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Collective colony growth is optimized by branching
pattern formation in Pseudomonas aeruginosa
Nan Luo1 , Shangying Wang1 , Jia Lu1, Xiaoyi Ouyang2 & Lingchong You1,3,4,*

Abstract

Branching pattern formation is common in many microbes. Exten-
sive studies have focused on addressing how such patterns emerge
from local cell–cell and cell–environment interactions. However,
little is known about whether and to what extent these patterns
play a physiological role. Here, we consider the colonization of
bacteria as an optimization problem to find the colony patterns
that maximize colony growth efficiency under different environ-
mental conditions. We demonstrate that Pseudomonas aeruginosa
colonies develop branching patterns with characteristics compara-
ble to the prediction of modeling; for example, colonies form thin
branches in a nutrient-poor environment. Hence, the formation of
branching patterns represents an optimal strategy for the growth
of Pseudomonas aeruginosa colonies. The quantitative relationship
between colony patterns and growth conditions enables us to
develop a coarse-grained model to predict diverse colony patterns
under more complex conditions, which we validated experimen-
tally. Our results offer new insights into branching pattern forma-
tion as a problem-solving social behavior in microbes and enable
fast and accurate predictions of complex spatial patterns in
branching colonies.
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Introduction

Self-organized pattern formation is ubiquitous in biology at

massively different time and length scales. Examples include the

formation of the division ring in a single bacterium (~10 nm)

(Weiss, 2004), patterns and structures in a microbial colony

(~1 mm–0.01 m) (Ben-Jacob et al, 2004), the establishment of body

plan during embryonic development (~0.1 mm–0.1 m) (Arthur,

1997), skin patterns of animals (~0.01 m–1 m) (Koch & Meinhardt,

1994), and vegetation patterns in ecological systems (~0.1 m–

100 m) (Meron et al, 2004). To date, however, our ability to

explain, generate, and predictably control self-organized pattern

formation has been limited. For instance, in the past 20 years,

research in synthetic biology has generated thousands of gene

circuits able to program logic operations, switching dynamics, and

oscillations (Becskei & Serrano, 2000; Gardner et al, 2000; Atkinson

et al, 2003; Kramer et al, 2004; Fung et al, 2005). In contrast, only a

handful of gene circuits have been engineered to program living

cells to generate self-organized patterns (Liu et al, 2011; Cao et al,

2016; Karig et al, 2018; Sekine et al, 2018), which are dwarfed in

complexity and sophistication by patterns found in nature.

In quantitative analyses of pattern formation (in natural or

synthetic systems), the major focus has been placed on a bottom-up

approach—i.e., the explanation or prediction of the emergence of

patterns from underlying, molecular- and cellular-level interactions.

However, the lack of understanding of sufficient mechanistic details

can limit the effectiveness of this approach. In contrast, a comple-

mentary perspective is to consider the potential physiological impli-

cations of such patterns, which are particularly relevant for those

formed during microbial colony development. It has been well-

recognized that the formation of colonial patterns represents a social

behavior in the sense that they emerge from communication and

cooperation between individual cells (Ben-Jacob et al, 2004). More-

over, it has been speculated that the emergent patterns per se can

facilitate the collective survival of the population in a given environ-

ment (Kempes et al, 2014; Ratzke & Gore, 2016). In other words,

the emergence of patterns could reflect a problem-solving capability

by a microbial population. If so, the need or the tendency to opti-

mize survival could impose a top-down, physiological constraint on

the permissible molecular mechanisms underlying the pattern

formation. This approach has been used to analyze the roles of

patterns or structures for several biological systems (Honda &

Fisher, 1978; Honda & Fisher, 1979; Niklas, 1994; Ho et al, 2004).

More broadly, the ability of a biological system to optimize survival

in a spatial domain may inspire or guide the engineering of patterns

or structures beyond biology (Tero et al, 2010).

However, the speculated survival role of pattern formation has

not been experimentally established. To examine this notion, here
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we study the formation of branching patterns, which emerge in

many microbes when growing on solid surfaces. Examples include

bacterial species such as Pseudomonas and Bacillus (Fig 1A), fungi,

slime molds, and lichen (Sumner, 2001; Ben-Jacob et al, 2004; Tero

et al, 2010; Tronnolone et al, 2018). Since branching patterns in

microbial colonies often emerge under nutrient-deprived conditions

(Shimada et al, 2004), it is plausible that branched colony growth

may represent a survival strategy for microbes. Modeling analyses

to date have focused on addressing how such patterns may emerge

due to the instability that arises from cell–cell and cell-substrate

interactions, including cell growth and movement (Ben-Jacob et al,

1994; Kawasaki et al, 1997; Matsushita et al, 1998b; Kozlovsky

et al, 1999; Mimura et al, 2000; Farrell et al, 2013; Giverso et al,

2015a; Trinschek et al, 2018). However, studies on how branching

patterns relate to population fitness have been scarce apart from

speculations that branching patterns may optimize resource

transport due to increased surface area, as do the branching

vessels in mammalian circulatory and respiratory systems (Deng

et al, 2014).

Here, we approach this problem by considering the colonization

of bacteria as an optimization problem: finding the optimal pattern

to maximize colony growth efficiency given the growth conditions.

The observed patterns formed by Pseudomonas colonies in swarm-

ing assays (Caiazza et al, 2005; Tremblay & Deziel, 2008; Xavier

et al, 2011) are consistent with the optimal solutions to an optimiza-

tion model for colony growth under varying conditions. In particu-

lar, thin branches are optimal when colonies grow in nutrient-

deprived or expansion-limited environments. These results allow us

to deduce an optimization rule of colony pattern formation: Colo-

nies develop patterns that maximize the efficiency of colony growth

under a particular local environment. Despite a limited understand-

ing of the mechanistic details, this simple rule of pattern formation
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Figure 1. An optimization model for branched colony growth.

A Pseudomonas aeruginosa colonies develop branching patterns from a symmetric initial shape when growing on swarming media (recipe described in Xavier et al,
2011) in 90-mm petri dishes. Scale bar: 1 cm.

B P. aeruginosa colonies expand in 2D when initiating from a point inoculation (left) but form stripe patterns that extend in 1D when initiating from a strip (right). Top:
images of colonies growing on swarming media in 90-mm petri dishes; bottom: schematics of the colony patterns (blue strips represent branches of colonies, and
arrows show the directions of branch extension); patterns expanding in 2D can be simplified into bifurcating branches, and patterns expanding in 1D can be
simplified to parallel strips. Scale bar: 1 cm.

C A simple model to describe colony growth with predefined patterns assuming 1D branch extension. The geometry of the colony is given by predefined branch width
(W) and density (D) on the vertical direction and the variable, branch length (L), on the horizontal direction (shown in the schematic; blue strips represent branches of
a colony growing from one end of a rectangular domain). R is the domain size on the vertical direction. The diffusion and consumption of the nutrient (N) is described
by Eq [1], where DN is the diffusivity and bN is the consumption rate of nutrient. Eq [2] describes the growth of cells (C), and aC is the cell growth rate. The cell growth
function (fG) is a function of N and C. The total amount of cell growth in the colony, O, is averaged to the total colony area. The elongation rate of branches is
obtained based on the assumption that the net expansion of the colony is proportional to the amount of cell growth (Eq [3]), and c is the efficiency of colony
expansion (see Appendix Supplementary Methods for further details).

Source data are available online for this figure.
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provides a new way of predicting complex patterns of Pseudomonas

colonies under various conditions, laying the foundation for rational

programming or de novo generation of bacterial colony patterns for

engineering applications (Liu et al, 2011; Cao et al, 2016; Cao et al,

2017; Karig et al, 2018; Sekine et al, 2018).

Results

An optimization model of branched colony growth

In contrast to typical biophysical models, we treat the formation of

colony patterns as an optimization problem using a coarse-grained

model. In particular, we ask how the overall colony growth depends

on critical parameters that define branching patterns, regardless of

how these patterns emerge from molecular-level interactions. In our

model, the pattern of a colony is constrained by given parameters

and confines cell growth and cell movement. We vary the colony

pattern to investigate how patterns affect the objective function: the

efficiency of biomass accumulation of the colony.

In swarming assays, Pseudomonas colonies typically initiate from

point inoculations and form branches that extend in two dimensions

(2D) (Fig 1A). As the colony expands, bifurcations of branches

result in an approximately constant partitioning of the swarming

medium for each branch. For the convenience of modeling, we first

consider a simpler scenario of branch extension: When initiated

from a strip, colonies form parallel, non-bifurcating branches

extending from one end of a rectangular plate to the other (Fig 1B).

This one-dimensional (1D) extension preserves the feature of a

constant partitioning of the growth medium.

In this simplified framework, branches extend from one end of

the plate to the other. The branching pattern is uniquely defined by

two parameters (Fig 1C): the branch width (W) and the branch

density (D, the number of branches in one unit of length). The total

width of all branches is WDR, and it cannot be greater than the

domain size; hence, WDR ≤ R, or WD ≤ 1. In the extreme case,

when WD = 1, the colony becomes non-branching or circular.

We further consider three processes involved in colony growth:

the consumption and diffusion of the nutrient, cell growth, and

branch extension (Fig 1C). Here, the colony is growing in a rectan-

gular domain and consumes a diffusive nutrient (N, Equation 1). As

illustrated in Fig 1C, the boundary of the colony is defined by W, D,

which are given constants, and the branch length, L, which is a

time-dependent variable. The growth of the cells (C) is confined

within the colony boundary: As cells multiply, biomass accumulates

and is uniformly allocated within the entire colony (Equation 2).

The cell growth function (fG) is a function of N and C fitted to

the growth curves of Pseudomonas in liquid swarming media

(Appendix Fig S1A). Cell movement is simplified as branch exten-

sion (Equation 3): We assume that the total energy extracted from

nutrient consumption is conserved and allocated between growth

and colony expansion; therefore, the rate of branch extension is

proportional to the amount of cell growth (see Appendix Supplemen-

tary Methods for details). Here, c is a coefficient relating the amount

of energy for cell movement to the expansion rate of the colony.

Using the same amount of energy, with greater c, the colony

expands faster, so we hitherto refer to c as the colony expansion

efficiency. We can experimentally change the expansion efficiency

by altering the agar density of the swarming media, as Pseudomonas

colonies expand faster on media with lower agar densities

(Appendix Fig S2).

Branching patterns enable optimal growth when resource
is limited

Using our simple model, we examine how the total colony biomass

depends on different combinations of branch width (W) and branch

density (D) for different environmental conditions dictated by other

parameters in the model (Fig 2A). For each condition, an optimal

combination of W and D exists to maximize biomass accumulation.

In particular, when the initial concentration of nutrient (N0) or the

expansion efficiency of cells (c) is low (Fig 2A, panel a), optimal

growth requires a small branch width and a relatively low branch

density. The advantage of thin branches over wide ones decreases if

colonies grow with abundant nutrients or on surfaces that allow

faster expansion. With sufficiently high nutrient concentrations or

expansion efficiencies, non-branching colonies accumulate biomass

most efficiently (Fig 2A, panels b, c).

To understand why the optimal patterns vary with the growth

conditions, we examine the dynamics of the system using the model

(Fig EV1). The distribution of nutrient consumption reveals that the

utilization of nutrient is mainly at the colony front and edges when

nutrient concentration or the expansion efficiency is low, since

nutrient is quickly depleted in the colony-covered regions

(Fig EV1A). In this case, the total amount of nutrient utilization is

correlated with the length of the colony boundaries, which is greater

in colonies with thin branches than in non-branching colonies.

However, with abundant nutrient or high expansion efficiency, colo-

nies expand before consuming all the nutrient in the area covered

by cells (Fig EV1B and C). Hence, the consumption of nutrient is

also related to the colony area, which is higher in colonies expand-

ing uniformly.

To experimentally test these predictions, we compared the

growth of wild-type Pseudomonas aeruginosa PA14 strain and its

hyperswarming mutants in swarming assays. We obtained the

mutants using experimental evolution as described in van

Ditmarsch et al, 2013. Pseudomonas aeruginosa PA14 was grown on

swarming media for 20 h, and the entire colony was collected from

the plate. A fraction of the collected cells was inoculated on a new

plate with swarming media. We repeated this procedure for seven

consecutive days and isolated mutants that do not develop branch-

ing patterns but formed irregular or circular colonies, a phenotype

called hyperswarming (van Ditmarsch et al, 2013). The same as two

of the strains reported by van Ditmarsch et al, 2013, we identified a

single point mutation (V178G) in a flagellar synthesis regulator

gene, FleN (PA14_45640) in our hyperswarmer mutants.

Consistent with the model predictions, when grow on swarming

media with limited nutrient and high agar density, where the colony

expansion efficiency is low (Appendix Fig S2), the wild-type colo-

nies grow significantly better than the non-branching hyperswarm-

ers (Fig 2B, panel a). The disadvantage in colony growth (with an

average of 45.8% less biomass accumulation than the wild type) of

hyperswarmers cannot be accounted for by the reduction in growth

rate, which is 7% lower than that of the wild type and leads to an

average of 10.7% reduction in biomass accumulation in liquid

media with the same concentration of nutrient (Appendix Fig S1B).
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On nutrient-rich media or media with lower agar density, non-

branching colonies expand and grow more efficiently than the

branching ones, as predicted by the model (Fig 2B, panels b, c).

Our modeling analysis further shows that the optimal combina-

tion of W and D can be tuned by changing the growth environment,

e.g., by varying the nutrient availability (N0) and colony expansion

efficiency (c) (Fig 3A). The observed patterns of wild-type Pseu-

domonas colonies vary with the compositions of the swarming

media, and the trend roughly follows the predictions of the model:

as the nutrient concentration increases or the agar density

decreases, Pseudomonas form colonies with wider branches and

greater total colony areas (Figs 3B and EV2).

Predicting branching patterns using the optimization rule

Our results suggest that the branched colony growth in PA14 on

swarming media approximately follows an optimization rule (for the

range of experimental conditions examined): Under each condition,

bacterial colonies develop the optimal pattern that maximizes

growth efficiency. This simple rule imposes a constraint on the

branching process, which enables the prediction of colony patterns

as experimental conditions change. Again, the initiation of branches

in this model is imposed by defining the branch widths and densities.

In particular, results from screening (Fig 3A) provide a mapping

between the growth conditions and the optimal combinations of W

and D. If we assume that this mapping is maintained locally, it allows

us to determine the local W and D of colony branches and predict the

colony patterns under more complex conditions.

To test this notion, we first relaxed the simplifying assumption of

1D branch extension. Instead, we implemented a model of branch-

ing growth in 2D starting from one (Fig 4A) or multiple inoculating

points. Each branch extends following the local nutrient gradient;

the boundary of a branch is set by W, and bifurcations are deter-

mined by D (Figs 4A and EV3). Specifically, we track the tip of a

growing branch and calculate the local branch density. As the branch

extends, if the local branch density falls below a predefined threshold
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Figure 2. Branching patterns enable optimal colony growth when nutrient or expansion of the colony is restricted.

A The optimization model implemented with different combinations of branch width and density reveals the optimal colony patterns that yield the highest biomass
under different conditions. Colors indicate the total biomass (unit: c.u. mm2; c.u.: cell density unit) at the same time point (t = 24 h). At or beyond the diagonal of the
heatmap (where WD = 1), the colony becomes uniform with no branches. (a), (b), and (c) correspond to different initial nutrient concentrations (N0) or expansion
efficiency (c) (a: N0 = 8 g/l, c = 7.5 mm/h/c.u.; b: N0 = 30 g/l, c = 7.5 mm/h/c.u.; c: N0 = 8 g/l, c = 25 mm/h/c.u.). Other parameters: DN = 6 mm2/h;bN = 160 g/l/h/c.u.;
aC = 0.8/h; KN = 0.8 g/l; Cm = 0.05 c.u.

B Pseudomonas colonies with the optimal patterns predicted by the model show higher growth efficiency than the ones with non-optimal patterns. When nutrient or
expansion of the colony is restricted (a: growing on media with 4 g/l casmino acids and 0.5% agar; the experiment was independently replicated twice; n = 5 for wild
type and n = 10 for hyperswarmers), wild-type Pseudomonas PA14 that develop branching patterns grow more efficiently than hyperswarmers that show uniform
expansion. On media with higher nutrient concentration (b: with 8 g/l casmino acids and 0.5% agar; the experiment was independently replicated four times; n = 12
for wild-type and n = 24 for hyperswarmers) or wetter surface (c: with 4 g/l casmino acids and 0.4% agar; the experiment was independently replicated twice; n = 4
for wild type and n = 8 for hyperswarmers), hyperswarmers yield more biomass than the wild type. Images were taken at 20 h after inoculation and are
representatives of replicates. One image from Fig 1A is reused in (b). Scale bar: 1 cm.

Source data are available online for this figure.
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(2/3D), branch bifurcation is triggered and a new sub-branch initi-

ates. The predictions of the optimal patterns by models with 1D or

2D branch extension formulations are consistent (Appendix Fig S3).

A key new assumption is that W and D are set according to the

local growth environment, which depends on the initial distribu-

tions of nutrient and changes as the colony expands. Starting from a

single inoculating point on an initially uniform distribution of

growth medium, the resulting patterns under different conditions

reliably capture the branching patterns observed experimentally in

terms of both branch structure and distribution (Fig 4B).

The quantitative features of these patterns also depend on other

model parameters, such as the diffusivity of the nutrient (DN) and

the growth rate of cells (aC). Varying these parameters leads to

diverse branching patterns, including thin dendrites or patterns with

densely packed fingers (Fig EV4). These patterns resemble colonies

of other bacterial species, such as Pseudomonas dendritiformis

(Ben-Jacob et al, 2004). Therefore, our model is applicable to other

microbial systems and may explain why different bacterial colonies

generate drastically distinctive patterns.

This modeling framework also enables interpretation or predic-

tion of pattern formation under heterogeneous conditions. As an

illustration, consider the branched colony growth on a swarming

medium with a linear gradient of nutrient. When the gradient is steep

enough, we observe asymmetric colony growth, but, unexpectedly,

colonies expand faster on the side with lower nutrient concentration

(Fig 5A). With appropriate parameters, our model is able to reproduce

this counterintuitive phenomenon (Fig 5A). Simulations suggest that

the phenomenon results from the asymmetry of W and D: Limitation

of nutrient triggers the development of thin branches as opposed to

the wider branches on the nutrient-rich side; with comparable

biomass accumulation rates on each side, the thinner branches extend

faster, leading to apparent anti-gradient expansion.

To explore the parameter space that allows anti-nutrient-gradient

growth, we carried out systematic parameter screening (Fig 5B).

This scheme can be used to search parameters for simulating more

complex patterns, such as patterns of colonies growing on media

with arbitrary patterns of nutrients or surface wetness. Given one set

of model parameters, firstly we find out the optimal patterns under

different nutrient concentrations by screening through combinations

of W and D (Step 1), thereby obtaining the mapping between the

nutrient concentrations and the optimal patterns (Step 2). By imple-

menting this mapping in the model, we can predict the colony

patterns growing under heterogeneous distributions of nutrient and

search for parameters that generate anti-gradient growth (Step 3).

To accelerate the screening process and explore the parameter

space more extensively, we used machine learning to emulate the

model’s predictions (Step 4). Step 1 is very time-consuming because

for each parameter set, searching for the optimal pattern requires

screening through thousands of patterns. A neural network-based

framework we developed previously (Wang et al, 2019) allows us to

accelerate the process more than 30,000 times with high accuracy

(Appendix Fig S4).

Using the neural networks trained with the results of 1,000

parameter sets, we screened 30,000 parameter sets in the parameter
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Figure 3. The optimal colony patterns that maximize biomass accumulation vary with growth conditions.

A Under various sets of initial nutrient concentrations and expansion efficiencies, the optimal branch density and width that yield the highest biomass varies. Colors
indicate the total biomass (unit: c.u. mm2) at the same time point (t = 24 h) scaled to the min/max values in each subpanel. At or beyond the diagonal of the
heatmap (where WD = 1), the colony becomes uniform with no branches. Other parameters: DN = 6 mm2/h; bN = 160 g/l/h/c.u.; aC = 0.8/h; KN = 0.8 g/l; Cm = 0.05
c.u.

B The features of the patterns developed by Pseudomonas colonies under different growth conditions are generally consistent with the optimal patterns predicted by
the model. The colony expansion efficiency is modulated by changing the agar density. Images of colonies were taken once colonies reached the plate boundaries or
stopped growing. The experiment was independently replicated five times. Images shown are representatives of the replicates. Scale bar: 1 cm.

Source data are available online for this figure.
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Figure 4. Predicting 2D colony patterns by applying the optimization rule.

A Simulating 2D expansion of branching patterns. The colony starts from a point inoculum (open circle) where branches initiate. Solid lines represent the trajectories of
the branch tips (dots). The local branch density at a certain branch tip is given by 1/d, where d is the distance of the branch tip to its nearest neighbor. The given
branch width (W) and density (D) determine the shape and bifurcation of branches: The boundary of the colony is at a radius of W/2 from the branch tip trajectories;
the branch bifurcates to maintain the local branch density around D. The growth direction of branches follows the local nutrient gradient. Nutrient distribution, cell
growth, and branch extension are calculated as described earlier (Fig 1C).

B The simulated colony patterns capture the general features of the observed patterns of Pseudomonas colonies. For the simulations, under each condition, we
implement the optimal W and D that give the maximum biomass to generate the predicted optimal patterns. Other parameters: DN = 6.951 mm2/h; bN = 216.9 g/l/h/
c.u.; aC = 1.486/h; KN = 1.156 g/l; Cm = 0.0548 c.u. In experiments, the colony expansion efficiency is modulated by changing the agar density. Images from Fig 3B are
reused. Scale bar: 1 cm.

Source data are available online for this figure.
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Figure 5. Predicting colony patterns under heterogeneous conditions.

A Anti-nutrient-gradient growth observed in Pseudomonas colonies (the upper panels) and simulated using the model (the lower panels). Numbers: casamino acid
concentration (g/l) on the two ends of the petri dish. The experiment was independently replicated three times, and representative images are shown. Scale bar:
1 cm. Parameters used in the simulations are obtained by systematic screening described in (B): DN = 5.749 mm2/h; bN = 195.5 g/l/h/c.u.; aC = 1.105/h; KN = 0.6635 g/l;
Cm = 0.07890 c.u.; c = 7.513 mm/h/c.u.

B Systematic screening for the parameter space that satisfies the growth behaviors of colonies under heterogeneous conditions. ① With a given set of randomized
model parameters, we generate heatmaps of biomass under different nutrient concentrations by screening through combinations of branch widths and densities
(colors represent biomass accumulation; unit: c.u. mm2); ② we find the optimal patterns under different nutrient concentrations and obtain the mapping between
the optimal patterns and the nutrient concentration; ③ with the mapping and the model parameters, we predict the patterns under heterogeneous conditions (e.g.,
media with a nutrient gradient); ④ to accelerate and enhance the throughput of the screening, we use the simulation data of step ① to train neural networks that
allow us to emulate the model and generate more data with great efficiency (yellow arrows).

Source data are available online for this figure.
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space estimated from experimental measurements (Appendix Sup-

plementary Methods). We identified a parameter space that gener-

ates anti-nutrient-gradient colony expansion consistent with

experimental observations. The distribution of the identified param-

eters reveals that for anti-nutrient-gradient growth to occur, the

nutrient consumption rate (bN) needs to be relatively high and the

cell growth rate (aC) and expansion efficiency (c) need to be rela-

tively low (Appendix Fig S5), suggesting the association of this

phenomenon with constrained cell growth and movement.

The model is also able to predict colony patterns with increas-

ingly complex growth configurations. We seeded multiple colonies

in the same petri dish with different configurations, including scat-

tered dots, continuous lines, and complex patterns. Simulations of

multiple colonies with these various initial seeding configurations

correlate well with observed patterns (Figs 6 and EV5). As branches

of neighboring colonies avoid each other, patterns vary with the

configuration of the initial seeding spots. In our model, the lengths

of branches are determined by the local biomass accumulation, and

the growth directions are guided by the local nutrient gradient. The

model captured the characteristics of the growth direction and

length of branches starting from different seeding configurations,

demonstrating that the local growth is sufficient to account for these

growth behaviors.

Discussion

In typical biophysical models, patterns emerge from assumed local

interactions with appropriate parameter values. Such an approach is

limited by the difficulties in mapping the experimental system to the

Figure 6. Predicting colony patterns with various seeding configurations.

Simulated and observed colony patterns when colonies initiate from discrete dots, continuous lines, or complex patterns that carry information. Upper rows: initial seeding
locations; middle rows: simulations based on the optimization rule; lower rows: images of Pseudomonas colonies inoculated with the corresponding configurations using an
automated liquid handling system (0.1 ll cell culture with OD600 ~0.2 was dispensed at each spot). The experiment was independently replicated three times, and
representative images are shown. Scale bar: 1 cm. In simulations, patterns are initialized from spots with radius of 5 mm and uniform initial cell density C0 = 1.6 c.u. The
parameters for the simulations are as follows: DN = 5.749 mm2/h; bN = 195.5 g/l/h/c.u.; aC = 1.105/h; KN = 0.6635 g/l; Cm = 0.07890 c.u.; c = 4 mm/h/c.u.; N0 = 14.5 g/l.

Source data are available online for this figure.
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mathematical description at the proper abstraction level, such that

the model can both capture the overall patterning dynamics and

guide experimental interrogation. A typical modeling framework is

to use reaction-diffusion equations, where “reaction” describes

processes such as cell reproduction and death and “diffusion” is

dictated by cell dispersal (Kawasaki et al, 1997; Matsushita et al,

1998a; Kozlovsky et al, 1999; Mimura et al, 2000; Trinschek et al,

2018). In the simplest case of such a model, cell motility is described

by a diffusion term, where the dispersal rate constant provides a

lumped description of the collective motion of cells (active or being

pushed by neighboring cells) (Kawasaki et al, 1997; Matsushita

et al, 1998a; Mimura et al, 2000). Models taking these forms have

demonstrated the mathematical conditions leading to pattern emer-

gence but have limited predictive power of observed branching

morphologies under different conditions (Giverso et al, 2015b).

More sophisticated descriptions of cell motility have been used, but

the invoked mechanistic assumptions are difficult to test experimen-

tally (Kozlovsky et al, 1999; Trinschek et al, 2018).

To bypass the difficulties in modeling colony branching patterns

based on biophysical mechanisms, we approach this problem from

a different perspective: whether branching patterns serve a physio-

logical role in bacterial colonies. We frame the growth of colonies as

an optimization problem to address the relationship between colony

patterns and the fitness of the population. In our modeling frame-

work, the essential properties of branched patterns are imposed,

which in turn determine the outcome, the overall biomass accumu-

lation. This approach allows a direct mapping between population

fitness and colony morphology. In principle, this modeling frame-

work can also be applied to other systems with similar dynamics of

spatial expansion and resource utilization, for example, ecosystems

that generate spatial patterns such as vegetation and mussel beds

(Rietkerk & van de Koppel, 2008).

The optimization model shows that colonies with thin branches

have a higher growth advantage when nutrient access or cell motil-

ity is restricted; otherwise, wide branches or non-branching expan-

sion are more efficient for colony growth. These results suggest that

the emergence of branching patterns may be an adaptation of bacte-

rial colonies to surface growth in adverse environments where cell

growth or motility is constrained. Similar to what we find in bacte-

rial colonies, vegetation patterns ranging from stripes to spots

emerge under resource-limited conditions (von Hardenberg et al,

2001; Rietkerk & van de Koppel, 2008), hinting at similar underlying

mechanisms. Beyond the colony geometry, other physiological

parameters, such as the cell motility, the cell growth rate, and the

balance between motility and growth, may also be subject to

evolutionary optimization (van Ditmarsch et al, 2013; Fraebel et al,

2017; Gude et al, 2020). Our findings suggest that evolution may

select for the optimal colony morphology, which is a macroscopic,

population-level property resulting from cellular-level interactions.

The formation of multicellular and macroscopic structures by micro-

bial communities that benefit the population as a whole is widely

observed; other examples include the formation of patches (Ratzke

& Gore, 2016), filaments (Pfeffer et al, 2012), spore-filled fruiting

bodies (Munoz-Dorado et al, 2016), and biofilms with intricate

structures (Epstein et al, 2011; Wilking et al, 2013; Kempes et al,

2014; Gingichashvili et al, 2019). These social traits of microbes

reflect intercellular cooperation and coordination, which are the

hallmarks of multicellularity (Shapiro, 1988; Lyons & Kolter, 2015).

More broadly, the collective problem-solving ability without central-

ized control by microbes can inspire algorithm design and novel

computing methodology (Abelson et al, 2000; Tero et al, 2010).

Due to the complex and tangled nature of biological systems,

mathematical descriptions that have both high accuracy and gener-

ality are difficult to obtain. By choosing an appropriate abstraction

level, however, one can often obtain simple and general rules that

have quantitative predictive power. Examples include the prediction

of collective behavior of a population using coarse-grained abstrac-

tion of local interactions (Maire & Youk, 2015; Gordon, 2016), unify-

ing rule that predicts outcomes of mutualistic systems (Wu et al,

2019), the linear correlation between cell growth and lysis (Lee

et al, 2018), the interdependence of gene expression and cell growth

or size (Scott et al, 2010; Tanouchi et al, 2015), scaling laws of drug

responses (Wood et al, 2014), and prediction of complex commu-

nity dynamics based on pairwise interactions (Friedman et al, 2017;

Venturelli et al, 2018). This coarse-graining strategy has also proven

effective in guiding the measurement and tuning of synthetic gene

circuits (Shin et al, 2020).

By abstracting away low-level mechanistic details of branch

formation, our coarse-grained description of the branching dynam-

ics allows us to deduce a simple rule of colony pattern formation

that is experimentally validated: Colonies form patterns that maxi-

mize the growth efficiency in the particular growth environment.

This simple rule imposes a constraint for the molecular interactions

underlying branching pattern formation: That is, the underlying

biophysical models should have the ability to generate the branch-

ing widths and densities required for optimal growth. Such a

constraint has not been considered in previous models of branching

patterns. As demonstrated by our results, this simple rule also

enables predictable programming of complex patterns by controlling

growth conditions and seeding configurations.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

Pseudomonas aeruginosa PA14 Joao B. Xavier’s lab (Memorial Sloan-
Kettering Cancer Center, New York)

N/A

Chemicals, enzymes and other reagents

Na2HPO4 (anhydrous) Sigma S3264
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

KH2PO4 (anhydrous) Sigma P5655

NaCl Sigma S3014

MgSO4 Sigma M7506

CaCl2 Sigma C1016

Casamino acids BD Bacto 223120

Granulated agar BD Difco 214530

Software

MATLAB R2019b MathWorks

Other

MANTIS automated liquid handler FORMULATRIX

UVP Colony Doc-It Imaging Station Analytik Jena

Plate reader Tecan Infinite 200

Methods and Protocols

Bacterial strains and growth conditions
The strains used in this study were Pseudomonas aeruginosa PA14

(wild-type) and Pseudomonas aeruginosa PA14 fleN (the hyper-

swarmers) isolated from experimental evolution. To grow bacteria

colonies and observe the patterns, bacteria were cultured in LB

medium overnight in a shaker incubator at 37°C and 200 rpm. The

overnight culture (200 ll) was diluted in 1 ml fresh LB medium and

incubated at 37°C and 200 rpm for an additional 3 h to allow the

cells to recover to the exponential growth stage and reach a final

concentration of OD600 0.2–0.4. The swarming medium was freshly

prepared (Xavier et al, 2011), and 20 ml of medium was pipetted

into each petri dish (100 mm, Falcon). After the medium had solidi-

fied, 1 ll of cell culture was pipetted onto the medium surface at

the center of each plate, and plates were left to dry on the bench for

15 min with lids open. The plates were then incubated upside down

at 37°C in an incubator.

We used a MANTIS automated liquid handler (FORMULATRIX) to

inoculate multiple colonies with designed initial patterns. The patterns

were designed using the MANTIS dispense designer with the template

for a 1,536-well microplate. Cell culture (0.1 ll) was dispensed onto

the medium surface at each spot of the initial patterns.

Swarming medium
We prepared swarming medium to generate branching patterns of

Pseudomonas following the following recipe adapted from Xavier

et al, (2011): 200 ml of 5× stock phosphate buffer, 1 ml of 1 M

MgSO4, 1 ml of 0.1 M CaCl2, casamino acid stock solution (200 g/l),

agar stock solution (1.25%, melted), and sterilized water to make

up 1 liter. The volumes of casamino acids and agar were determined

by the needed final concentrations. To make 1L 5× phosphate buffer

stock solution, we dissolved 12 g Na2HPO4 (anhydrous), 15 g

KH2PO4 (anhydrous), and 2.5 g NaCl in water and sterilized by

autoclaving. To make 200 ml casamino acid stock solution, we

dissolved 40 g casamino acids (GibcoTM BactoTM 223120) in water

and sterilized by filtering. To make 1L agar stock solution, we added

12.5 g granulated agar (BD DifcoTM 214530) in water and sterilized

by autoclaving. Each swarming plate was prepared by pipetting

exactly 20 ml of medium into a petri dish (100 mm, Falcon), and

the dish was allowed to cool for 20 min to 1 h.

To make swarming plates with a nutrient gradient (for exam-

ple, 0–20 g/l casamino acids), first we pipetted 10 ml of melted

medium containing 20 g/l casamino acids into a petri dish and

elevated one side of the dish. An agar wedge formed when the

medium solidified. Then, we laid the dish flat, pipetted another

10 ml of melted medium containing no casamino acids, and let it

solidify. A concentration gradient of casamino acids formed after

a few hours due to the diffusion of casamino acids between the

two layers of agar.

Imaging and quantification of colonies
Bacterial colonies growing on plates were imaged with a UVP

Colony Doc-It Imaging Station with epi white light. The brightness

and contrast of all images were enhanced using the same setting.

Branch widths of colonies were measured in a semi-automated

manner using a custom-made MATLAB code. An algorithm was

developed to measure the widths of all branches in a colony at

the same radial distance from the colony center; for the same

colony, the measurements were repeated at different radial

distances which were equally spaced. When the algorithm made

mistakes in distinguishing individual branches or introduced

errors when measuring branches that were not extending in the

radial directions, these data were excluded by manual inspection.

The measured branch widths were averaged and recorded as the

mean branch width of this colony. The mean branch widths of

several colonies under the same condition were averaged to

obtain the average branch width of colonies in a particular experi-

mental group.

Experimental evolution and sequencing
We carried out experimental evolution of Pseudomonas aeruginosa

PA14 on swarming media with 8 g/l casamino acids and 0.5% agar.

After 20 h of growth, we collected the entire colony from the plate

and diluted the cells with LB medium. We used approximately 106

cells to inoculate a new plate with swarming medium. This proce-

dure was repeated for seven consecutive days. The collected cell

population of day 7 was streaked on a LB plate to isolate individual
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strains that emerged during evolution. We observed colony patterns

of the isolated strains and carried out whole-genome sequencing.

Genomes of Pseudomonas aeruginosa PA14 variants and the ances-

tor strain (the lab wild-type strain) were sequenced using Illumina

NovaSeq (6000 S-prime 150 bp PE) with an average of 300–400 cover-

age. Initial read quality checks were carried out using FastQC. Sequenc-

ing reads were then processed using the TrimGalore toolkit to trim low-

quality bases from the 30 end of the reads and Illumina sequencing

adapters. Only reads that were 20nt or longer after trimming were kept

for further analysis. Reads were aligned to the Ensembl Pseudomonas

aeruginosa PA14 genome reference (Pseu_aeru_PA14_V1) using BWA-

mem. Putative variants were detected using variant caller FreeBayes

and annotated. Only variants for which at least one sample had been

genotyped as different from the reference were kept.

Growth measurement
We measured the growth curves of Pseudomonas using a plate

reader (Tecan Infinite 200). In each well of a 96-well plate, we

added 200 ll liquid swarming media (prepared by substituting the

agar solution with water), 2 ll cell culture (overnight cultures of dif-

ferent replicates and strains were diluted 10×–50× to the same cell

density), and 50 ll mineral oil (to prevent evaporation). The cells

were then incubated in the plate reader at 37°C, and OD600 measure-

ments were taken at 10-min intervals for 24 h.

Measuring the relative mobility of cells
Pseudomonas colonies were grown on solid LB media, so they

expanded radially without developing branches. After 16 h of

growth in 37°C, the diameters of the colonies were measured under

a microscope every 2–3 h. The growth speed (the increasing rate of

the colony diameter), m, of each colony was obtained by fitting the

diameters to linear functions of time. Assuming the growth and

expansion of a radially expanding colony can be described by

Fisher’s equation, the cell diffusivity or the relative mobility of cells

is proportional to m2 (Murray, 2007).

Mathematical modeling
The formulation of the models and parameter estimation is

described in the Appendix Supplementary Methods. The model was

implemented and solved numerically in MATLAB (R2019b).

Machine learning
We used Python version 3.6.5 and implemented TensorFlow 1.11.0

for neural network design and trainings/validations/tests. During

data preprocessing, we used min–max scaling to normalize all the

input parameters to be within the region of 0–1. Our neural

networks have nine input parameters and one output, which corre-

sponds to the colony biomass. Between the input layer and output

layer, we have four fully connected layers with 512, 512, 256, and

128 nodes, respectively. We used the HE initialization method and

leaky RELU as activation function with the negative slope a = 0.2

(He et al, 2015; G�eron, 2017). We chose the initial learning rate to

be 0.001, and we performed adaptive moment estimation and gradi-

ent clipping to prevent exploding gradients. Moreover, we trained

three neural networks and implemented an ensemble method to get

the final prediction (Wang et al, 2019). This method can further

reduce prediction errors and make neural network predictions more

accurate and reliable.

Data availability

The MATLAB codes used for data generation and/or analysis in the

study are available on GitHub: https://github.com/youlab/Optima

lPatterns_NanLuo.

Expanded View for this article is available online.
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