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Abstract: Disseminated intravascular coagulation (DIC) is a severe condition characterized by the
systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction.
In the last years, it represents one of the most frequent consequences of coronavirus disease 2019
(COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and
inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action
of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC
model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h
through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of
intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers,
as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion.
Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung
damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of
its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that
um-PEA could be considered as a potential therapeutic approach in the management of DIC and in
clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.

Keywords: disseminated intravascular coagulation; sepsis; coagulation; inflammation; ultrami-
cronized palmitoylethanolamide

1. Introduction

Disseminated intravascular coagulation (DIC) is a clinical syndrome with high mortal-
ity caused by activation of systemic intravascular coagulation [1]. It usually develops as a
critical complication in patients with life-threatening conditions, such as severe infection,
severe sepsis, malignancies, severe trauma, placental abruption, and obstetric calamities [2].
In particular, in the last period, DIC has been of particular interest as it represents one of
the most frequent consequences of coronavirus disease 2019 (COVID-19) [3]. In March
2020, the WHO declared COVID-19 as a pandemic worldwide that represents a serious
public health risk [4]. The high susceptibility of the population is responsible for the raised
incidence of the distribution worldwide so that COVID-19 has also become a serious public
health problem. The pathological mechanism underlying DIC includes the diffusion of
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microvascular thrombosis that prevents normal blood supply to organs and causes cell
edema and multiple organ failure (MOF) [5,6]. Lung injury is one of the most known
complications of DIC [7,8]; indeed, despite substantial research into new therapeutic strate-
gies, the morbidity and mortality rates associated with lung injury induced by DIC remain
high [9]. The pathogenesis of DIC is complex, with interplay between the coagulant,
inflammatory, and immune pathways [8]. In the last decades, intravenous infusion of
lipopolysaccharide (LPS) has gained wide acceptance as an experimental model of DIC [10].
LPS is the main component of endotoxin, released from lysates of Gram-negative bacte-
ria [11]. LPS activates coagulation and subsequent intravascular coagulation, altering the
balance between the coagulation system and fibrinolytic system. Moreover, LPS induces
monocytes and endothelial cells to release several inflammatory and chemotactic cytokines,
which, in turn, triggers a systemic inflammatory response [12,13]. This cross-talk among
coagulation and inflammation leads to the microthrombus formation that contributes to the
development of organ dysfunction. In particular, the recent outbreak of DIC emphasizes
the lethal outcomes associated with lung injury, characterized by diffuse alveolar damage,
pulmonary microvascular endothelial cell damage, and even respiratory failure [7].

Currently, heparin is used as therapy (or prophylaxis) in patients with DIC, but high-
dose heparin increases the risk of bleeding [14]. Other anticoagulants used in the treatment
of DIC are antithrombin, recombinant thrombomodulin, and plasma-derived activated
protein C. However, large-scale randomized controlled trials are yet to be performed
with important consideration of the timing, dosage, and duration of treatment [15–17].
Therefore, a targeted therapeutic approach to reduce inflammation and clotting activation
could improve DIC and its comorbidities.

The aim of our study is to investigate the anti-inflammatory properties of palmi-
toylethanolamide (PEA), an endogenous lipid belonging to autocoid local injury antago-
nism amides (ALIAmides) family [18], in an experimental model of DIC. Given the lipidic
nature of PEA, it may be expected to have limitations in terms of solubility and bioavail-
ability. The micronization and ultramicronization method is applied for bypassing this
problem, reducing particle size and, consequently, increasing the bioavailability and solubil-
ity, so increasing the dissolution rate [19]. Recent studies have proposed ultramicronization
(um)-PEA as a potential adjunct in therapy for COVID-19 patients, thanks to its ability to
modulate inflammation and the synthesis of proinflammatory enzymes [20]. This suggests
that um-PEA could be included into the COVID-19 multidrug regimen, preventing an
increase in immunosuppressant dosage by planning a synergistic therapy between um-PEA
and the latter [21].

Therefore, in the current study, we assessed the anti-inflammatory action of um-PEA in
the DIC rats resulting from intravascular infused with LPS to understand the pathogenesis
of DIC and the consequent lung dysfunction.

2. Results
2.1. Effect of um-PEA on Blood Coagulation Parameters

To investigate the effects of um-PEA on blood coagulation function and fibrinolytic
system of rats, we detected the changes in plasma markers for DIC after oral admin-
istrations of um-PEA 30 min before and 1 h after the start of infusion of LPS. Plasma
platelet (PLT) counts (Figure 1A) and fibrinogen (Fib) concentrations (Figure 1B) in the rats
were significantly decreased at 4 h, 8 h, and 12 h after LPS infusion, compared to sham
group. In contrast, a simultaneous significant increase in prothrombin time (PT) (Figure
1C), activated partial thromboplastin time (APTT) (Figure 1D), and D-dimer (Figure 1E)
levels after LPS administration for 4 h, 8 h, and 12 h was observed. Data showed that
um-PEA at the dose of 30 mg/kg significantly increased PLT counts and Fib concentrations,
compared to the LPS group (Figure 1A,B, respectively). On the other side, PT and APTT
levels were notably reduced in the um-PEA group, compared to LPS animals (Figure
1C,D, respectively). Moreover, plasma D-dimer levels were significantly decreased in the
um-PEA group, compared to LPS rats (Figure 1E). These results indicated that um-PEA
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alleviated systemic intravascular coagulation. No significant changes were found between
sham groups.
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Figure 1. Blood coagulation parameters: platelet (PLT) counts (A); fibrinogen (Fib) levels (B); prothrombin time (PT) (C);
activated partial thromboplastin time (APTT) (D); D-dimer levels (E). *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01
vs. LPS; ### p < 0.001 vs. LPS.

2.2. Effects of um-PEA on Proinflammatory Cytokine Levels

To explore the effect of um-PEA on inflammation on DIC, we measured the levels of
proinflammatory cytokines in plasma. We found that plasma levels of IL-1β (Figure 2A),
IL-6 (Figure 2B), TNF-α (Figure 2C), and IFN-γ (Figure 2D) were markedly increased in
the LPS group compared to the control group. In contrast, um-PEA was able to decrease
plasma levels of these proinflammatory cytokines.

Similar results were observed evaluating the expression of IL-1β (Figure 3A), IL-6
(Figure 3B), TNF-α (Figure 3C), and IFN-γ (Figure 3D) in homogenates of lung samples,
further confirming the anti-inflammatory action of um-PEA. No significant changes were
found in plasma and lung samples between sham groups.
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2.3. Effects of um-PEA on Inflammatory Pathway

To examine how um-PEA could attenuate the overproduction of proinflammatory
mediators, we investigated the NF-kB pathway by Western blot analysis. Since no signifi-
cant changes were found between the sham groups for coagulation markers and cytokine
levels, we present data of the sham + saline group. Our results showed a basal expression
of IκB-α in sham rats, while LPS infusion significantly decreased IκB-α expression in lung
samples (Figure 4A). At the same time, NF-κB levels were increased significantly in sam-
ples from LPS-treated rats compared to the control group (Figure 4B). Um-PEA treatment
reduced IKB-α degradation (Figure 4A) and, consequently, nuclear translocation of NF-kB
(Figure 4B) induced by DIC.
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2.4. Effect of um-PEA on the Histological Changes

Given that DIC may result in lung dysfunction, we assessed histological injury by
macroscopic observation, H/E, and PTAH staining. In the lungs from the control group,
no macroscopic change was observed (Figure 5A). After intravenous infusion of LPS,
severe hemorrhages were visible on the surface of lungs in DIC rats (Figure 5B), while oral
treatment of um-PEA at 30 mg/kg ameliorated macroscopic alterations (Figure 5C).

In addition, H/E and PTAH staining showed a normal physiological structure of lungs
taken from sham rats (Figure 5D,G and score in Figure 5J). In contrast, the parenchyma of
the lungs following LPS infusion was significantly altered, with the presence of pulmonary
microthrombus, as well as pulmonary edema and neutrophil infiltrations (Figure 5E,H
and score in Figure 5J). Um-PEA treatment was able to reduce pulmonary histological
alterations, including edema, inflammatory infiltrates, and microthrombus (Figure 5F,I and
score in Figure 5J).

The presence of lung edema is also confirmed by the ratio of wet/dry (W/D) weight
of the tissue, which showed a marked increase in the LPS group compared to sham animals,
while um-PEA administration reduced the ratio of W/D weight of the tissue (Figure 5K).
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Figure 5. Macroscopic observation: sham (A), LPS (B), LPS + um-PEA (C). H/E staining: sham (D), LPS (E), LPS +
um-PEA (F). PTAH staining: sham (G), LPS (H), LPS + um-PEA (I). Histological score (J) and wet/dry weight (K). A
10× magnification is shown (250-µm scale bar) for H/E staining; a 40× magnification is shown (75-µm scale bar) for PTAH
staining. * p < 0.05 vs. sham; *** p < 0.001 vs. sham; # p < 0.05 vs. LPS; ## p < 0.01 vs. LPS.

2.5. Effect of um-PEA on MC Activation

Toluidine blue staining of lung sections was performed to evaluate MC degranulation.
In the LPS group, we observed an increase in the number of MCs intact and degranulated
(Figure 6B,D) compared to the control (Figure 6A,D). Um-PEA at the dose of 30 mg/kg
significantly reduced MC activation (Figure 6C,D).
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To confirm the reduction in MC degranulation, we evaluated the expression of chy-
mase and tryptase, two mast-cell-derived serine peptidases, in lungs. Immunohisto-
chemical staining showed an important increase in chymase (Figure 7B,G) and tryptase
(Figure 7E,H) expression in the LPS group compared to sham rats (Figure 7A,G,D,H, re-
spectively); in contrast, um-PEA significantly reduced the expression of both markers
(Figure 7C,G for chymase and Figure 7F,H for tryptase).
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3. Discussion

DIC is a disease characterized by systemic activation of coagulation, potentially re-
sulting in thrombotic occlusion of small- and medium-sized vessels [14]. At the same
time, ongoing consumption of PLT and coagulation proteins causes thrombocytopenia
and low levels of clotting factors, which may cause profuse hemorrhagic complications,
thereby leading to organ dysfunction [22]. Experimental DIC in animals was induced by
continuously infusing them with LPS for 4 h, which is an endotoxin present on the outer
membrane of Gram-negative bacteria [8]. The presence of LPS in the bloodstream causes,
beyond the DIC, fever, hypotension, cytokine production, MOF, and, in severe cases, septic
shock and death [11]. The incidence of DIC is 30–50% in sepsis; in patients with sepsis
and DIC, mortality is almost two times higher as compared with patients who do not have
DIC [23]. In the pathophysiology of LPS-induced DIC, the so-called “cytokine storm” is also
involved. Indeed, LPS induces monocytes and endothelial cells to release cytokines, such
as TNFα, IL-1β, and IL-6, that, at high enough levels, have systemic effects [11]. This over-
production of proinflammatory cytokines causes coagulation activation and impairment of
fibrinolysis in LPS-induced DIC, thus confirming cross-signaling between the pathways
mediating coagulation and inflammation [24,25]. The imbalance between anticoagulant
and procoagulant mechanisms in the blood and widespread systemic inflammation leads
to a drop in blood pressure, inadequate removal of fibrin, and deposition of fibrin in the
microvasculature [26,27]. Microvascular thrombosis contributes to the development of
organ dysfunction, especially in the lung.

It is important to underline that, in the last two years, DIC has received particular
attention as it is closely related to COVID-19 [3]. This experimental model of DIC has
implications for understanding cardiovascular and pulmonary mortality in the COVID-
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19 pandemic. Indeed, activation of the coagulant pathway accompanied by excessive
inflammatory/immune reactions (the so-called cytokine storm) and progression to MOF
represent the principal causes of death [28,29]. In particular, the complications seen in
patients with COVID-19 show respiratory failure due to marked microvascular thrombosis
associated to extensive alveolar inflammation up to pulmonary tissue damage [30,31].

Therapeutically, supplementation with blood components, anticoagulants, and coag-
ulation inhibitors has been used to treat DIC [32,33]. They aim to inhibit the activation
of coagulation and prevent the formation of thrombi. However, bleeding problems often
complicate the choice of treatment for DIC. Besides, based on pathophysiological con-
cepts, coagulation inhibition combined with anti-inflammatory properties is regarded
as an attractive therapeutic approach for human sepsis. Therefore, the type of medical
intervention used to simultaneously alleviate the activation of inflammation and coag-
ulation was considered an interesting prospect. We designed the present study to offer
a different alternative to the traditionally used medications by exploiting well-known
anti-inflammatory properties of um-PEA [19,34–36]. The objective of this study was to
explore the relationship between the balance of fibrinolysis/coagulation, the cytokine
storm, and lung dysfunction in the LPS-induced model of DIC, and to explore possible
pathophysiological mechanisms. As previously said, proinflammatory cytokines play an
important role in pathologic processes that contribute to the formation of microthrombus in
DIC models [37]. Therefore, we speculated that reduced secretion of these proinflammatory
factors would be advantageous for the prevention and treatment of DIC. Several studies
have demonstrated that um-PEA could regulate the release of proinflammatory cytokines
via several effector mechanisms on immune cells [18,38,39]. Hence, we investigated the
effectiveness of um-PEA treatment in ameliorating LPS-induced DIC.

All physiological coagulation pathways are significantly compromised in DIC [40,41].
Markedly decreased plasma PLT counts were observed, as were significantly depressed
plasma fibrinogen levels in LPS rats. The PT index was significantly increased after LPS
infusion, indicating that the coagulation factor was greatly reduced and, consequently, the
PT was prolonged. In the fibrinolysis phase induced by LPS, the body produced a large
amount of fibrin degradation products, so the APTT was extended [42,43]. In contrast, all
indexes were significantly improved, as shown by a decrease in upregulation of PT and
APTT after um-PEA treatment, indicating that um-PEA has a good regulatory effect on the
disorder of the coagulation and fibrinolytic system in DIC. Additionally, plasma levels of
D-dimer are regarded as one of the most useful markers in the diagnosis of DIC. D-Dimer
is a fragment of fibrin produced in the blood when fibrin crosslinked with factor XIII is
degraded by plasmin [44]. That is, thrombus is created in the body when coagulation
is activated, and it is decomposed when fibrinolytic activity is activated. Thus, elevated
plasma D-dimer levels are considered to indicate the presence of DIC [45]. Consistent
with this, our result showed that consumption of DD was decreased after treatment with
um-PEA at the dose of 30 mg/kg.

Ongoing activation of platelets with coagulation factor consumption can contribute to
the derangement of coagulation and fibrinolysis, leading to microvascular fibrin thrombi
and proneness to severe inflammatory reaction [46]. Activation of the inflammatory
cascade impacts the coagulation pathway, and vice versa. Widespread involvement of
endothelium and monocytes/tissue macrophages, together with the more generalized
activation of inflammation and coagulation, lead to the overproduction of inflammatory
cytokines [5]. In our study, we observed high levels of inflammatory cytokines, such as
IL-1β, IL-6, TNF-α, and IFN-γ, after intravenous infusion of LPS for 4 h, both in blood
and lung tissue. Moreover, the production of inflammatory cytokines and mediators is
linked with activation upstream of NF-κB, the principal inflammatory pathway associated
with inflammation. A Western blot analysis confirmed that continuous infusion of LPS
activated the NF-κB pathway. In contrast, treatment with um-PEA efficaciously reduced
IκBα degradation and NF-κB nuclear translocation in lung sample, and, consequently, the
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overproduction of inflammatory cytokines, confirming the strong anti-inflammatory effect
of um-PEA.

Furthermore, it had been reported that inflammation-related coagulopathy causes
the formation and deposition of fibrin, leading to microvascular thrombosis in different
organs, especially in the lungs [3,47]. We hypothesized that mitigation of inflammation
can attenuate lung damage and dysfunction; so, we wanted to test the well-known anti-
inflammatory properties of um-PEA in rats subjected to DIC. Lung tissues were stained
by H/E, as well as phosphotungstic acid hematoxylin (PTAH), to evaluate the severity of
inflammation and organ failure. Our results showed fibrin-positive staining and bleeding in
pulmonary alveoli in rats following LPS infusion, while treatment with um-PEA decreased
marked fibrin deposition, as well as the macroscopic alterations.

In the pathophysiology of the multisystemic reaction, MCs play a key role; in fact, their
activation leads to the consequent degranulation and release of inflammatory mediators,
including proteases and proinflammatory cytokines. The roles of MCs in coronavirus-
induced inflammation and cytokine storm have been recently discussed [48,49]. Hyper-
active MCs can get into a continuous activation loop, resulting in cytokine storms, the
fluid build-up and pulmonary damage often seen in severe COVID-19 patients [50]. Ad-
ditionally, MCs also express many serine proteases, which are necessary for SARS-CoV-2
infection [51]. Among these, chymase and tryptase, proteases exclusively of MC origin,
are also involved in the activation of the coagulation system. In particular, MC chymase
is responsible for the degradation of both fibrinogen and fibrin, while MC tryptase has
been shown to participate in fibrinolysis through plasmin activation and by facilitating
the degradation of fibrinogen [51,52]. According to the literature, our results showed a
significant increase in both the number of MCs and the release of proteases, as demon-
strated by blue toluidine staining and immunohistochemistry analysis for chymase and
tryptase. On the other hand, the main mechanism of action of um-PEA, belonging to the
ALIAmides family, relies on the downmodulation of MC degranulation. Hence, as can be
expected, um-PEA treatment was able to reduce the number of intact and degranulated
MCs. These results are also confirmed by the reduction in the expression of chymase and
tryptase secreted by activated MCs.

4. Materials and Methods
4.1. Animals

Sprague–Dawley rats (200–250 g, male; Envigo, Italy) were housed in a controlled
environment with free access to typical rodent diet and water. This study was approved
by the University of Messina Review Board for the care of animals (approval number
499/2018-PR). Animal care conformed to Italian and European regulations on the use
of animals for experimental and scientific purposes (D.Lgs 2014/26 and EU Directive
2010/63).

4.2. Induction of DIC

DIC model was induced in rats by continuously infusing them with LPS (30 mg/kg,
dissolved in 10 mL sterile saline; Escherichia coli 055: B5; Sigma-Aldrich, St. Louis, MO,
USA) via the tail vein for up to 4 h [2,53]. The control group (sham) was injected with the
same volume of saline.

4.3. Experimental Groups

Rats were randomly distributed into several groups (n = 15 for each):

• LPS group: rats received infusion of LPS, as previously described;
• LPS + um-PEA group: rats received infusion of LPS, as previously described, and

were treated with um-PEA (30 mg/kg) by oral gavage 30 min before and 1 h after the
start of intravenous infusion of LPS;

• Sham group: identical to the LPS group, but animals received saline (0.9% w/v) instead
of LPS;
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• Sham + um-PEA group: identical to the sham group, but rats were treated with um-
PEA (30 mg/Kg) by oral gavage 30 min before and 1 h after the start of experiment.

Since no significant changes were found between the sham groups for coagulation
markers and cytokine levels, we present data of the sham + saline group.

The dose of um-PEA was selected based on previous studies [54,55]. Rats were
euthanized 12 h after LPS infusion and lungs were harvested for further analysis.

4.4. Blood Sampling and Parameter Measurement

Blood was withdrawn from the abdominal aorta of rats under anesthesia into the 4%
sodium citrated tubes after LPS or saline infusion at 0 h (before), 4 h, 8 h, and 12 h, and
analyzed within 2 h from blood collection. Platelet (PLT) counts were performed with an
automated device for animals (Celltac, MEK-5128, Nihon Kohden Co., Tokyo, Japan) [37].
Fibrinogen (Fib) levels, prothrombin time (PT), and activated partial thromboplastin time
(APTT) were measured using standard kits for a Clot 2 coagulometer (SEAC diagnostics,
Florence, Italy) [56]. D-dimer levels were determined by the quantitative latex agglutination
test (Diatron, Tokyo, Japan) [37].

4.5. Cytokine Levels

Plasma and lung levels of TNF-α, IL-1β, IL-6, and IFN-γ, were measured by the ELISA
kits (R&D Systems, Minneapolis, MN, USA) [37,57,58]. All protocols were performed by
following the manufacturer’s instructions.

4.6. Western Blot Analysis

Western blot analysis was performed as previously described [59]. The following
primary antibodies were used: anti-IκBα (1:500, Santa Cruz Biotechnology (SCB), #sc1643),
anti-NF-κB p65 (1:500, SCB, #sc8008), anti-β-actin (1:5000; SCB, #sc8432), and anti-lamin
A/C antibody (1:5000; Sigma-Aldrich, St. Louis, MO, USA). Protein expression was
quantified by densitometry with BIORAD ChemiDocTM XRS + software and normalized
to housekeeping genes β-actin and lamin A/C as previously reported [60].

4.7. Histopathology

Lung tissue sections (7 µm) were stained with hematoxylin/eosin (H/E) and phos-
photungstic acid hematoxylin (PTAH) for histopathological examination. Sections were
examined using a Leica DM6 microscope (Leica Microsystems SpA, Milan, Italy) associated
with Leica LAS X Navigator software (Leica Microsystems SpA, Milan, Italy) [61]. Every
piece was viewed at a magnification of 20× for H/E and 40× for PTAH, and morpho-
logical changes were evaluated by two blinded investigators. The grading scale to score
histopathologic findings was determined as previously described [62].

4.8. Measurement of Lung Edema

At the end of experiment, wet lung weights were recorded. The lungs were subse-
quently dried for 48 h at 80 ◦C and weighed again. The water content of the tissue was
calculated as the ratio of wet/dry weight of the lung [62].

4.9. Staining of Mast Cells (MCs)

At the end of experiment, for identification of MCs, lung tissue sections (7 µm) were
stained with toluidine blue, as described previously [63]. Every section was observed
at a magnification of 100×, using a Leica DM6 microscope (Leica Microsystems SpA,
Milan, Italy) associated with Leica LAS X Navigator software (Leica Microsystems SpA,
Milan, Italy).

4.10. Immunohistochemical Analysis

Immunohistochemical analysis was performed as previously described. Lung sections
were incubated overnight with primary antibodies: anti-MC chymase (1:100, SCB, #sc59586)
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and anti-MC tryptase (1:100, SCB #sc59587) antibodies. Images were collected using a Leica
DM6 microscope (Leica Microsystems SpA, Milan, Italy) following a typical procedure [64].
The histogram profile is related to the positive pixel intensity value obtained [65].

4.11. Statistical Evaluation

All values are expressed as mean ± standard error of the mean (SEM) of N obser-
vations. The images shown are representative of the least 3 experiments performed on
diverse experimental days on tissue sections collected from all animals in each group. For
in vivo studies, N represents the number of animals used. The results were analyzed by
one-way ANOVA, followed by a Bonferroni post hoc test for multiple comparisons. A
p-value less than 0.05 was considered significant.

5. Conclusions

In conclusion, this study demonstrates that um-PEA has the function of alleviating the
complications associated to LPS-induced DIC, such as coagulation disturbances, cytokine
storm, or intravascular formation of fibrin deposition, at least in the lung. Furthermore, um-
PEA downregulates MC degranulation and its mediators, involved in the activation of the
coagulation system, in lung tissues. Further studies will be conducted to better investigate
the mechanism of action of um-PEA in experimental models of DIC. Importantly, PEA lacks
acute and chronic toxicity, and it is well tolerated and no interaction with other ongoing
therapy was reported. Therefore, we propose that um-PEA can be considered as a potential
therapeutic approach in the treatment of CID, and, therefore, may have clinical implications
in conditions associated to coagulopathy and lung dysfunction, such as COVID-19.
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