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A B S T R A C T   

Psoriasis is a chronic inflammatory skin disease, characterized by thick scaly plaques. It imposes a notable 
disease burden with varying levels of severity affecting the quality of life significantly. Current disease severity 
assessment relies on semi-objective visual inspection based on the Psoriasis Area and Severity index (PASI) score 
that might not be sensitive to sub-clinical changes. Histology of psoriasis skin lesions necessitate invasive skin 
biopsies. This indicates an unmet need for a non-invasive, objective and quantitative approach to assess disease 
severity serially. Herein, we employ multispectral Raster-Scanning Optoacoustic Mesoscopy (ms-RSOM) derived 
structural and microvascular functional imaging metrics to examine the lesional and non-lesional skin in pso
riasis subjects across different severities and also evaluate the treatment outcome in a subject with topical ste
roids and biologics, such as adalimumab. ms-RSOM derived structural metrics like epidermal thickness and total 
blood volume (TBV) and microvascular functional information such as oxygen saturation (sO2) are evaluated by 
spectrally resolving the endogenous chromophores like melanin, oxy-, and deoxy-hemoglobin. Initial findings 
reveal an elevated sO2 and TBV with severity in lesional and non-lesional psoriasis skin, thus representing 
increasing inflammation. An increase in epidermal thickness is also noted with the degree of severity, corre
sponding to the inflammation and increased abnormal cell growth. As a marker to evaluate the treatment 
response, we observed a decrease in epidermal thickness, sO2, and TBV in a psoriasis patient post-treatment, 
which is consistent with the decrease in the PASI score from 4.1 to 1.9. We envision that ms-RSOM has a 
huge potential to be translated into routine clinical setting for the diagnosis of severity and assessment of 
treatment monitoring in psoriasis subjects.   

1. Introduction 

Psoriasis is a chronic skin disease with well-demarcated scaly pla
ques affecting the scalp, trunk and limbs. It is a result of a dysregulation 
of the skin immune system that causes a rapid replacement of the skin 
[1]. Dysregulation of the immune system can occur due to genetic risk 
factors, immune suppressant medications like steroids, immune re
sponses such as allergies or due to autoimmunity [2]. Psoriasis is an 
inflammatory skin disorder where the immune cells known as T cells 
attack normal healthy skin cells in the body which release signals to 

recruit other immune cells creating an inflammatory environment 
within the skin [3]. This causes the body to generate keratinocytes at an 
undesirable faster rate which results in keratinocytes stacking on top of 
each other [3]. There are many types of psoriasis, some common types of 
which include plaque, scalp, nail, guttate, and inverse psoriasis, while 
less common types include localized pustular, generalized pustular, 
palmoplantar and erythrodermic psoriasis [1]. There is variation with 
disease severity and psoriatic comorbidities include metabolic disorders, 
ischemic heart disease, inflammatory bowel disease, and uveitis [1,4]. 
Psoriasis may also result in psoriatic arthritis which affects one’s daily 
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life [5]. Additionally, psoriasis may be associated with psychological 
comorbidities such as low self-esteem, anxiety or depression [5]. Given 
that psoriasis can affect one’s health to a great extent, affecting the 
quality of life, it is important to have an objective tool that can accu
rately and non-invasively identify and evaluate psoriasis’s severity at an 
early stage, so that early treatment can be initiated to reduce the cu
mulative life course impairment [6]. 

Currently, the severity of psoriasis is assessed clinically using the 
Psoriasis Area and Severity Index (PASI) score [7], which involves visual 
examination of the skin, scalp and nails for signs of psoriasis, and 
through questionnaires directed to the patients to better understand 
their health and disease history [1,8]. Dermoscopy offers a horizontal 
view, revealing the vascular pattern and enhanced visibility of the skin 
and blood vessels, where psoriatic lesions would show uniformly 
distributed ‘dotted’ or ‘pinpoint’ capillaries, along with coiled vessels, 
against a light red background with white diffuse scales [8]. Analyzed 
skin lesions of psoriasis are then recorded and stored in a computer 
under standardized conditions using video dermoscopy. But the PASI 
score and dermoscopy currently used still have many drawbacks. 
Although, PASI may seem like a well-developed form of scoring mea
surement, it is semi-objective as it relies entirely on the doctor’s expe
rience in examining the skin condition [9]. Research has shown that 
there is substantial difference between the PASI scores calculated by 
experienced and inexperienced physicians, which raises concerns for its 
reliability [10]. Additionally, PASI lacks sensitivity as erythema, 
desquamation, and induration within the four body region are scored 
with equal weightage [10]. This should not be the case as occurrences at 
the palm and soles can affect a patient from work and other life activities 
more greatly than if it occurs at the trunk. In addition, PASI only in
volves surface level examination of the skin which fails to reflect what is 
happening beneath the skin surface, which may be of greater concern. 
Similar to the PASI score, dermoscopy examination also primarily en
tails surface level skin information and depends highly on the clinicians’ 
expertise in interpreting thermoscopic images which can be subjective. 

To comprehend the underlying pathophysiology non-invasively, 
optical coherence tomography (OCT) typically using and other imag
ing modalities offer insights without resorting to invasive procedures 
like skin biopsy [11]. Skin biopsy’s invasive nature, involving tissue 
removal, poses risks such as bleeding and damage to surrounding tissues 
[12], making it less favorable among patients. OCT is based on 
low-coherence interferometry, collects a small portion of the light that 
reflects from sub-surface features when an optical beam is directed at the 
tissue. It capable of imaging 1–2 mm beneath the skin surface, provides 
detailed information on structural and microvascular changes in 
real-time [13,14]. While widely used in early-stage skin cancer diag
nosis and excelling in deep vertical slice imaging, OCT has less cellular 
resolution (a few μm) as compared to confocal microscopy (~1 μm), and 
lacks the ability to image pigmented lesions [14,15]. A recent version of 
OCT, Line-field confocal optical coherence tomography (LC-OCT) 
merges the strengths of both, achieving an impressive spatial resolution 
of ~1 μm, and penetration depth of ~500 μm, revealing structural de
tails of the skin, but fails in providing functional and hemodynamic 
information, which poses as a limitation to treatment monitoring ap
plications [16,17]. Given these constraints, a non-invasive diagnostic 
method that sensitively detects skin changes with minimal bias is 
essential for comprehensive assessment and monitoring of psoriasis 
treatment responses [18]. Accurate monitoring is crucial for optimizing 
medication usage during treatment, ensuring effectiveness while 
avoiding adverse effects [19]. In this context, optoacoustic (photo
acoustic) imaging (OAI) which has a similar spatial resolution to OCT 
(~10 μm) emerges as a potential non-invasive objective diagnosis 
method that provides functional information [20]. 

OAI employs short-pulsed laser excitation of tissue to cause transient 
temperature rise leading to thermoelastic expansion generating acoustic 
waves that are detected using an ultrasonic transducer [20]. Tissue 
thermoelastic expansion, resulting from light absorption by 

chromophores, facilitates image generation [21]. OAI, uniquely capable 
of assessing infectious pigmented skin lesions, surpasses OCT in this 
regard [22]. Various OAI versions include macroscopic optoacoustic 
tomography and optoacoustic microscopy. Optoacoustic tomography, 
employing lower central frequency detector to collect ultrasound sig
nals, enables deeper penetration in centimeters with macroscopic-scale 
resolution. This technique is used for detecting hemodynamic changes in 
foot vessels and assessing breast tumor margins [23,24]. Conversely, 
optoacoustic microscopy, also known as photoacoustic microscopy 
(PAM), utilizing a higher central frequency detector to capture the ul
trasound signals from superficial smaller structures, encounters limita
tions in imaging depth due to the frequency-dependent ultrasonic 
attenuation in tissue. In PAM, the dual foci of the optical excitation and 
ultrasonic detection are typically configured confocally to optimize 
sensitivity. Depending on whether the optical or ultrasonic focus is finer, 
PAM is further categorized into optical-resolution (OR) and 
acoustic-resolution (AR) PAM [25,26]. In OR-PAM, optical focus is 
much tighter than the acoustic focus, providing a high lateral resolution 
at the subcellular or cellular scale ranging from a few hundred nano
meters to a few micrometers [25]. In contrast, in AR-PAM, the acoustic 
focus is finer than the optical focus. Despite diffuse optical excitation, 
diffraction-limited acoustic detection ensures lateral resolution in the 
tens of micrometers range. This capability persists at depths beyond the 
optical diffusion limit, reaching a few millimeters [26]. PAM is benefi
cial for stem cell monitoring, imaging of breast tumor, gastrointestinal 
tumor and eye etc. [27–29]. 

In this study, we used innovative multi-spectral raster-scanning 
optoacoustic mesoscopy (ms-RSOM), operating in wide broadband 
detection mode spanning 11 ~ 99 MHz. It effectively balances the depth 
and resolution, providing up to ~ 2 mm with a lateral resolution of 
~40 µm, which is well-suited for skin imaging [30–32]. To enable 
advanced imaging of various skin chromophores and derive functional 
information, ms-RSOM utilizes a high repetition rate laser at four 
distinct wavelengths. This setup facilitates spatial visualization and 
unmixing of different chromophores [20]. In our previous study focused 
on imaging of atopic dermatitis (AD), ms-RSOM effectively differenti
ated between lesional and non-lesional skin, providing valuable insights 
into oxygen saturation (sO2) and revealing nuanced morphological and 
physiological aspects across varying severities[20]. 

Historically, investigations have predominantly employed single- 
wavelength OAI to elucidate structural details in human subjects. The 
application of functional imaging, however, has been primarily confined 
to studies involving animals. Aguirre J. et al. have showcased the appli
cation of single wavelength RSOM to visualize skin morphology and 
vascular patterns in the dermal and sub-dermal layers of six psoriasis 
patients. Their results were validated with corresponding histopathology 
samples in terms of epidermal thickness and vessel diameter. This method 
enabled the quantification of inflammation and other psoriasis bio
markers without the need for contrast agents [32]. Benedikt H. et al. 
proposed a study that involved 80 measurements of 20 psoriatic skin 
plaques under diverse treatments, underscored the potential of opto
acoustic mesoscopy in delivering label-free assessments of inflammation 
biomarkers through three-dimensional, high-resolution images of human 
skin [33]. Additionally, Wang et al. emphasized the capacity for 
high-resolution anatomical structure visualization of human skin using 
optoacoustic dermoscopy [34]. In the pursuit of monitoring therapeutic 
responses in psoriasis plaque, K. Ossadnik et al. investigated the patho
logical changes in vascular structures of patients using OAI and confocal 
laser scanning microscopy [35]. In a pioneering initiative, Luo et al. 
designed a broadband, high-frequency ultrasonic transducer for func
tional OAI to explore psoriasis progression in a small animal model [36]. 
Our study marks the first integration of both structural and functional 
imaging to assess the degree of inflammation as a surrogate indicator of 
lesional psoriasis severity, and quantitatively monitor treatment re
sponses through high-resolution OAI. This approach holds promise for 
gaining insights into various treatment protocols and topical applications. 
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In this research, we introduce a novel approach by combining 
functional information such as sO2 in the skin microvasculature with 
structural information, including epidermal thickness and total blood 
volume (TBV). These parameters, for the first time, serve as biomarkers 
to assess the degree of inflammation in psoriasis in both lesional and 
non-lesional areas. Additionally, we showcase the objective quantifica
tion of the structural and functional metrics for treatment response using 
topical steroids and the biologic adalimumab. The collective informa
tion on skin microvasculature emerges as a promising and objective 
biomarker, offering non-invasive imaging capabilities for investigating 
inflammatory skin diseases and their treatment responses. 

2. Methods 

2.1. Subjects 

The study included eight psoriasis patients recruited from the Na
tional Skin Centre, Singapore, comprising two mild, three moderate, and 
three severe cases. Average PASI scores were 3.1 ± 1.48 for mild, 8.9 ±
3.8 for moderate, and 20.3 ± 4.3 for severe cases. All subjects had 
Fitzpatrick scores of types III to IV, minimizing external confounding 
factors. OAI using ms-RSOM was performed on the ventral forearm, 
capturing images from a 5 mm×3 mm area over a representative psori
asis skin lesion and a non-lesional area at least 2 cm away. The study was 
approved by the National Healthcare Group (NHG) Domain Specific 
Review Board (DSRB), Singapore (Ref No. 2020/00079), with patient 
consent obtained in compliance with institutional approvals. 

2.2. Multi-spectral RSOM imaging workflow 

The ms-RSOM system (RSOM Explorer ms-C50, iThera Medical 
GmbH, Munich, Germany) has been meticulously devised to achieve 
high-resolution clinical visualization of superficial microvasculature, 
presenting intrinsic optical tissue contrast at mesoscopic scales. 
Demonstrating an axial and lateral resolution of up to 10 µm and 40 µm 
respectively at penetration depths of 2 mm, as expounded in our previ
ous publication [20]. This innovative system integrates a nanosecond 
Raman laser with four distinct wavelengths (532, 555, 579, and 606 nm) 
and an ultra-broadband transducer (center frequency 50 MHz, band
width 11–99 MHz), shown in Fig. 1. The absorption of light by different 
chromophores leads to the production of pressure waves, detectable 
through an ultrasound transducer, subsequently reconstructed into 
single-wavelength images. To enhance visualization, a frequency 

separation approach is implemented such that the lower frequency 
band, spanning 11–33 MHz corresponds to larger structures, while the 
higher frequency band, ranging from 33 to 99 MHz represents smaller 
vascular structures [20]. Employing spectral unmixing, a linear regres
sion algorithm incorporating non-negative constraints is employed to 
discern distinct skin chromophores based on their respective absorption 
spectra within the induced light wavelengths. Multiple wavelengths’ 
illumination facilitates the reconstruction of a three-dimensional spatial 
map of skin chromophores, including melanin, oxy-hemoglobin (HbO2) 
and deoxy-hemoglobin (Hb) by spectral unmixing. It affords the quan
tification of functional information, such as sO2 in microvasculature. 
The system’s unique capability to calculate sO2 in individual vessels 
distinguishes it from other optical imaging techniques, providing un
precedented insights into tissue oxygenation states. 

2.3. Quantitative analysis of specific imaging metrics 

In our investigation, we employed ms-RSOM images derived four 
metrics to explore changes in the vascular structure and function, 
including (1) sO2, (2) relative difference of sO2 between lesional and 
non-lesional area (δsO2), (3) TBV, and (4) epidermal thickness (ET). 
Min-max normalization was implemented to scale the metric values 
within the range of 0 to 1. We quantitatively analyzed normalized sO2, 
δsO2, TBV, and ET across different severity levels in psoriasis patients. 
Furthermore, we evaluated these four imaging metrics along with three 
clinical skin physiology metrics (a) TEWL, (b) skin moisture, and (c) pH 
for monitoring the treatment response in one mild psoriasis patient. 
Detailed calculations for each metric have been previously elucidated in 
our publication [20,30], with a brief overview provided here. 

sO2 is determined by the equation HbO2
(Hb+HbO2)

, and the contributions of 
HbO2 and Hb in the dermis are obtained through spectral unmixing 
based on the absorption coefficients of skin chromophores from indi
vidual wavelength images. TBV was derived by summing the non-zero 
number of voxels within the segmented 3D dermal region after 
applying a threshold. In our study, epidermis thickness was taken as the 
distance from the skin surface to the bottom of the melanin layer, 
considering melanin’s predominant presence in the basal epidermal 
layer [30]. We computed the average of all pixels in the x-y plane along 
the z-axis of the unmixed melanin 3D image stacks. Then, we identified 
the center of the melanin layer as the first dominant peak and deter
mined the bottom edge of the melanin layer using the full width at half 
maximum. For better visual representation, the epidermis thickness is 
indicated by white arrows as in Fig. 2. 

Fig. 1. Schematic imaging workflow of ms-RSOM.  
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2.4. Treatment response 

We conducted imaging in a mild psoriasis patient with a baseline 
PASI value of 4.1. Imaging was conducted before and four-months after 
the treatment period involving topical steroids and biologic, adalimu
mab. High-resolution 3D vascular structural images were acquired from 
both non-lesional and lesional areas of the patient, and subsequently, 
image metrics were systematically calculated. This method allowed for a 
detailed examination of the effects of the specified treatment regimen on 
the psoriatic skin condition. 

3. Results and discussions 

3.1. Image visualization across psoriasis severity 

Based on the absorption of light by the different chromophores, 
Fig. 2A, B, and C present 3D spatial map of lesional psoriasis skin 
revealing different vasculatures and morphology among mild, moder
ate, and severe cases. Distinguishing the epidermis from the surrounding 
skin, melanin is depicted in green, while the dermis showcases a robust 
vascular network denoted by blue for Hb and red for HbO2 content. The 
skin surface epidermal layer in all severities displays a robust green 
signal indicative of the melanin present. In Fig. 2B and C, the depiction 
of the HbO2 chromophore in red is notably lower for mild cases 
compared to moderate and severe cases. Additionally, the presence of 
blood vessels towards the surface is observed in severe cases. This sug
gests heightened inflammation corresponding to increased severity 
[37]. Maximum intensity projections of 3D images obtained with a 
532 nm laser and then subjected to analysis through low and 
high-frequency bands, are depicted in Fig. 2D, E, and F. As the severity 
increases, the low-frequency band, representing blood flow and indi
cating inflammation, demonstrates an escalated blood flow on the sur
face. This observation aligns with the elevated inflammation portrayed 
in Fig. 2C. Additionally, the 2D image in Fig. 2F exhibits capillary loops 
present only in the severe psoriasis case [37,38]. 

3.2. Quantitative analysis of image-derived metrics across psoriasis 
severity 

As represented in Fig. 3A, the mean value of normalized sO2 in lesional 
psoriasis increases by 27% from mild (0.35 ± 0.04) to moderate (0.45 ±
0.26) and 63% from moderate to severe (0.73 ± 0.24) psoriasis patients. 
As inflammation intensifies with increasing severity, there is a concurrent 
rise in HbO2, consequently increasing the levels of sO2 and TBV in lesional 
skin, as also depicted in Fig. 2. This finding is consistent with prior studies 
that have demonstrated an increase in sO2 with inflammation [39]. It is 
intriguing to observe that in non-lesional psoriasis, there is a rise in 
normalized sO2 with severity, with a 50% rise from mild (0.09 ± 0.06) to 
moderate (0.13 ± 0.11), and a remarkable 393% surge from moderate to 
severe (0.67 ± 0.30). This shows that while non-lesional skin is less 
inflamed than lesional skin, it is significantly affected in severe psoriasis 
cases. This finding could serve as an early indicator of future disease 
progression in the region, aligning with a previous histopathological study 
[40]. It also supports earlier research suggesting that even non-lesional 
psoriasis skin displays inflammation characteristics [41]. Fig. 3B de
lineates normalized δsO2, denoting the disparity between lesional and 
non-lesional regions in each patient. The ascending trajectory, correlating 
with the severity spectrum from mild to severe, aligns with heightened 
inflammation observed in localized lesional psoriasis. This trend persists 
even after adjusting for the concurrent elevation in the non-lesional re
gions. Specifically, a 47% escalation in δsO2 is evident from mild to severe 
conditions, with a more pronounced 96% increase noted from moderate 
to severe manifestations. 

Another metric indicative of inflammation is the TBV, as depicted in 
Fig. 3C, which increases as blood vessels dilate to enhance the nutrient 
supply to inflamed regions [20]. The average value of normalized TBV 
demonstrated a 10% increase from mild (0.54 ± 0.13) to moderate (0.60 
± 0.29) and a 5% increase from moderate to severe (0.63 ± 0.28) in 
lesional psoriasis. This ascending pattern is also observed in non-lesional 
skin, with a 17% increase from mild (0.21 ± 0.30) to moderate (0.25 ±
0.13) and a substantial 93% from moderate to severe (0.49 ± 0.44). The 
notable and consistent upward trend observed in non-lesional skin from 

Fig. 2. 3D spatial mapping of skin chromophores, including melanin(green), oxy-(red) and deoxy-hemoglobin(blue) from lesional psoriasis areas of mild (left), 
moderate (center) and severe (right) subjects in (a) (b) (c); The corresponding maximum intensity projection of 532 nm images with frequency band separation low 
in red, high in green in (d)(e)(f). The representative epidermis (E) is indicated by white arrows. Scale bar; 500 µm. 
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moderate to severe severity range suggests that inflammation in
tensifies, reaching a level comparable to that of lesional skin in severe 
psoriasis patients. This, along with the increasing ESR values, indicates 
that inflammation rises with increasing severity. Furthermore, 
non-lesional psoriasis skin shows sub-clinical symptoms, not visible to 
naked eye, which suggests the potential for these areas to evolve into 
lesional regions over time. 

The epidermal thickness in skin inflammatory conditions such as AD 
and psoriasis has been documented to surpass that of healthy skin [20,42]. 
This increased thickness, denoted as epidermal hyperplasia, is attributed 
to inflammatory processes and abnormal cellular proliferation [43]. 
Specifically, empirical evidence indicates that lesional regions exhibit a 
thicker epidermis compared to non-lesional areas. With escalating 
severity in psoriasis, the epidermal thickness demonstrates an ascent, as 
depicted in Fig. 3D. In lesional skin, the epidermis is 55% thicker in 
moderate cases (239 ± 94 µm) than in mild cases (153 ± 3 µm), and 39% 
thicker (135 ± 68 µm) than in mild (97 ± 3 µm) in non-lesional skin. 
Hence, a substantial elevation is evident from mild to moderate, whereas a 
more modest rise of 4% (249 ± 127 µm) is observed for lesional, and 6% 
(144 ± 22 µm) for non-lesional conditions from moderate to severe pso
riasis cases. This suggests a relatively limited difference in epidermal 
thickness between moderate and severe cases. Severe psoriasis cases 
might be dictated mainly by dermal inflammation. It can also be noted 
that the increase in the epidermal thickness is more pronounced in 
lesional cases than in non-lesional ones from mild to moderate, indicating 
that epidermal dysregulation is less prominent in the non-lesional skin. 
This aligns with an earlier study asserting that non-lesional psoriasis skin 
exhibits properties intermediate between healthy and lesional skin [41]. 
Additionally, the epidermal thickness in the non-lesional skin across all 
severities, ranges between 100 to 160 µm indicating that non-lesional skin 
doesn’t display prominent epidermal dysregulation in psoriasis, contrary 
to earlier documented results in AD [20]. In this preliminary study aiming 
to assess psoriasis severity, many results and their interpretations align 
with previous studies and the understanding of physicians. However, they 
cannot be fully endorsed without further investigation involving an 

increased number of subjects, which could yield statistically significant 
results. 

3.3. Treatment response monitoring 

3.3.1. Clinical skin physiology measurements 
TEWL serves as an indicator of the quantity of water loss from the 

epidermis, which tends to increase with heightened barrier dysfunction 
[44]. Given that barrier dysfunction is a secondary phenomenon of pso
riasis, individuals with psoriasis typically exhibit higher TEWL values. 
[45–47]. Following treatment, TEWL decreases by 18% from 10.4 g/m2h 
to 8.4 g/m2h as represented in Fig. 4A. This decline signifies the antici
pated restoration of the skin barrier. Fig. 4B shows a 13% increase in skin 
moisture from 17.3 to 19.6 post-treatment compared to the pre-treatment 
measurement. The rise in skin moisture corresponds to the decrease in 
TEWL as they are expected to exhibit opposite trends. Skin pH also plays a 
crucial role in the pathogenesis of psoriasis influencing the barrier func
tion, inflammation, and overall balance of the skin homeostasis [48]. The 
skin pH value decreased by 9%, transitioning from 5.7 to 5.17 after 
treatment. Healthy skin is characterized by a more acidic pH and this 
regulates the skin barrier properties [49,50]. This explains the less acidic 
pH before treatment as compared to after treatment. 

3.3.2. Image visualization and quantitative analysis 
Fig. 5A and B depict 3D spatial mapping of lesional skin in a mild 

psoriasis patient before and after treatment, respectively. The reduction 
in melanin (green), which serves as an estimate for epidermal thickness, 
is evident after treatment. Despite the anticipated decrease in the blood 
vessel network, associated with reduced inflammation and diminished 
blood flow post-treatment, this phenomenon is not evident in Fig. 5B. 
This discrepancy could be attributed to the mild nature of the psoriasis 
case, where the inflammation may not be significant. 

Fig. 6A illustrates an 18% reduction in tissue sO2 following treatment 
in lesional psoriasis skin, accompanied by a 22% decrease in non- 
lesional skin. Although statistically nonsignificant, this reduction 

Fig. 3. Quantitative analysis of image-derived metrics with varying psoriasis severity, illustrating normalized (a) sO2, (b) δsO2 (difference between lesional and non- 
lesional data in each patient), (c) TBV, and (d) epidermal thickness. 
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aligns with the anticipated inflammation mitigation [51]. In Fig. 6B, the 
δsO2 trend demonstrates a mere 2% decrease from pre-treatment to 
post-treatment, potentially attributed to the relatively mild nature of the 
patients’ psoriasis condition. In Fig. 6C, a 20% decrease in TBV is 
observed in lesional skin, and a 39% decrease is noted in non-lesional 
skin, indicative of reduced inflammation. The visually apparent reduc
tion in epidermal thickness in Fig. 5A and B is confirmed by the quan
titative metric in Fig. 6D post-treatment. Lesional psoriasis skin exhibits 
a more substantial 12% reduction from 172 µm to 151 µm, in contrast to 
non-lesional skin, which displays a 5% decrease from 101 µm to 95 µm 
post-treatment. These metrics effectively reflect the improvement in the 
psoriasis condition post-treatment, corroborating the concurrent decline 
in the patient’s PASI score from 4.1 to 1.8, respectively. 

With the imaging of a skin inflammatory condition like psoriasis 
using ms-RSOM we can compare the morphological and functional 
features of subjects across different clinical severities and for treatment 
monitoring. While direct validation with histopathological images was 
not conducted in this study, the structural features observed with ms- 
RSOM were corelated in a prior study using histology and capillaro
scopy [52]. The results for sO2 and TBV successfully indicate the 
inflammation symptoms exhibited in psoriasis skin escalating with 
increased severity. Although the absorption due to melanin from the 
thickened epidermis is a considerable constraint, the results follow the 
expected trends as documented in previous studies. Here, it is worth 
noting that the recruited subjects were within a fixed Fitzpatrick score 
range. The 3D images obtained through ms-RSOM boast high resolution 

Fig. 4. Clinical skin physiology metrics (a) TEWL, (b) Skin moisture, and (c) pH in a psoriasis subject before and after treatment.  

Fig. 5. 3D spatial mapping of lesional area of a mild psoriasis patient (a) before and (b) after treatment.  
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and can penetrate deep, enabling the measurement of the vascular 
network in the dermis and quantification of morphological metrics like 
epidermal thickness. This proves highly advantageous for skin imaging. 
While the benefits of utilizing ms-RSOM based objective structural and 
functional metrics are well elucidated in this study, it is essential to note 
that the treatment response results are derived from only one patient. 
Further investigations in our ongoing study with an expanded sample 
size are warranted to substantiate these findings in this field. 

4. Summary 

This study represents a pioneering study of both lesional and non- 
lesional skin in psoriasis subjects across different severities, utilizing 
high-resolution and non-invasive optoacoustic image-derived metrics. 
The investigation extends to the monitoring of treatments involving 
topical steroids and biologics, including adalimumab. Notably, 3D 
spatial mapping of skin chromophores like melanin, oxy-, and deoxy- 
hemoglobin provides objective insights into both the morphological 
and functional aspects of psoriatic skin. The observed elevation in tissue 
oxygen saturation and TBV with increasing psoriasis severity signifies 
heightened inflammation, while their reduction post-treatment in
dicates the efficacy of the interventions. The documented increase in 
epidermal thickness aligns with severity-related cell proliferation, and 
post-treatment reductions are coherent with subjective PASI scores. The 
monitoring of treatments yields valuable insights for designing patient- 
specific protocols. These findings highlight the potential integration of 
structural and functional information as an innovative, non-invasive and 
unbiased means of psoriasis assessment and real-time treatment moni
toring, suggesting its potential integration into the clinical settings. This 
study, however, is preliminary in nature due to the limited sample size 
and can be further substantiated through our ongoing studies with a 
larger number of subjects. 
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