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Sampling from four geographically 
divergent young female 
populations demonstrates 
forensic geolocation potential 
in microbiomes
Thomas Clarke1, Lauren Brinkac1,2, Chris Greco1, Angela T. Alleyne3, Patricio Carrasco4, 
Carolina Inotroza4, Tiiseto Tau5,6, Wichaya Wisitrasameewong7, Manolito G. Torralba1, 
Karen Nelson1 & Harinder Singh1*

Studies of human microbiomes using new sequencing techniques have increasingly demonstrated 
that their ecologies are partly determined by the lifestyle and habits of individuals. As such, significant 
forensic information could be obtained from high throughput sequencing of the human microbiome. 
This approach, combined with multiple analytical techniques demonstrates that bacterial DNA can 
be used to uniquely identify an individual and to provide information about their life and behavioral 
patterns. However, the transformation of these findings into actionable forensic information, 
including the geolocation of the samples, remains limited by incomplete understanding of the effects 
of confounding factors and the paucity of diverse sequences. We obtained 16S rRNA sequences of 
stool and oral microbiomes collected from 206 young and healthy females from four globally diverse 
populations, in addition to supporting metadata, including dietary and medical information. Analysis 
of these microbiomes revealed detectable geolocation signals between the populations, even for 
populations living within the same city. Accounting for other lifestyle variables, such as diet and 
smoking, lessened but does not remove the geolocation signal.

The human microbiome is comprised of communities of microorganisms, including bacteria, that live on and 
in the human body and form distinct ecologies. The human microbiome has been observed to differ between 
individuals from different geographic locations across multiple body sites, such as stool1–4, oral5,6, and hair and 
skin7,8 samples. However, any robust detection of the signal would also have to account for potential confounding 
factors9–11. Since many societal norms are correlated with geography12, the extent that a specific global position 
drives the differences measured outside of any lifestyle differences is still incompletely understood. For instance, 
the differences in microbiomes, as described in Yatsunenko et al.3, based on cohorts from the United States of 
America, Malawi, and the Amazonian region of Argentina, could have arisen either from their respective geo-
graphic position or their distinct diets, as a similar divergence in diet was previously shown to alter the microbi-
ome in another study13. The microbiome differs in more closely geo-located populations, though the variances 
can be attributed to different lifestyle such as diet and altitude2,11,14,15. In these studies, with limited sample size 
or locations, both the identification and quantification of their respective contributions to the variation in the 
microbiomes are difficult to comprehend2,5,16–18.

The studies have identified taxa with significantly different abundance in various populations due to differ-
ences in lifestyles, such as diet and smoking. For example, the oral cavity of individuals whose diets are rich in car-
bohydrates harbor a greater abundance of cariogenic bacteria Lactobacillus spp. and Streptococcus mutans19 and 
lower levels of Proteobacteria species in smokers compared to non-smokers20. In our previous study, we observed 

OPEN

1J. Craig Venter Institute, Rockville, MD 20850, USA. 2Noblis, Reston, VA 20191, USA. 3Department of Biological 
& Chemical Sciences, Faculty of Science and Technology, The University of the West Indies, Cave Hill Campus, 
Bridgetown, Barbados. 4Faculty of Dentistry, Centro de Investigación en Biología y Regeneración Oral (CIBRO), 
Universidad de los Andes, Santiago, Chile. 5Department of Virology, Sefako Makgatho Health Sciences 
University, Pretoria, South Africa. 6South Africa Medical Research Council, Pretoria, South Africa. 7Department of 
Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. *email: hsingh@jcvi.org

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-21779-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18547  | https://doi.org/10.1038/s41598-022-21779-z

www.nature.com/scientificreports/

Peptoniphilus and Staphylococcus as differentially abundant when comparing samples of healthy individuals from 
Maryland, USA and California, USA based on pubic and scalp hair samples respectively7. Taxa that distinguish 
geographic locations are still poorly documented, with only a few locations being tested, and with these, often 
any taxon identified is possibly a result of additional metadata variables, such as diet14 or oral hygiene21.

We recently published the FMD database where we obtained the publicly available microbiota data of various 
body sites across the multiple countries22. The database analysis suggests different microbiota composition across 
countries, but it is difficult to study the confounding variables due to samples collected, process and sequences 
using different protocols. To overcome these challenges and in addressing the geolocation potential of microbiota 
in forensics, we obtained oral and stool samples from four different countries across four different continents 
along with lifestyle metadata including diet and other lifestyle variables. All the participants in this study were 
healthy females between the ages 18–30 who were born in the location sampled to further remove possible con-
founding variables of age and gender. We observed there are significantly abundant taxa which can help predict 
the differences in the taxonomy that are changed by divergences in lifestyles; and identify which of the taxa in 
the microbiome are important for distinguishing the geographies. We further demonstrate the extent that these 
datasets can show more fine-scale geospatial resolution by comparing samples from different neighborhoods.

Multiple techniques are available to analyze the communities to document differences between microbiomes 
harvested from different populations. Total OTU tables can be examined, as with Permutational Multivariate 
Analysis of Variance (PERMANOVA)23, or the sets of taxa can be compared, either using a phylogenetically-
dependent distances such as UniFrac24 or a phylogenetically-independent metric such as Bray–Curtis25. With 
these tools, it is possible to document the multiple factors such as diseases26,27, pet ownership9,28, and local 
environment29,30, that can influence the composition of the microbiota that can distinguish populations. This has 
led to multiple proposals for the capacity of the microbiomes as a forensic tool with which to identify people31–35.

Methods
Ethics statement.  The study was approved by the J. Craig Venter Institute (JCVI) Institutional Review 
Board (No. 2015-219), University of Los Andes Health Center at San Bernardo Ethics Committee (No. 
CEC201627), University of the West Indies-Cave Hill/Barbados Ministry of Health Research Ethics Committee 
(No. 170104-A), Sefako Makgatho University Research Ethics Committee (No. SMUREC/M/91/2017:IR), and 
the Human Research Ethics Committee of Chulalongkorn University (No. HREC-DCU 2018-090). All methods 
were performed in accordance with relevant guidelines and regulations. Written informed consent was obtained 
from all participants prior to sample collection.

Cohort description and sample collection.  Paired buccal mucosa (oral) and stool samples were col-
lected from adult females (18–26 years old) who were born and raised in one of the following regions of the 
world: Barbados (n = 32); Santiago, Chile (n = 69); Pretoria, South Africa (n = 37); and Bangkok, Thailand 
(n = 68). Participants had no history of major diseases in the past year (i.e., irritable bowel syndrome and inflam-
matory bowel disease) and were not biologically related. Participants currently taking antibiotics were excluded 
from the study. A lifestyle behavioral questionnaire was completed by each participant at enrollment. Body 
mass index (BMI; kg/m2) was calculated for each participant and categorized according to the World Health 
Organization classification scheme: ≥ 30 = obese; 25–29.9 = overweight; 18.5–24.9 = normal; ≤ 18 = underweight 
(World Health Organization 1995). Samples were self-collected using the OMNIgene® ORAL and OMNIgene® 
GUT collection kits (DNA Genotek, Ontario, Canada) following protocol without modification. One hour prior 
to oral specimen collection, participants refrained from eating, drinking, smoking, or chewing (i.e., gum and 
tobacco). All samples were stored at − 20 °C for up to 7 days, followed by long term storage at − 80 °C without a 
freeze–thaw cycle until DNA extraction.

Sample preparation and DNA isolation.  Oral and stool samples were thawed on ice prior to DNA 
extraction. DNA was extracted using the DNeasy Powersoil DNA Extraction kit (Qiagen Inc, Hilden, Germany) 
to generate high molecular weight DNA free of PCR inhibitors. Samples were examined for DNA integrity by 
agarose gel electrophoresis and Nanodrop (ThermoFisher Scientific, Waltham MA). DNA was quantified using 
SYBR Gold (ThermoFisher) prior to downstream applications.

16S rRNA gene V4 sequencing.  Microbiota profiling was performed targeting the V4 region of the 16S 
rRNA gene36. 16S rRNA gene amplification in each sample was performed using adaptor and barcode ligated V4 
specific primers so that sequences from each sample in the library were identified with unique barcode indices. 
Mock community DNA was included in the library preparation step as described previously in Kozich et al.37. 
The mock community serves as a control for contaminants as well as a tool to ensure reproducibility and quality 
sequence reads, indicating the presence of unexpected spurious operational taxonomic units (OTUs). In addi-
tion, PhiX DNA was spiked into all sequencing runs as an integral control for sequencing. A high percentage of 
PhiX spikes (10–20%) adds diversity to 16S rRNA gene runs and improves quality. Amplicon from extraction 
controls and no template controls were also included to determine if any contamination occurred during DNA 
extraction or during the library prep stage. 16S rRNA gene libraries were analyzed on the High Sensitivity DNA 
Chip (Agilent, Inc. Santa Clara, CA) to ensure that libraries were free of adapter dimers contaminants and that 
they were appropriately sized for the platform. 16S rRNA gene libraries were sequenced using v2 chemistry 
2 × 250 bp format 500 cycles on Illumina MiSEQ (Illumina Inc, La Jolla, CA) using standard manufacturer’s 
specifications. QC analysis was performed after each sequencing run where the % reads ≥ Q30, passing filter 
clusters and yield/sample were monitored.
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16S rRNA gene sequence data analysis.  Sequence reads from the 206 samples obtained plus 11 nega-
tive controls were processed using an in-house 16S rRNA gene data analysis pipeline. Sequencing from all the 
samples averaged 15,649 reads before mapping (Table S16). OTUs were generated using the default parameters 
in UPARSE38 and taxonomies were assigned to these OTUs with mothur39 using version 123 of the SILVA 16S 
rRNA gene database40 as the reference database. All samples that contained less than 2000 paired reads, with 
only stool or oral or which had incomplete metadata were removed. Additionally, OTUs with less than ten total 
reads were removed. This left 197 samples that were further considered for downstream analysis, which were 
normalized to relative abundances of reads mapping to different taxa at all taxonomic levels using the R-package 
Phyloseq23. Overall, the passing samples averaged 12.094 mapped reads. There were 291 species that had OTUs 
mapped to both stool and cheek microbiomes (Fig. S1).

Statistical analyses.  The 16S data and the differences between different geographic locations was analyzed 
using a variety of techniques, including visualization of the principal component analysis (PCA) and permuta-
tional multivariate analysis of variance (PERMANOVA). Distances between microbiomes were calculated using 
the VEGAN R-package using Bray–Curtis dissimilarity matrix41. Differentially abundant genera were identified 
using DESeq2 package version 1.12.3 in R42 using a FDR cutoffs as calculated by DESeq2 using the Benjamini 
and Hochberg False Discovery Rate43. MaAsLin2 was used to determine the multivariable association between 
phenotypes and microbiome abundance (34784344). Principle component analysis and the Pearson’s correlation 
of the metadata variables were calculated in Python using scikit-learn44 and scipy45.

Results
Cohort demographics.  A total of 206 female participants were enrolled in the study and passed our qual-
ity control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and 
to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, 
Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude 
in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged 
from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are 
further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. 
The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by 
Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population 
did not report ethnicity.

Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits 
(Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). 
The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days 
a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit 
and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 
51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with 
a smoker. Over half (56%) of the study population own one or more pets.

Stool microbiome.  The OTUs identified using the UPARSE pipeline17 were used to compute the alpha 
diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indi-
ces. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile 
with FDR < 0.05. In case of Chao1 diversity index Thailand-Chile, Thailand-South Africa, Chile-South Africa, 
Barbados-South Africa have different richness with FDR < 0.05 (Fig. 1A).

The three abundant phyla (Actinobacteria, Bacteroidetes, Verrucomicrobia) have significant differential abun-
dance with FDR < 0.05 among the four countries (Fig. 1B). The top five most dominant taxa identified among 
stool microbiota are Bacteroides, Prevotella_9, Faecalibacterium, Alistipes, and unclassified Eubacterium (Fig. 1C). 
Interestingly, Faecalibacterium, an anti-inflammatory commensal recognized for its importance in maintaining 
intestinal health (see Miguel et al.46), is observed at significantly higher abundance in South African individuals 
and lower abundance in the Thai individuals (Table S2). There are 28 differentially abundant genera between the 
four-country using DESeq2 algorithm with only five genera have high abundance in the stool microbiome. These 
are Pseudobutyrivibrio, Fusobacterium, Christensenellaceae_R-7_group, Ruminococcus_1, Escherichia-Shigella and 
other important ones are Prevotella, Incertae_Sedis, Megamonas, Enterobacteriaceae_unclassified (Fig. 2). The 
data suggest that in these populations with relatively similar diets (Table S1), the most geographically distinct 
taxa (Table S6) are in lower abundance in the stool representing only 10.4% of the total gut microbiota. Using 
Pearson’s Correlation calculated between the first five Principal Components (PCs), we examined the influen-
tial factors of lifestyle behaviors on the composition of microbial communities originating from stool among 
the entire study population of Barbadian, Chilean, Pretorian and Thai individuals. The composition of stool 
microbiota across all the populations is most influenced by BMI (PC4 p = 0.018, r2 = 0.029; 3.35% variance). 
Within single region populations, Chilean stool microbiota correlates with having never smoked (PC3 p = 0.0271, 
r2 = 0.074; 4.02% variance), and Pretorians being the only population with stool microbiota that correlates with 
BMI categories (PC1 p = 0.0205, r2 = 0.156; 67.62% variance) and the frequency of eating corn/cornmeal (PC3, 
p = 0.0077, r2 = 0.196; 4.02% variance). The Thai population’s stool microbiota is correlated with living with a 
current smoker (PC3 p = 0.012, r2 = 0.093; 5.53% variance) and being an ex-smoker (PC4 p = 0.0097, r2 = 0.0998; 
4.56% variance). Stool microbiota of the Barbadian population is not significantly correlated with any of the 
lifestyle behavioral factors tested.
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Figure 1.   Stool alpha diversity: (A) microbial richness and evenness of cheek was calculated based on the 
Chao1 and Shannon index of four different sites. The y-axis represents the alpha diversity unit scale either 
Shannon or Chao1. (B) Phylum level abundance of stool samples, (C) top ten most abundance genera in stool 
samples.

Figure 2.   The significant differential abundant stool genera between four countries displayed as Box and 
whisker plot.
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Oral microbiome.  The mean Chao1 indices reveal that the microbiota diversity is significant between Thai-
land–Barbados, Thailand–Chile, Thailand–South Africa and Chile–South Africa with FDR < 0.05. Whereas only 
significant difference was observed between Thailand and Chile using Shannon diversity index with FDR < 0.05 
(Fig. 3A). Two abundant phyla, Bacteroidetes and Proteobacteria have significant differential abundance between 
countries (FDR < 0.05) (Fig. 3B).

The top most dominant taxa identified among oral microbiota are two Prevotellaceae genera, Pasteurel-
laceae_unclassified, Haemophilus, Streptococcus, Gemelia, Veillonella and Neisseria (Fig. 3C), all of which have 
been documented as among the most abundant in oral microbiota in other populations47. The oral microbiomes 
also have thirty-five differentially abundant genera (Table S7). Eight of the ten most dominant genera in the oral 
microbiota Pasteurellaceae_unclassified, Streptococcus, Gemelia, Veillonella, two Prevotellaceae genera, Haemo-
philus and Neisseria have significance difference in at least one of the populations with FDR < 0.05 (Fig. 4). As 
such, the oral microbiome on average contains more bacteria from taxa with geographic specific signals as a 
percentage of the total microbiome (16%) when compared to percentage of the microbiome in differentially 
abundant taxa in the stool samples (2%).

We also find that lifestyle and behavior have a greater influence on the oral microbiota compared to stool 
microbial composition for those factors tested. Like with the stool samples, the oral microbiota composition are 
associated with different lifestyles and behaviors in different populations, with the exception of BMI which was 
strongly correlated with oral microbial communities across all four populations using BMI categories: Chile (PC1 
p = 0.0085, r2 = 0.103; 71.77% variance), S. Africa (PC1 p = 0.0169, r2 = 0.242; 37.77% variance,) Barbados (PC1 
p = 0.0155, r2 = 0.174; 46.41% variance) and Thailand (PC2 p = 0.017, r2 = 0.083; 21.83% variance respectively). In 
addition to BMI, oral microbiota of the Chilean and Thai population correlated with the frequency of consum-
ing fish with p value < 0.05 (PC2 p = 0.033, r2 = 0.0710; 14.13% variance and PC3, p = 0.0081, r2 = 0.1029; 10.07% 
variance), while oral microbiota composition of the Barbadian population was also strongly correlated with the 
frequency of eating meat such as beef and pork (PC2 p = 0.0450, r2 = 0.157; 19.01% variance), as well as eating 
fruits and vegetables (PC4 p = 0.00169, r2 = 0.342; 8.97% variance).

Global geographical variability of oral and stool microbiota.  Both oral and stool microbial com-
munities at genus level exhibited distinct geographic variation (i.e., country of origin) in their taxonomic distri-
bution, though the body site from which the microbial community originated was more discriminatory (Fig. 5). 
We also identified potential differentially abundant species among the four countries using the usearch “unoise” 
algorithm to obtain ASVs. Due to skeptical nature of species prediction using short tags V4 regions, the details 
are described in the Supplementary Tables S8–S15.

Microbiota from the oral cavity can differentiate geographic locations as shown by both NMDS (Fig. 5) and 
by PERMANOVA, with approximately 16% of the variation between oral microbial communities explained by 
country of origin. Within the study populations, Chilean oral microbial communities were the most distinct 
geographically, explaining 17% of the taxa variation, as compared to 9% for Pretorian and 4% for Barbadian 

Figure 3.   Cheek alpha diversity: (A) microbial richness and evenness of cheek was calculated based on the 
Chao1 and Shannon index of four different sites. The y-axis represents the alpha diversity unit scale either 
Shannon or Chao1. (B) Phylum level abundance of Cheek samples, (C) top ten most abundance genera in cheek 
samples.
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oral microbiota. Using only the differential abundant taxa in the oral microbiome, the country of origin is less 
explanatory explaining only 11% of the variation by PERMANOVA. Country of origin explained less than 8% 
of that variance in the taxonomic distribution of the stool, with insufficient differentially abundant taxa to run 
PERMANOVA on this reduced set.

Figure 4.   Box and whisker plot showing the significant differential abundant cheek genera between four 
countries.

Figure 5.   Oral (n = 195) and stool (n = 196) microbiota differences according to body site and geographical 
location (Barbados, Chile, Thailand and S. Africa). Measured by NMDS using weighted UniFrac distance in 
stool (PERMANOVA r2 = 0.084, p = 0.001), and oral (PERMANOVA r2 = 0.161, p = 0.001).
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Since it is possible that the differences could derive not from differences in geographic locations, but instead 
differences between the lifestyles of the cohorts, we also examined the effect of the metadata values on the 
strength of the PERMANOVA signal. For all of the metadata variables in the oral and stool microbiome, a 
significant signal differentiating the country by PERMANOVA remains even after accounting for the meta-
data (Table S5). The strength of this signal is not similarly observed using only the metadata or the combined 
data, suggesting that the geographic signal is strongest. However, in metadata variables previously found to 
be influential in sculpting the microbiome, such as smoking for the oral microbiome20,48, and BMI for the gut 
microbiome49,50, the PERMANOVA signal remains strong. Interestingly, the strongest reduction of the signalin 
the oral microbiome and a significant reduction in the stool microbiome is in connection with how much beef 
or pork an individual eats per week. Previous work on the effect of a carnivorous diet on the oral microbiome 
was inconclusive6,51,52, though these have mostly concentrated on vegan versus omnivore diets.

We also investigated if the geolocation signal could be amplified either by using differentially abundant taxa 
or by combining multiple body sites. When only taxa identified as differentially abundant in at least one loca-
tion compared to the other locations were used, there was an increase in the PERMANOVA signal in both the 
stool (25%) and oral (54%) microbiome (Fig. S3). However, combining the taxa distribution of oral and stool 
samples across geography either by adding the distances or by concatenating the taxa counts, when possible, 
does not increase the geolocation significance of the combined sample (Table S4). Instead, each of the combined 
sample averages out to below the significance of the oral signal, suggesting that oral microbiota alone has higher 
geolocation prediction power as compared to stool and combined body sites.

Intra‑region geospatial variation of oral and stool microbiota.  To assess the extent of variation 
of oral and stool microbial communities within a geographical region, Chilean and Barbadian study popula-
tions were each divided into two distinct neighborhood sub-regions ranging from 27.5 to 178 km based on 
their residence (Fig. S2). Neighborhood sub-regions were determined by prioritizing geographically discrete and 
continuous sub-regions with near equal subject populations, without considering any metadata and sociological 
differences. The Chilean neighborhoods do not have a significant difference between oral or stool microbiomes 
as identified by PERMANOVA (Fig. 6). Only one of the taxa (Family XI Gemella) was one of the top five taxa in 
the Chilean oral microbiome (Fig. 3), and differentially abundant between the two sub-regions. Though the two 
from the stool microbiomes were less abundant. There were no taxa that globally differentially abundant. The 
microbial communities of the Barbadian population had an overall similar level of difference between the neigh-
borhood sub-regions as did the Chilean population even with a smaller geographical range (27.5 to 32.6 km), 
though the lower number of subjects does limit the significance of these differences (Fig. S4). No taxa in the 
Barbados oral samples were identified as significantly differentially abundant, with the exception of one stool 
taxa (Prevotellaceae Prevotella v9) (Fig. 1). This taxa is associated with carbohydrate-rich diets53.

However, similar to previous studies of populations living in the same country2,14, when considering the life-
style behaviors of the individuals resident in each sub-region, some significant differences emerge. Sub-region 1 
and 2 in Santiago Chile have different economic resources as is reflected in their cultural and dietary choices54, 

Figure 6.   Oral (n = 66) and stool (n = 67) microbiota diversity between populations from different 
neighborhoods (sub-region 1 and sub-region 2) in Santiago, Chile as shown by NMDS using weighted UniFrac 
distance (stool: PERMANOVA r2 = 0.026, p = 0.159; oral: PERMANOVA r2 = 0.032 p = 0.089). The boundaries of 
the neighborhoods are shown in Supplementary Fig. S2B.
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in addition to the microbiomes. For example, residents in Chilean sub-region 1 more frequently consume fruits/
veggies (p = 0.0027) and have a lower BMI (p = 0.001) than those resident in Chilean sub-region 2, while there are 
more pet owners in sub-region 2 than in sub-region 1 (p = 0.0098). Within the Barbadian population, residents 
in neighborhood sub-region 1 more frequently consume fish (p = 0.0014) and have a higher BMI (p = 0.0124). 
When accounting for the metadata differences, the size of the geolocation effect did not appreciably decrease for 
any of the sub-region comparisons nor any of the body sites. Likewise, the effect size on the microbiome based on 
the differences in metadata for the groups usually was small, with r2 almost always around 0.01, with the singular 
exception of the weekly consumption of bread, rice, and pasta between the two populations in the two sub-regions 
in Barbados (r2 = 0.097). It would be interesting to know what this dietary difference can further be attributed to 
food costs, and whether it can be used in the process of forensic identification of the victim similar to as in Chile.

Discussion
As more and more varied microbiome datasets are made publicly available, the potential to use these datasets in 
conjunction with evidence as a forensic tool similarly increases, as shown in Cho et al.55. However, the usefulness 
of this data is dependent also on the development of tools to successfully mine the required forensic informa-
tion from the evidence reproducibly and at a statistically negligent error rate. The dataset presented here could 
be a valuable resource for the development of such tools, especially for identifying geolocation signals though 
in the absence of these tools, the data should be used cautiously. The implementation of such a tool requires the 
combination of the populations, representing a wide range of locationsm while also maintaining a constancy 
of sequencing and data analysis, such as keeping gender and age range consistent. Likewise, the metadata col-
lected provide detailed information of the potential confounding variables that need to be accounted for when 
examining the relationship between the microbiomes and the originating geography. Finally, the sequencing of 
multiple body sites can allow for a comparison of both comparative strength of either and the extent that these 
signals can be combined to obtain a stronger signal.

Our initial examination of the datasets presented here demonstrates both the presence of a geolocation signal 
that is independent of population metadata, such as diet and smoking, though these can decrease the signal. This 
signal is further amplified when the dataset is reduced to the differentially abundant taxa. Microbiomes have 
previously been shown to separate non-human environments such as offices and dorm rooms56,57, suggestive of 
geographically-specific bacteria. It is possible that these are integrated into human microbiomes, though which 
ones and to what extent which of these taxa are similarly geo-predictive in different locations across the world 
remains unanswered. It is possible that combining the analysis presented here with other diverse geolocated 
microbiomes in a meta-analyses such as Cho et al.55 could further elucidate geo-predictive taxa. This would 
require careful combination of the microbiome results and the metadata from the different studies, while correct-
ing as best possible for the confounding variable, all of which is beyond the scope of this manuscript. Machine 
learning algorithms, such as random forest, are becoming increasingly common in detecting and decoding signals 
within microbiomes (reviewed in Ref.58). While we did not explore the extent these could successfully separate 
the locations nor how algorithms trained on this data succeed from additional microbiomes, we suggest that 
our results support the data as a valuable resource for the future development and testing of a robust algorithm 
for detection of geographic signatures in human microbiota.

Data availability
Raw datasets and associated metadata generated and analyzed as part of this study are available in the NCBI SRA 
database under NCBI Bioproject PRJNA545251. Processed datasets can be analyzed in comparison with other 
publicly available human microbiota data through the Forensic Microbiome Database (FMD) located at http://​
fmd.​jcvi.​org/. The samples numbers used in the study are described in Supplementary Table S16.
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