
evolve under complex patterns of genetic interactions such as 
epistasis and clonal interference to shape the landscape of  
fitness. Here, we learn these interactions between alleles as  
biological features through neural networks from mutation-
accumulation experiments, where no model assumptions are 
needed as in the previous investigations. We use population-
level whole-genome sequences from the time-sampled experi-
mental evolution of echovirus 11 in the presence or absence of 
the disinfectant treatment to train this ANN platform, where 
features to learn are distributed vector representations of the 
alleles. After training, we cluster these alleles by similarity in 
the evolutionary trajectory using principal component analysis 
(PCA) and hierarchical clustering, and we compare these clus-
ters of potential genetic interactions with the previous investi-
gation and further discuss the advantages of representing alleles 
as distributed vectors rather than discrete entities. Through the 
nucleotide skip-gram neural network, we extract evolutionary 
features from the genetic data of a time-sampled evolution 
experiment and achieve the same level of knowledge as the 
virology expertise acquired through a series of previously pub-
lished experiments.

Methods
The nucleotide skip-gram neural network

The skip-gram model uses distributed vector representations 
of words to predict for every center word its context words.19,20 
The model uses neural networks for learning these word vec-
tors from large datasets, and we apply the analogous neural 
network architecture as shown in Figure 1 to find distributed 
vector representations of alleles to predict between every center 
allele and its nearby alleles from time-sampled allele frequency 
datasets. Here, an allele is defined as a nucleotide that increases 
in frequency more than the sequencing error between 2 sam-
pling time points. Given a nucleotide sequence of training data 
a1, a2, …, aT, the objective function is to maximize the average 
log probability:

1

1 0T
p a a

t

T

w j w j
t j t

= − ≤ ≤ ≠
+∑ ∑

,

log ( | )

where w is the window size of the nearby alleles that defines 
the extent of interaction. The nearby alleles can be defined as 
those that are within the physical range of biological interac-
tions such as epistasis, clonal interference, and linkage from the 
center allele at . The skip-gram model defines p a at j t( | )+  
using the softmax function as following:

p a a
u v

u v
O t

a
T

a

m

M
m
T

a

O t

t

|
exp

exp
( ) = ( )

( )
=∑ 1

where ao are the nearby alleles, M is the size of the set of alleles 
in the dataset, and va  and ua  are the distributed vectors that 
represent the center allele and nearby allele, respectively. Here, 
the set of alleles comprises of all the alleles in the genome that 
increase in frequency more than the sequencing error between 
2 sampling time points, which can be newly arising mutations 
(single-nucleotide polymorphism, SNP) or standing variation. 
As shown in Figure 1, the nucleotide skip-gram neural network 
is composed of 1 hidden layer computing the projection and 1 
output layer computing the softmax function. We hereby 
denote distributed vector representations of alleles as “allele 
embeddings,” as analogous to “word embeddings” in NLP.

Noise-contrastive estimation

In practice, an approximate of the full softmax is computed by 
noise-contrastive estimation (NCE), as normalizing each prob-
ability at every training step is computationally expensive.26 The 
score of the similarity measure between the center allele at and 
the nearby alleles ao is given as a dot product. The dot product, 
score( )a ao t, , is then converted to a probability using a softmax 
function, and the maximum likelihood (ML) is used to maxi-
mize the probability of the nearby alleles (ao) given the center 
allele (at) for the nucleotide skip-gram model:
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where a′ is the set of alleles increasing above the sequencing 
error. However, computing the score for all other a′s in the cur-
rent center allele at at every training step is expensive, and a full 
probabilistic model is not necessary for feature learning. The 
nucleotide skip-gram model uses a binary classification object 
to discriminate the nearby alleles ao from k noise alleles ao , in 
the same center allele:
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where Q D a ao tθ( ),= 1|  is a binary logistic regression of having 
the nearby alleles ao for the center allele at in the dataset D, cal-
culated in terms of the learned allele embeddings θ. The objec-
tive is maximized when high probabilities are assigned to the 
correct alleles over k noise (contrastive) alleles. Instead of com-
puting the expectation a Po

~ noise
, which would still require the 

normalized probability of negative samples, it is approximated 
by taking the mean of the Monte Carlo sampling from the 
noise distribution Pnoise (typically the uni-gram distribution):
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( )
 is the jth sample from Pnoise . With the NCE, the 

objective function computation now scales with the number 
of noise alleles k instead of all alleles a′ in the set. For our 

Figure 1. Architecture of the nucleotide skip-gram neural network used to train distributed vectors of alleles, with 1 linear hidden layer (Projection) of N 

neurons and 1 output layer (Softmax classifier) of M neurons. The weight matrix W containing rows of distributed vectors reveals genetic interactions 

between the alleles during the course of evolution. These evolutionary features to be learned using the training dataset are denoted as “allele 

embeddings.”
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datasets, a simplified variant of NCE called negative sampling 
is used, in which only samples are used instead of the numerical 
probabilities of the noise distribution to approximate the full 
softmax.

Implementation
Biological model and training data

We used the nucleotide skip-gram neural network in an unsu-
pervised setting to train the distributed vector representations 
of the alleles using the data from the experimental evolution of 
echovirus 11 under the presence or absence of the disinfectant, 
ClO2.27 Echovirus 11 (enteric cytopathic human orphan) is a 
single-stranded RNA virus belonging to the species Enterovirus 
B with a small genome of 7400 bases. The virus has a high 
mutation rate of 9 × 10−5 per site per cell infection and an aver-
age recombination rate of 3 × 10−6 to 7 × 10−6 per site per gen-
eration. It is an infectious human pathogen, residing in the 
gastrointestinal tract where it causes opportunistic infections. 
In this experiment, a wild-type (WT) population of echovirus 
11 was repeatedly exposed to chlorine dioxide (ClO2), which is 
a highly effective disinfectant that inactivates a broad range of 
waterborne viruses. Following inactivation, the surviving 
viruses were passaged onto a monolayer of BGMK cells for 
regrowth. For each disinfection stage, the virus population was 
subjected under ClO2 concentration so as to reduce the inacti-
vation rate constant by approximately 50%. After 20 cycles of 
disinfection-regrowth in 2 replicates (EA and EB), the whole 
genomes of the WT and evolved virus populations were 
sequenced with next-generation sequencing (Illumina HiSeq 
2500). As a control experiment, the same WT viruses were 
subjected to 10 cycles of bottleneck events by dilution without 
being exposed to ClO2 (NEA and NEB) and regrowth in cell 
culture, followed by the whole-genome sequencing of the 
evolved virus population.

The training datasets were generated from the whole-
genome datasets using the increase in the minor allele frequen-
cies between the 2 sampling time points (WT and evolved 
states). Here, a nucleotide sequence of minor alleles a1, a2, …, 
aT is defined as the SNP or standing variation with the highest 
frequency in the evolved populations. As the datasets were 
pool-sequenced from the short reads produced using the 
Illumina HISeq 2500, we reconstructed the difference in the 
raw reads of each allele between 2 sampling time points by 
simulating each site in the virus genome as the binomial distri-
bution with the probability of success as the increase in the 
allele frequency, f:

Pr ( )X k f fk
n k n k

=( ) = −( ) −1

where n is the number of raw reads and k is the number of 
minor alleles at each site. The genome-wide average of the 
coverage depth is approximated by taking the mode of the raw 

read depths across the virus genome at each sampling time 
point as shown in Table 1 and Figure S1. We only retained the 
minor alleles whose increase in frequency was above the 
sequencing error of the Illumina sequencer, which was previ-
ously validated to be 1% from the experimental study.27 The 
combined number of the retained minor alleles in the exposure 
replicates (EA and EB) and control replicates (NEA and NEB) 
is 86 and 72, respectively.

Training neural networks with TensorFlow

Skip-gram models are a generalization of n-grams that model 
sequences, in which components may be skipped over rather 
than being in consecutive order. Here, we have a simple neural 
network with a single hidden layer to train, where the weights 
of the hidden layer are allele embeddings that are the features 
to be learned as shown in Figure 1. The size of the allele embed-
dings to be learned, denoted as M in Figure 1, is 86 and 72 for 
the exposed experiment and control experiment, respectively. 
These weights are initialized randomly from a uniform distri-
bution of [–1, 1]. For this feature learning, we trained the neu-
ral network in TensorFlow (Version 1.2.1) to optimize the 
probability for every allele in our datasets of being the nearby 
allele given the center allele, as illustrated with a computational 
graph of TensorBoard in Figure S2. From our datasets of the 
allele sequences, center and nearby allele pairs are randomly 
chosen as [input, output] within the given window size w as 
described in the “Methods” section. The NCE training objec-
tive defined above is optimized with stochastic gradient descent 
(SGD) using mini batches, where the batch size of 128 was 
used in our optimization step. The output vectors are the prob-
abilities of all alleles in our datasets being the nearby allele for 
the chosen center allele, optimized using the mini batches of 
the generated [input, output] pairs.

Hyper-parameters and bio-parameter optimization

In our nucleotide skip-gram neural network, we have 3 hyper-
parameters to consider: the dimension N of the distributed 
vectors in the hidden layer, the number of negative samples k 
per positive sample, and the learning rate r. After several opti-
mization runs, we chose the simplest hyper-parameters among 
the test values as 128 neurons in the hidden layer, 16 negative 
samples, and the learning rate of 1 × 10−2, respectively. The 
workflow of training neural networks in TensorFlow is 

Table 1. Mode of coverage depth in the whole-genome sequencing of 
echovirus 11 with Illumina HiSeq 2500.

ExPOSED (E) NON-ExPOSED (NE)

Replicate A 28 994 25 937

Replicate B 21 373 21 797
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illustrated in Figure S3, including the steps of data processing, 
weight initialization, and hyper-parameter optimization.

Here, we define the window size w as a biological hyper-
parameter because its value depends on the architecture of a 
virus genome. The window size designates how far a center 
allele is assumed to interact with its nearby alleles in the 
genome, potentially representing the extent of biological fac-
tors such as epistatic interaction or clonal interference. Thus, 
the window size must depend on the recombination rate of the 
virus model under investigation. The recombination of echovi-
rus 11 has not yet been measured directly, but its closely related 
species, Poliovirus, is known to have a recombination rate of 
3 × 10−6 to 7 × 10−6 per nucleotide per generation.28 For the 
genome size of 7 × 103 in echovirus 11, a similar recombination 
rate amounts approximately to 2 × 10−2 to 5 × 10−2 recombina-
tion events per generation. Thus, we considered following 3 
cases where the center allele amid the set of M alleles is linked 
to:

1. Only the immediate neighbors (w = 1),
2. Quarter of the neighbors on either side (w = M/4 if M is 

even, or w = (M – 1)/4 if M is odd),
3. Half of the neighbors on either side (w = M/2 if M is 

even, or w = (M – 1)/2 if M is odd).

These 3 cases represent, respectively, (1) a high recombina-
tion rate that the center allele is linked to only neighbors 
located nearby, (2) a moderate recombination rate that the 
extent of interaction reaches approximately half of the genome, 
and (3) a low recombination rate that the extent of interaction 
reaches almost the entire genome.

Results
Visualization with TensorBoard

We applied the genetic data from the experimental evolution 
of echovirus 11 to the nucleotide skip-gram neural network 
using TensorFlow. The training data consist of approximately 
3 × 104 genome samples from the 2 replicates of repeated bot-
tleneck-regrowth cycles with or without the exposure to the 
disinfectant, ClO2.27 The loss function over time for the train-
ing data is visualized as the average loss over every 2000 epochs 
in Figure 2. The loss curve steadily decreases until 20 000 
epochs after which it stabilizes, indicating the chosen hyper-
parameter as an optimal learning rate for this training set. After 
105 training steps, the distributed vectors of the alleles were 
visualized using TensorBoard for the exposed and non-exposed 
experiments (Figures S4 to S6). The graphs from TensorBoard 
show the cosine distances between the allele embeddings in the 
original space learned from the nucleotide skip-gram neural 
network. Each point is indexed to the nucleotide position in 
the genome, and the allele of interest in the exposed population 
(P129Q denoted as Position 2844) and the non-exposed popu-
lation (H215N denoted as Position 3101) is highlighted, to 
indicate candidate mutations of adaptation. According to the 
previous literature, these 2 non-synonymous mutations are 
potential drivers that give rise to the new functional adaptation 
to the echovirus under the given challenging conditions.27,29 
Echovirus 11 has a small genome encoding for 4 structural 
proteins (VP1-4) and 7 nonstructural proteins (2A-C, 3A-D). 
Zhong et al30 previously demonstrated that ClO2 impairs host 
binding, thus the evidence of resistance to ClO2 in these exper-
iments indicates the echovirus is able to evolve an enhanced 

Figure 2. Average loss over every 2000 epochs during learning in TensorFlow (shown for Exposed with w = M/2). The loss curve decreases steadily until 

20 000 after which it stabilizes, indicating the chosen hyper-parameter as an optimal learning rate.
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binding mechanism that can counteract the disinfectant. 
Further studies show that these adaptive mutations are likely 
to be located on the structural proteins of VP1 and VP2, as 
these specific mutations allow echovirus to use an alternative 
co-receptor that strengthens virus binding.27,29 As the candi-
date allele on VP2 was already present as a major allele in 
the WT at position 139 in our experimental datasets, the 
candidate mutation for enhanced host binding was deduced 
to have arisen on VP1—as K259E in the exposed popula-
tion and as H215N in the non-exposed population. These 
mutations may be one of the factors that render the echovi-
rus with replicative advantages compared to the WT under 
the challenges of repeated bottlenecks. Furthermore, another 
mutation at P129Q is important under the presence of ClO2 
in the exposed population, as it causes the substitution of a 
ClO2-reactive amino acid (proline) to a ClO2-stable amino 
acid (glutamine), increasing the ClO2 endurance of the pro-
tein capsid.27

Correlation analysis with PCA

Principal component analysis is a statistical technique that 
converts data of correlated variables to linearly uncorrelated 
variables called principal components. PCA was carried out on 
the learned allele embeddings for the 3 window sizes (w = 1, 
w = M/4, w = M/2) using TensorBoard (Figures S4 to S6). The 
total variance described with the first 3 PCA components is 
summarized in Table S1. The pair-wise correlation matrices 
were generated by calculating the cosine distances between the 
first 3 PCA components of the allele embeddings, and they 
were visualized in the genomic position order as correlation 
maps in A, B of Figures S7 to S9. These correlation maps dis-
play the correlation coefficients between 2 allele embeddings in 
color according to the similarity, with positive correlations in 
blue color and negative correlations in red color. As shown in 
Figures S7 to S9, color intensity is proportional to the correla-
tion coefficients ranging from 1 to −1. The correlation maps 
reveal the pair-wise similarity of the alleles in terms of genetic 
interactions with the neighboring alleles during the course of 
evolution. To mine for hidden patterns, we applied hierarchical 
clustering to each matrix to obtain agglomerative correlation 
maps of the allele embeddings as shown in C, D of Figures S7 
to S9. Each correlation map contains one empty box that is 
designated for all zeros in the data. As shown in the figures of 
hierarchical clustering (C, D of Figures S7 to S9), it is notable 
that the correlation matrices display clear clustering of the 
alleles by similarity (blue) as well as by dissimilarity (red). The 
patterns of similarity and dissimilarity are more distinct in the 
exposed experiments, indicating the evolution of echovirus 11 
was more directional in the presence of the disinfectant ClO2 
as compared to that of the control experiments.

The hierarchical clusters of the allele embeddings were 
compared to the previous results27 whose results are summa-
rized in Table S2, where the mutation clusters were identified 

by calculating Pearson correlation coefficients between 2 muta-
tions using their allele frequencies and setting a cluster thresh-
old of 0.95. The Pearson correlation method in this study was 
limited to pair-wise correlations in the allele frequencies 
between 2 mutations from a manually specified set, and it was 
unable to take into account of the complete datasets (eg, differ-
ences in replicates). We chose the cluster size of 7 as used in the 
previous analysis, and the results from the 2 approaches were 
compared as shown in Table 2 and Table S3. In Table 2, the 
clusters containing the alleles of interest (P129Q and H215N) 
in the exposed and non-exposed populations are shown in 
detail. The comparison reveals that the allele clusters from the 
nucleotide skip-gram neural network with the window size as 
M/4 are the most consistent with the Pearson correlation clus-
ters by Zhong et al,27 for both the exposed and non-exposed 
populations. These clusters with the window size as M/4 have 
the highest number of the overlapping alleles to the previous 
list and they all lie within the protein-coding genome. It is 
intriguing that this window size of M/4 represents a moderate 
recombination rate, as the alleles are assumed to interact 
between the quarter of the neighboring alleles on either side 
that are evenly distributed along the genome (Figure S10). 
Given the recombination event of 2 × 10−2 to 5 × 10−2 per 
generation,28 the case with a moderate recombination rate 
where the extent of interaction reaches approximately half of 
the genome during the evolution is the closest representation 
of the echovirus biology.

Virus protein evolution

We further analyze the most realistic scenario of the allelic 
interactions within the window size of M/4. Figure 3 shows 
that the correlation map of the allele embeddings can be 
arranged in positively correlated clusters using hierarchical 
clustering, and these clusters also show strong patterns of nega-
tive correlation as well. This result is consistent with the fact 
that when alleles are similar by distributed vector representa-
tions, they should also display a similar pattern of dissimilarity. 
This indicates that a cluster of alleles that increases in fre-
quency in the similar context may behave antagonistically in a 
collective manner to a cluster of alleles of another context; 
however, biological interpretations to this result should be 
investigated further with experimental validations.

For the exposed population, the cluster that contains the 
candidate mutation P129Q that enhances host binding in the 
presence of ClO2

27,30 is highlighted on the structural protein 
of VP1 in Figure 4. Most of the mutations on the virus struc-
tural proteins in this cluster are overlapping with the list from 
Zhong et al,27 except for the 2 mutations (T2849A, C2850A) 
on the VP1 protein. Interestingly, all but one of the mutations 
on VP1 in this cluster are non-synonymous, supporting the 
hypothesis of the important role of VP1 in adapting to the 
disinfectant. Furthermore, this cluster contains another can-
didate mutation (K259E) that was previously identified as 
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contributing to adaptation, and this finding suggests a poten-
tial genetic interaction between these 2 candidate mutations, 
P129Q and K259E, during the course of experimental evolu-
tion. Contrary to the list from Zhong et al,27 this cluster also 
contains additional mutations from the nonstructural pro-
teins, such as the proteins related to the viral polymerase (3C 
and 3D) and NTPase (2C). However, all mutations but one 
are synonymous, which indicates that this interaction may be 
an artifact of genetic drift or linkage rather than these muta-
tions on the nonstructural proteins playing an adaptive role in 
the challenging environments.

For the non-exposed population, the candidate mutation 
that gives a fitness advantage to the wild type is H215N on the 
VP1 protein. We also compare the cluster containing this 
mutation, which may help usage of an alternative receptor 
binding, to the previous result.27 Contrary to the list of Zhong 
et al27 with only 2 mutations on the VP1 protein, the cluster of 
the nucleotide skip-gram neural network contains several 
mutations from both the structural and nonstructural proteins. 

Besides the 2 mutations on VP1 previously identified, there are 
a few non-synonymous mutations from the viral polymerase 
proteins (3A and 3D)31 which are to be investigated further 
empirically whether their clustering with the candidate muta-
tion can potentially result from genetic interactions.

Discussion
We present an application of ANNs that learns biological fea-
tures from time-sampled datasets of virus genome evolution. 
This application uses methods and algorithms derived from 
NLP, such as the skip-gram model and NCE, to learn distrib-
uted vector representations of the alleles that increase in fre-
quency above the sequencing error during the time-serial 
experimental evolution. To the best of our knowledge, this is 
the first attempt to represent alleles as distributed vectors 
instead of discrete entities as in conventional evolutionary 
models, enabling the relationships between these alleles to be 
encoded in a continuous vector space of low dimension. We 
learn these features through the neural networks by predicting 

Table 2. Allele clusters identified by 2 approaches: (A) Pearson correlation coefficient27 and (B) skip-gram neural network.

1) CLuSTER
2)  BIOLOgICAL 

FuNCTION

(A) (B)

ExPOSED AND NON-
ExPOSED

ExPOSED

W = 1 W = M/4 W = M/2

1) II
2) Enhances host binding 
in the presence of ClO2

VP1:A2835g:K126R
VP1:C2844A:P129Q
VP1:T2849A:S131T
VP1:C2850A:S131Y
VP1:C3162T:T235I
VP1:A3170g:M238V
VP1:A3233g:K259E

VP1:A2854C:R132
3D:T6190g: H80Q
VP1:C3103A:H215Q
3D:T7240g:Y430*
3C:A5634C:N78T
3D:A7250C:I434L
VP1:C2844A:P129Q
VP1:T2849A:S131T
3A:T5203C:V45
:g7383A:

3D:T5964C:F5S
3D:A7250C:I434L
VP2:T1660C:D234
VP3:A1761g:N6S
3C:A5893T:g164
3D:C6745T:Y265
VP1:C2632T:S58
2C:A4552g:L157
VP1:C2844A:P129Q
3D:g6409A:P153
VP1:A3233g:K259E 
VP1:A3170g:M238V
VP1:C3103A:H215Q
VP1:A2835g:K126R
VP1:C3162T:T235I

VP1:A3170g:M238V
3D:g7246A:E432
3C:C5818g:N139K
VP1:A2835g:K126R
3D:T6006C:M19T
:g7383A:
VP2:C1666T:S236
3C:A5893T:g164
3A:T5323C:F85
VP1:C2844A:P129Q
VP1:A3233g:K259E 
VP1:T2849A:S131T
3C:T5788A:g129
VP1:C3103A:H215Q
2C:g4384A:V101

 ExPOSED AND NON-
ExPOSED

NON-ExPOSED

 W = 1 W = M/4 W = M/2

1) V
2)  Helps usage of an 

alternative receptor 
binding

VP1:A2937T:Y160F
VP1:C3101A:H215N

3C:g5710C:A103
3D:C6991T:T347
VP1:C3101A:H215N
2C:C4519T:L146
2C:T4666C:S195
VP2:C1008T:T17I
2A:C3367T:Y11
2C:C4454T:L125
VP1:C3285T:T276I
VP1:g2521A:g21
:g7346A:
3D:g7246A:E432
3D:C7249T:F433

VP2:C1210T:D84
VP3:T1831C:D29
VP1:C3101A:H215N
2B:C3841T:N19
2C:C4546T:Y155
3D:C6991T:T347
VP1:A2937T:Y160F
3D:C6085T:N45
3A:A5306g:I80V
3D:A6989g:T346A
VP2:C1243T:N95
VP3:A1761g:N6S

VP2:C1008T:T17I
VP1:C3101A:H215N
VP1:A2937T:Y160F
3D:A6989g:T346A
3D:C6991T:T347
:g659A:
2C:C4546T:Y155
3A:A5306g:I80V
VP3:A1761g:N6S
3A:T5323C:F85

For the nucleotide skip-gram neural network, the order of the alleles represents the order of similarity (see Table S3 for a complete list of clusters). For the nucleotide 
skip-gram neural network, the cluster results using 3 different window sizes (w = 1, w = M/4, and w = M/2) are shown. Each cell shows Protein: Nucleotide position with 
the major and minor alleles: Nucleotide position within the protein with the original amino acid (and the substituted amino acid for non-synonymous mutations). The red 
highlight indicates the candidate mutation of adaptation in the presence of the disinfectant ClO2, and the blue highlight indicates the candidate mutation of adaptation for 
alternative receptor binding.
* indicates STOP codon.



8 Evolutionary Bioinformatics 

for every center allele its neighboring alleles from the changes 
in allele frequency, and the data application using the time-
sampled whole-genome sequences of echovirus 11 was carried 
out. The results show that the alleles rising above the sequenc-
ing error can be represented effectively as distributed vectors 
from genetic sequence data, as compared to being represented 
as discrete and independent entities in most classic population 
genetic models. Distributed vector representations of alleles 
learned from the nucleotide skip-gram neural network have 
the advantage of incorporating the comprehensive interactions 
from a given window of neighboring alleles entirely from input 
data without model assumptions.

Using PCA, the pair-wise correlation map between these 
allele embeddings is generated and arranged by agglomerative 
hierarchical clustering, which unveils the similarity in the evo-
lutionary trajectory between these alleles. In comparing with 
the previous result by Zhong et  al,27 the clusters with the 

window size of M/4 are the most plausible, representing a 
moderate recombination rate which is also consistent with the 
known echovirus biology. Furthermore, a few non-synony-
mous mutations are identified to have had evolved similarly to 
the candidate mutations of adaptation. For the exposed popu-
lation, this new approach using the nucleotide skip-gram neu-
ral network identified 2 candidate mutations (P129Q and 
K259E) in the same cluster, which supports the presence of 
potential genetic interactions in the structural protein of VP1 
in adapting to the challenging environment. For the non-
exposed population, our analysis reveals a list of non-synony-
mous mutations in the same cluster as the candidate mutation 
(H215N) in contrary to the previous analysis. However, this 
feature learning with the nucleotide skip-gram neural network 
has the caveat that interacting alleles can only be identified 
when the candidate mutations are known a priori. Thus, it 
remains a future challenge to expand this approach to identify 
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Figure 3. Pairwise correlation map of the first 3 PCA components of the allele embeddings from TensorBoard with w = M/4. The alleles are arranged in 

the genomic order: (A) exposed and (B) non-exposed, and in the hierarchical clustering of 7 clusters: (C) exposed and (D) non-exposed. The green boxes 

indicate the cluster containing the mutation of interest, in the exposed population (P129Q denoted as Position 2844) and in the non-exposed population 

(H215N denoted as Position 3101). Positive correlations are in blue and negative correlations are in red, with the color intensity proportional to the 

correlation coefficients ranging from 1 to −1.
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candidate mutations responsible for patterns of selection in 
genetic datasets without prior knowledge.

Through the application of neural networks in genetic 
data, we aim to develop a computational method that can be 
a tool of prediction for future experiments, as compared to a 
tool of inference from experimental data like the other like-
lihood-free methods.6–8 In this study, we were able to extract 
evolutionary features from the genetic data of a time-sam-
pled evolution experiment and predict clusters of mutations 
that may be informative for future experiments such as func-
tional validation or network analysis. The advantages of the 
nucleotide skip-gram neural network model include the 
absence of manual over-specification and model assumptions 
as needed in the previous studies of genetic interactions. 
Thus, the nucleotide skip-gram neural network is a flexible 
platform that applies to a wide range of genetic data to define 
alleles with distributed vectors, which encode information 
about their interactions with neighboring alleles during the 
course of evolution. The automated workflow of the platform 
can easily be adapted to each investigation, for instance, to 
consider new mutations arising in a replicate experiment. 

Furthermore, this neural network platform has the potential 
to be applied to larger and more complex datasets, such as for 
organisms with bigger genomes or for data from natural 
populations. The nucleotide skip-gram neural network has a 
simple architecture of 1 hidden layer that minimizes compu-
tational complexity, which makes the platform ideal for 
much bigger datasets such as human genomes with approxi-
mately 3 billion base pairs. The caveat of this current data 
application is that the time-sampled whole-genome virus 
datasets from this experimental evolution are actually “too 
small” for the capacity of neural networks which only takes a 
few minutes to train in TensorFlow, potentially leaving the 
results under-trained and sub-optimal. For future investiga-
tions, this method can be applied to time-sampled datasets 
from human cancer cells to decipher the interactions between 
the mutations that arise during the course of cancer evolu-
tion, or to spatial datasets from natural populations of 
humans or drosophila to decipher spatial rather than tempo-
ral interactions between the alleles of interest. Furthermore, 
biological factors such as recombination rate can be repre-
sented in more accurate ways to investigate whether the pat-
terns of interaction are produced by deterministic or 
stochastic evolutionary forces.

Acknowledgements
We thank Christopher Bernido, Maria Victoria Carpio-
Bernido, Valeria Montano, Chip Huyen, Minwoo Sun, and 
Diego Marcos Gonzalez for helpful discussions. We also thank 
Qingxia Zhong and Anna Carratalà for providing the experi-
mental dataset of echovirus.

Author Contributions
HS conceived of the presented idea, designed the analysis tool, 
performed the analysis and wrote the paper. 

Data Availability
Availability and Implementation: Python codes and R codes to 
implement the nucleotide skip-gram model on genetic 
sequence data in TensorFlow are publicly available at: https://
bitbucket.org/jinenstar (Contact: jinenstar@gmail.com).

RefeRenCes
 1. Haldane JBS. A mathematical theory of natural and artificial selection. Math 

Proc Cambridge Philos Soc. 1927;23:607.
 2. Fisher R. The Genetical Theory of Natural Selection. Oxford, UK: Oxford Univer-

sity Press; 1930.
 3. Wright S. Evolution in Mendelian populations. Genetics. 1931;16:97–159.
 4. Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217: 

624–626.
 5. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious muta-

tions on neutral molecular variation. Genetics. 1993;134:1289–1303.
 6. Foll M, Poh Y-P, Renzette N, et al. Influenza virus drug resistance: a time-

sampled population genetics perspective. PLoS Genet. 2014;10:e1004185.
 7. Foll M, Shim H, Jensen JD. WFABC: a Wright-Fisher ABC-based approach for 

inferring effective population sizes and selection coefficients from time-sampled 
data. Mol Ecol Resour. 2015;15:87–98.

Figure 4. Non-synonymous mutations on the echovirus structural 

proteins (VP1: yellow, VP2: green, VP3: magenta, VP4: blue) identified as 

the cluster of potential adaptation to the disinfectant ClO2 by the 

nucleotide skip-gram neural network. The cluster of mutations on the VP1 

is associated with the 2 candidate mutations (K259E and P129Q shown 

as 259.A and 129.A, respectively) that are previously identified as 

contributing to disinfectant adaptation. The images were generated by 

Chimera (Version 1.11.2) based on PDB entry 1H8T.

https://bitbucket.org/jinenstar
https://bitbucket.org/jinenstar
mailto:jinenstar@gmail.com


10 Evolutionary Bioinformatics 

 8. Shim H, Laurent S, Matuszewski S, Foll M, Jensen JD. Detecting and quantify-
ing changing selection intensities from time-sampled polymorphism data. G3 
(Bethesda). 2016;6:893–904.

 9. Ewens WJ. Mathematical Population Genetics. Berlin, Germany: Springer; 
2004.

 10. Burch CL, Turner PE, Hanley KA. Patterns of epistasis in RNA viruses: a 
review of the evidence from vaccine design. J Evol Biol. 2003;16:1223–1235.

 11. Michalakis Y, Roze D. Evolution. Epistasis in RNA viruses. Science. 
2004;306:1492–1493.

 12. Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in 
the evolution of influenza A surface proteins. PLoS Genet. 2011;7:e1001301.

 13. Ibeh N, Nshogozabahizi JC, Aris-Brosou S. Both epistasis and diversifying 
selection drive the structural evolution of the Ebola virus glycoprotein mucin-
like domain. J Virol. 2016;90:5475–5484.

 14. Malaspinas A-S, Malaspinas O, Evans SN, Slatkin M. Estimating allele age and 
selection coefficient from time-serial data. Genetics. 2012;192:599–607.

 15. Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks. 
2015;61:85–117.

 16. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computa-
tional biology. Mol Syst Biol. 2016;12:878.

 17. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning 
in biomedicine. Mol Pharm. 2016;13:1445–1454.

 18. Sheehan S, Harris K, Song YS. Estimating variable effective population sizes 
from multiple genomes: a sequentially Markov conditional sampling distribution 
approach. Genetics. 2013;194:647–662.

 19. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations 
of words and phrases and their compositionality; 2013. https://papers.nips.cc/
paper/5021-distributed-representations-of-words-and-phrases-and-their-com-
positionality.pdf.

 20. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representa-
tions in vector space. arXiv:1301.3781; 2013.

 21. Sanjuan R, Moya A, Elena SF. The contribution of epistasis to the architecture of 
fitness in an RNA virus. Proc Natl Acad Sci U S A. 2004;101:15376–15379.

 22. Sanjuán R, Cuevas JM, Moya A, Elena SF. Epistasis and the adaptability of an 
RNA virus. Genetics. 2005;170:1001–1008.

 23. Elena SF, Solé RV, Sardanyés J. Simple genomes, complex interactions: epistasis 
in RNA virus. Chaos. 2010;20:026106.

 24. Rokyta DR, Joyce P, Caudle SB, Miller C, Beisel CJ, Wichman HA. Epistasis 
between beneficial mutations and the phenotype-to-fitness map for a ssDNA 
virus. PLoS Genet. 2011;7:e10020175.

 25. Lalic J, Elena SF. Epistasis between mutations is host-dependent for an RNA 
virus. Biol Lett. 2012;9:20120396.

 26. Mnih A, Kavukcuoglu K. Learning word embeddings efficiently with noise-
contrastive estimation; 2013. https://papers.nips.cc/paper/5165-learning-word 
-embeddings-efficiently-with-noise-contrastive-estimation.pdf.

 27. Zhong Q , Carratalà A, Shim H, Bachmann V, Jensen JD, Kohn T. Resistance of 
echovirus 11 to ClO2 is associated with enhanced host receptor use, altered entry 
routes, and high fitness. Environ Sci Technol. 2017;51:10746–10755.

 28. Reiter J, Pérez-Vilaró G, Scheller N, Mina LB, Díez J, Meyerhans A. Hepatitis 
C virus RNA recombination in cell culture. J Hepatol. 2011;55:777–783.

 29. Stuart AD, McKee TA, Williams PA, et al. Determination of the structure of a decay 
accelerating factor-binding clinical isolate of echovirus 11 allows mapping of mutants 
with altered receptor requirements for infection. J Virol. 2002;76:7694–7704.

 30. Zhong Q , Carratalà A, Nazarov S, et al. Genetic, structural, and phenotypic 
properties of MS2 coliphage with resistance to ClO2 disinfection. Environ Sci 
Technol. 2016;50:13520–13528.

 31. Lin J-Y, Chen TC, Weng KF, Chang SC, Chen LL, Shih SR. Viral and host pro-
teins involved in picornavirus life cycle. J Biomed Sci. 2009;16:103.

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
https://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf

