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Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so
it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important
method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression
profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models
(ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was
found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein
interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the
two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important
genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and
pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and
provide new insight for AKI research and treatment.

1. Introduction

Acute kidney injury (AKI) is a group of common clinical syn-
dromes of acute (a few hours to weeks) deterioration or even
loss of kidney function due to various causes. The clinical
manifestations range frommild kidney injury to renal failure.
AKI has the characteristics of high morbidity and mortality,
and there is no effective clinical treatment. Supportive care
or dialysis treatment is usually performed, so medical
expenses are high. In the absence of timely and effective treat-
ment, AKI will eventually lead to death or progression to
end-stage renal disease (ESRD). These issues have made
AKI a major public health problem worldwide [1]. Therefore,

it is particularly important to identify the pathological pro-
cess of AKI to find new effective treatments for AKI.

The pathogenesis of AKI is multifactorial and compli-
cated. Through the observation of two major AKI animal
models (ischemia-reperfusion injury (IRI) and drug-
induced damage), a variety of mechanisms are involved in
the pathological process of AKI, such as mitochondrial
dysfunction, autophagy, inflammation, and oxidative stress
[2]. MicroRNA (miRNA) is a class of noncoding, single-
stranded, small-molecule RNAs that can inhibit target
mRNA translation or induce target mRNA degradation,
thereby exerting posttranscriptional gene regulatory func-
tions [3]. Studies in recent years have shown that through
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posttranscriptional gene regulation, miRNAs play important
roles in kidney development and physiological conditions as
well as in pathological conditions. By sequencing the AKI
animal model, the expression of mRNA after AKI has been
reported in several studies [4, 5]. Some studies have been
conducted to observe the miRNA expression in the kidneys
of an AKI model and to correlate the miRNA expression with
the mRNA expression [6, 7]. However, the changes in
miRNA and mRNA and their interactions in AKI pathology
are still not fully understood. Moreover, the similarities and
differences in miRNA and mRNA in AKI due to different
underlying causes have not been verified. The Gene Expres-
sion Omnibus (GEO) database provides the opportunity for
bioinformatics mining of the gene expression profiles. After
conducting an interactive analysis on the GEO database data-
sets, we extracted a set of differentially expressed genes
(DEGs) that are potentially involved in the progression of
different AKI models (IRI and cisplatin (CIS)). By Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses, along with
the construction of a protein-protein interaction (PPI) net-
work and a miRNA-gene network, we identified the key
genes, miRNAs, and the underlying signaling pathways play-
ing a significant role in AKI development. Finally, we tested
the DEGs and DE miRNAs in IRI and CIS-induced AKI
models. By using these methods, our study is aimed at pro-
viding novel insight into the pathogenesis of AKI and iden-
tify novel therapeutic biomarkers for AKI caused by
ischemia and drug toxicity.

2. Methods

2.1. Datasets. Two mRNA expression datasets (GSE106993
and GSE98622) were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE106993 data-
set included eight samples (CIS group), including four CIS-
induced AKI samples and four control [5]. The platform used
was GPL21103. The GSE98622 dataset consisted of twelve
samples (IRI group), including three kidney ischemia-
reperfusion injury samples and nine control [4]. The time
point of ischemia-reperfusion injury samples used in our
analysis is 48 hours. The platform used was GPL13112. We
standardized the data in each dataset and subjected the data
to quality control analysis.

2.2. Identification of DEGs. Principal component analysis
(PCA) executed in R software with the stats packages was
used to obtain an intuitive distribution of the sample between
the experimental and control groups. After the correlation
analysis of samples and PCA, the calculation and screening
of DEGs between the two groups were performed. DEGs
were analyzed using the limma package, and adjusted P
values < 0.01 and ∣fold change ∣ >4 were used as cutoff cri-
teria. A volcano map and clustering heat map were executed
in R software with the ggplot packages, respectively. The fold
change and P value between the groups for each gene in the
two datasets were calculated.

2.3. Analysis of miRNA-mRNA Interactions. By analyzing the
DEGs, the DEGs unique to the CIS model, the DEGs unique
to the IRI model, and the overlapping DEGs shared by the
CIS and IRI models can be separately obtained. DEGs of
the three datasets were used to predict the miRNAs in the
miRNA databases (miTarBase, miRanda, miRDB, and Tar-
getScan) and construct a miRNA-mRNA interaction net-
work. The miRNA-mRNA interaction pairs were visualized
using Cytoscape.

2.4. GO and KEGG Pathway Enrichment Analyses. R software
with the clusterProfiler packages was used to perform func-
tional and pathway enrichment analyses of the DEGs with
adjusted P values < 0.05.

2.5. PPI Network Construction and Module Analysis. This
experiment used the STRING database (version 11.0) to
detect PPIs of the proteins in three miRNA-mRNA regula-
tory networks. Required confidence ðcombined scoreÞ > 0:7
was the threshold for PPI in this study. Cytoscape was used
to visualize the PPI network. The Molecular Complex Detec-
tion (MCODE) module with default parameters (degree
cutoff = 2, node score cutoff = 2, K‐core = 2, and max
depth = 100) and the CytoHubba module were used to
explore the hub genes of the PPI network.

2.6. Animals. All animal procedures carried out in this study
were approved by the Animal Care and Use Committee of
Chinese PLA General Hospital and conducted in accordance
with the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH pub-
lication no. 85-23, revised 2011). Three-month-old C57BL/6
mice were purchased and housed at the Experimental Ani-
mal Center of the Chinese PLA General Hospital. For CIS-
induced AKI, mice were intraperitoneally injected with a sin-
gle dose of CIS at 20mg/kg. The sham group was intraperito-
neally injected with saline. After 72 hours, the mice were
anesthetized with an intraperitoneal injection of sodium pen-
tobarbital. Kidney ischemia was induced in mice by clamping
the renal pedicle for 45min to induce ischemia, and the kid-
ney was subjected to reperfusion for 48 h. A midline abdom-
inal incision was performed to expose both renal pedicles.
Mice that underwent this procedure were used as sham sur-
gery controls. The mice were anesthetized with an intraperi-
toneal injection of sodium pentobarbital, and all efforts were
made to minimize suffering. Blood samples were taken, and
their kidneys were removed.

2.7. RNA Isolation and Real-Time PCR. Total RNA was iso-
lated from renal tissues using TRIzol (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions. A UV
spectrophotometer was used to measure the concentrations
of total RNA. Reverse transcription was performed using a
ProtoScript II First Strand cDNA Synthesis Kit (NEBNext).
The miScript Reverse Transcription Kit (Qiagen) was used
for cDNA preparation of miRNA. The reaction mixture com-
prised 50 ng of complementary deoxyribonucleic acid,
0.2μMprimers, and 10μL of 2 × SYBR green buffer (Applied
Biosystems, Foster, CA) in a final volume of 20μL. The miS-
cript SYBR Green PCR Kit (Qiagen) was used for miRNA
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PCR. Relative quantification was performed by RQ manager
software using the ΔΔCt method. The PCR analyses were
conducted using an Applied Biosystems ABI Prism 7500
Sequence Detection System.

The relative levels of mouse E2f8 (sense: 5′-CGTCCC
TCATCAAGTTGGTAAAG-3′, antisense: 5′-CCTGGGTT
CACTTGACTGCTCTT-3′); mouse Oip5 (sense: 5′-GCCT
TCTCCAAAGTCACAAACA-3′, antisense: 5′-AACCAAC
AGGAGTCCCACAGG-3′); mouse Msr1 (sense: 5′-CAGA
CTGAAGGACTGGGAACACT-3′, antisense: 5′-GTCCAG
TAAGCCCTCTGTCTCC-3′); mouse Myc (sense: 5′-CCT
AGTGCTGCATGAGGAGACA-3′, antisense: 5′-CTGTGC
GGAGGTTTGCTGTG-3′); mouse Mdm2 (sense: 5′-GAT
GGCGTAAGTGAGCATTCTG-3′, antisense: 5′-AGACTG
TGACCCGATAGACCTC-3′); mouse Mcm5 (sense: 5′-AC
TCAAGCGGCATTACAACCT-3′, antisense: 5′-CGGCAC
TGAATGGAGATACGA-3′); and mouse E2f1 (sense: 5′-C
GCACAGTTGCTTGTTGGAG-3′, antisense: 5′-TTGGTG
GTCAGATTTAGTGAGGTT-3′) were normalized based
on the level of 18 s. The relative levels of miR-466 k (5′-T
GTGTGTGTACATGTACATGTGA-3′), miR-466a (5′-TA
TACATACACGCACACATAAGA-3′), miR-466f (5′-CA
TACACACACACATACACAC-3′), and miR-709 (5′-GGA
GGCAGAGGCAGGAGGA-3′) were normalized based on
the level of RNU-6B.

2.8. Statistical Analysis. All data were analyzed using SPSS
17.0 (SPSS, Chicago, IL). Comparisons among groups were
analyzed by analysis of variance (ANOVA). Values of P <
0:05 indicated statistical significance.

3. Results

3.1. DEGs in Different AKI Models. The GSE106993 and
GSE98622 datasets were downloaded from GEO, and the
data were quality controlled and standardized with limma
and stats package in R software. The DEGs in the CIS group
and the control group were analyzed, and a total of 1756
DEGs were obtained, of which 998 had a low expression
and 758 had a high expression. The DEGs between the IRI-
48 h group and the control group were analyzed. A total of
969 DEGs were obtained, of which 402 had a low expression
and 567 had a high expression. The screening criteria for
DEGs were ∣fold change ∣ >4, and the corrected P value was
<0.01. We visualized DEGs using volcano maps (Figures 1(a)
and 1(b)). Hierarchical clustering was used to cluster samples
and genes according to the expression values of differential
genes in different samples, and the expression of different
genes in different samples was shown through a heat map
(Figures 1(c) and 1(d)).

3.2. miRNA-mRNA Interaction Analysis of the Unique and
Shared DEGs of the CIS and IRI Groups. The overlapping
DEGs in the CIS and IRI (CIS_IRI) groups and the DEGs
unique to the CIS and IRI groups were clarified. The
miRNA-mRNA interactions of these three sets of DEGs were

obtained by using four databases: miTarBase, miRanda,
miRDB, and TargetScan (Figure 2).

To obtain a more reliable miRNA-mRNA interaction, we
searched the overlapping miRNA-mRNA interactions in the
four databases. Three sets of miRNA-mRNA interactions
were visualized using Cytoscape. In the CIS group, the four
databases had 136 identical miRNA-mRNA interactions,
including 64 DEGs. In the network, mmu-miR-466k, mmu-
miR-466d-5p, and mmu-miR-340-5p had a higher degree
(Figure 3(a)). The IRI group had 65 identical miRNA-
mRNA interactions, including 30 DEGs. mmu-miR-709,
mmu-miR-466e-3p, mmu-miR-466a-3p, mmu-miR-466f-
3p, and mmu-miR-297b-3p target most of the DEGs
(Figure 3(b)). The CIS_IRI group had 51 miRNA-mRNA
interactions (Figure 3(c)). In the ICS_IRI miRNA-mRNA
interactions, the upregulated mRNAs were Pigr, Sh2d2a,
Slc5a8, Slc22a8, Akr1c14, Itih5, Btnl9, Fam107a, and Aplnr.
The downregulated mRNAs were Sfn, Lrp8, Rhou, B4galnt2,
Nrcam, and Csf3r. The expression trends of 11 mRNAs were
the complete opposite. They were AnlN, Cdkn1a, Dlgap5,
E2f8, Fblim1, Lpl, Msr1, Prc1, Psat1, Serpine1, and Top2a.
mmu-miR-466k and mmu-miR-466d-5p are also the top
two miRNAs with high degree, followed by mmu-miR-
466e-5p, mmu-miR-466a-5p, and mmu-miR-1187.

3.3. Functional and Pathway Enrichment Analyses of DEGs.
The function and enrichment of the genes in the three
miRNA-mRNA regulatory networks of CIS, IRI, and
CIS_IRI were analyzed. GO analysis showed that the
DEGs in the CIS group were mainly involved in epithelial
cell proliferation-related functions (Figure 4(a)). DEGs in
the IRI group were mainly involved in MHC class I pro-
tein binding (Figure 4(c)). The DEGs in the CIS-IRI
group were involved in multiple molecular functions
(MFs), biological processes (BPs), and cellular components.
Among them, there were significant differences in the
contractile ring, plasma lipoprotein particle, lipoprotein
particle, protein-lipid complex, apolipoprotein binding,
lipoprotein, particle binding, and protein-lipid complex
binding (Figure 4(e)).

KEGG analysis showed that the DEGs were mainly
enriched in tumor-related pathways and TNF pathways in
the CIS group (Figure 4(b)). The DEGs of the IRI group
were mainly enriched in the cell cycle and cell senescence
pathways (Figure 4(d)). The DEGs of the CIS-IRI group
were mainly involved in the p53 signaling pathway, plati-
num drug resistance, HIF-1 signaling pathway, cell cycle,
apelin signaling pathway, JAK-STAT signaling pathway,
cellular senescence, and PI3K-Akt signaling pathway
(Figure 4(f)). The DEGs of the CIS-IRI group involved in
these pathways are Aplnr, Sfn, Csf3r, Cdkn1a, Serpine1,
and Top2a.

3.4. PPI Network Analysis. The PPIs of the DEGs in the
miRNA-mRNA networks of the CIS, IRI, and CIS-IRI groups
were constructed with the STRING database. The results of
CytoHubba analysis showed that the hub gene in the CIS
group was Myc and that the genes in the IRI group were
Mcm5 and E2f1. Those in the CIS-IRI group were Prc1 and
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Dlgap5 (Figures 5(a), 5(c), and 5(e)). Subnetwork analysis
obtained one significant module network based on MCODE
of the PPI network in three groups. All node genes in the
modules of the CIS group were downregulated genes
(Figure 5(b)), while all node genes in the modules of the
IRI group were upregulated genes (Figure 5(d)). Func-
tional enrichment analysis of these genes in the modules
showed that the genes in the CIS group were mainly
related to the cell cycle, cell senescence, and cell prolifera-
tion processes. The genes in the IRI group were mainly
related to the cell cycle. Prc1, AnlN, Dlgap5, and Top2a
are node genes in the modules of the CIS-IRI group that
are mainly related to the cell cycle (Figure 5(e)). Interest-
ingly, these four genes were downregulated in the CIS
group and upregulated in the IRI group. Most of the node
genes in the modules are target genes of mmu-mir-466 or
mmu-mir-709. These results suggest that mmu-mir-466 or

mmu-mir-709 may play an important role in the patho-
logical process of AKI.

3.5. Expression of DEGs and Key miRNAs in Kidney Tissues
from CIS- and IRI-Induced AKI Models. To verify the results
of the above analysis, two types of AKI models were estab-
lished, and renal tissues were extracted for the detection of
DEGs and miRNA expression. The observed time points
were consistent with the analyzed datasets. The CIS group
and the IRI group had time points of 72 h and 48 h, respec-
tively. According to previous studies of animal models, 72 h
and 48h were the times when serum creatinine and blood
urea nitrogen (BUN) had the most significant changes in
CIS and IRI, respectively. As shown in Figure 6, creatinine
and BUN increased significantly in the AKI group.

We examined the key node genes associated with mmu-
mir-466 or mmu-mir-709 in the CIS and IRI groups. The
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Figure 1: Differential gene expression patterns between AKI renal tissue and control tissue. (a) Volcano map of DEG expression levels
between CIS-induced AKI and control samples. (b) Volcano map of DEG expression levels between IRI-induced AKI and control
samples. The red nodes represent upregulated DEGs with P values < 0.01 and ∣log FC ∣ >2; the green nodes represent downregulated
DEGs with P values < 0.01 and ∣log FC ∣ >2. (c, d) Heat map of the expression of DEGs.
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results showed that the mRNA expression levels of Myc and
Mdm2 were significantly increased in the CIS group
(Figures 7(a) and 7(b)). In the IRI group, the expression
levels of E2f1, Mcm5 and Oip5 were significantly increased
(Figures 7(c)–7(e)). For E2f8 and Msr1, which expressed
opposite trends in the two groups in the data analysis, E2f8
was not different in the CIS group but was significantly
increased in the IRI group (Figure 7(f)). Msr1 was signifi-
cantly elevated in both the CIS and IRI groups but was more
elevated in the IRI group (Figure 7(g)). Although these
results were not completely consistent with the results of
the analysis, they all suggested that the gene expression asso-
ciated with the cell cycle changed significantly in both CIS-
and IRI-induced AKI. Cell cycle-related changes play an
important role in the development of AKI, and this process
may be more active in IRI. miRNA-mRNA interaction anal-
ysis revealed that Myc, which is regulated by mir-709, was
downregulated in CIS. Myc, which was a target of mir-709,
was downregulated in the data analysis. Therefore, miR-709
should theoretically be upregulated in CIS due to the negative
regulatory effect of miRNA. In fact, we found that the level of
mir-709 decreased in the CIS group (Figure 7(h)). This may

be the reason for the actual detection of increased Myc
expression. For mir-466, miRNA-mRNA analysis showed
that most of the target genes of mir-466 were upregulated
in both the CIS and IRI groups, so the level of mir-466 should
be decreased. The actual detection results are consistent with
this inference (Figures 7(i)–7(l)).

4. Discussion

Previous studies have shown that proximal tubular epithelial
cell injury is the most important pathological feature of AKI
[8]. Ischemia and nephrotoxic drugs are the most common
causes of AKI, so IRI and CIS injections are the most likely
models to simulate the occurrence and development of
AKI. The overlapping CIS- and IRI-induced DEGs, such as
Cdkn1a, Serpine1, and Top2a, in the main pathways, basi-
cally represent the pathological characteristics of AKI. For
example, the p53 signaling pathway, cell cycle, and cellular
senescence indicate the processes of repair, regeneration,
senescence, and apoptosis of renal tubular epithelial cells.
Cdkn1a is involved in p53/TP53-mediated inhibition of cel-
lular proliferation in response to DNA damage. Upregulation
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Figure 2: Venn diagram showing the miRNA-mRNA interaction of DEGs in the CIS, IRI and CIS_IRI groups according to four miRNA
prediction databases. (a) Predicted miRNA-mRNA interaction of DEGs in the CIS group. (b) Predicted miRNA-mRNA interaction of
DEGs in the IRI group. (c) Predicted miRNA-mRNA interaction of DEGs in the CIS_IRI group.
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Figure 3: Continued.
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of p21 encoded by Cdkn1a can induce cell cycle arrest [9].
According to the detection of the p21 levels in the plasma,
urine, and organs of the AKI model, Johnson and Zager con-
sidered that plasma and urinary p21 can be potential bio-
markers of AKI and renal aging [10]. In the kidney, nuclear
p21 is located in the proximal and distal tubules. Because of
the important role of p21 in the cell cycle, p21 is also consid-
ered to be an important marker of renal aging [11]. Because
of the involvement of cell cycle arrest, the pathogenesis of

AKI can be accompanied by renal senescence, which may
be one of the reasons leading to the increase in AKI in the
elderly [12]. GO analysis also showed changes in lipid metab-
olism in AKI due to both causes. This is consistent with the
results of previous studies [13]. For example, Lpl and Msr1
are important genes involved in lipid metabolism. Lpl is the
main rate-limiting enzyme in the process of high triglyceride
metabolism, which plays a role in the metabolism of chylo-
micron (CM) and very low-density lipoprotein (VLDL)
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Figure 4: Continued.
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[14]. Studies have also shown that there is a significant
decrease in the expression of LPL in CIS-induced AKI [15].
The disorder of lipid metabolism may lead to lipotoxicity to
the kidney caused by lipid deposition in renal cells, which
leads to injury. Lipid metabolism-related therapies targeting
PPARα and other targets can also be one of the treatments
for AKI.

The DEGs of AKI caused by the two abovementioned
causes are not completely consistent. These DEGs are
involved in different pathways, which may indicate that the
occurrence and development of AKI due to different causes
have their own characteristics. Cisplatin was the first metal
complex with anticancer activity and was considered the
most promising anticancer therapeutic [16]. Therefore,
KEGG analysis showed that the DEGs in the CIS group were
mostly related to tumors. Cisplatin is eliminated predomi-
nantly by the kidney, and CIS enters renal epithelial cells
from the glomerular filtrate. After entering the cell, CIS
undergoes metabolic activation to highly reactive molecules,
which affects the cellular antioxidant system [17]. As the
GO analysis shows, tubular epithelial cells can be the primary
site of injury. Although multiple mechanisms contribute to
the pathogenesis of CIS nephrotoxicity, evidence suggests
that DNA damage plays a critical role [18]. Cisplatin is
known to cause inter- and intrastrand DNA crosslinks,
which perturb DNA replication and transcription, thereby
inducing replication stress, which may eventually result in
cell cycle arrest and apoptosis [19]. The hub gene Myc in
the CIS group is a transcription factor that mainly activates
the transcription factor of growth-related genes and partici-
pates in cellular self-renewal [20]. The upregulation of Myc
in the actual detection may be due to the fluctuating state
of the expression of Myc during the repair of AKI, which will

be upregulated after the beginning of the repair process.
The c-Myc gene is an important member of the Myc gene
family, and studies have shown that c-Myc may have a role
in the regulation of tubular cell death during AKI and that
overexpression of c-Myc can lead to cell proliferation [21,
22]. Recent studies have shown that Myc activation impli-
cates the pathway in renal fibrosis and in the progression
of AKI to CKD [23, 24], and Myc could be a potential
therapeutic target in tubulointerstitial diseases [25]. The
analysis showed that Myc was downregulated in the CIS
group, while the mRNA expression levels of Myc and
Mdm2 in the CIS group were significantly increased in
the actual test. Generally, it is understandable that the
results of the bioinformatics analysis are inconsistent with
the results of the validation experiments. For example,
the animal models used in the different studies are not
completely consistent. Moreover, cisplatin may be obtained
from different manufacturers, and there are differences in
drug purity. All of these factors may lead to inconsistent
degrees of damage in the models, which could result in
the occurrence of different repair stages at the same time.
Both Myc and Mdm2 can promote cell proliferation, which
indicates that our model may be in the proliferation and
repair stage. The model in the CIS dataset may be in the
damage stage, in which most differentially expressed genes
have low expression. Due to the cytotoxicity of CIS, vari-
ous biological functions of cells may be inhibited. This
may be why most of the DEGs in the CIS group, including
the genes above, were downregulated by CIS injection in
the dataset analysis. In terms of the level of expression,
future experiments can be performed to analyze the sam-
ples at different time points to determine the change trend
of gene expression.
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GO analysis showed that DEGs in the IRI group could
participate in the MHC class I protein binding process. The
function of MHC-I was to present intrinsic antigens and acti-
vate CD8+ T cells. This indicates that the change in immune
function is one of the important characteristics in renal IRI.
Interstitial inflammatory responses, including increasingly
complex T- and B-cell populations, highlight the continuing
kidney pathology after AKI, and numerous studies have
examined the effects of T and B lymphocytes on IRI-
induced AKI [26, 27]. The hub gene Mcm5 is a component

of the Mcm2-7 complex, which is the putative replicative
helicase essential for DNA replication initiation and elonga-
tion in eukaryotic cells [28]. E2f1 is a transcription activator
involved in cell cycle regulation or DNA replication [29]. In
the subnetwork, Oip5, which is required for the progression
of mitosis [30], also has a high degree according to the Cyto-
Hubba analysis. These DEGs were all related to the cell cycle
or proliferation. PPI analysis showed that most of the DEGs
in the IRI group were upregulated, which was different from
those in the CIS group. At the peak of IRI damage, most of
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the upregulated DEGs were related to the cell cycle. This
reflects that the repair process of IRI may already be active
during the period of maximum change in biochemical index
and that the repair ability is strong.

miRNAs are noncoding RNA molecules of 21–25 nucle-
otides that regulate gene expression through the posttran-
scriptional repression of their target mRNAs [31]. They can
inhibit target mRNA translation or induce target mRNA deg-
radation through partial or full complementarity to the 3′
untranslated region of their target mRNAs. Evidence sug-
gests that most genes are regulated by miRNAs. A miRNA
may regulate different genes and vice versa. In the kidney,
miRNA plays a key role in both physiological and patholog-
ical activities. Several studies have shown that at least a dozen
kinds of miRNAs may play an important role in the patho-
genesis of AKI induced by IRI and CIS [32]. miRNA may
become a new marker or new treatment. In our study,
miRNA-mRNA interaction analysis showed that miR-466
and miR-709 have a high degree. At present, some studies
have clarified the expression changes or effects of these two
miRNAs in pathological states. In the study of tumors, the
role of mir-466 is considered to inhibit the proliferation
and invasion of carcinoma [33]. In the kidney, miR-466
may also be related to osmoregulation and urine concentra-
tion in mice [34]. In the case of injury, miR-466 was signifi-
cantly downregulated in the livers of the IRI model animals
[35]. This is consistent with the results detected in the CIS
and IRI models. During injury, the kidney promoted damage

repair by reducing mir-466 production and increasing the
expression of its downstream genes associated with cell pro-
liferation. mir-709 has been identified as a nuclear-enriched
microRNA that can control the biogenesis of other miRNAs
by directly targeting their primary transcripts in the nucleus
[36]. Some studies have shown that miR-709 inhibits adipo-
cyte differentiation or modulates the inflammatory response
by targeting the GSK3β/Wnt signaling pathway [37, 38]. In
a recent study, Guo et al. confirmed that in a CIS-induced
AKI mouse model and in biopsy samples of human AKI kid-
ney tissue, miR-709 was significantly upregulated in proxi-
mal tubular cells (PTCs) [39]. Their results suggest that
miR-709 has an important role in mediating AKI via negative
regulation of mitochondrial transcription factor (TFAM) and
subsequent mitochondrial dysfunction. This is also consis-
tent with the analysis results of this study. Our detection
results of the expression of miR-709 are inconsistent with
their study and may be related to the degree of damage in
the AKI model. However, at present, tumor research is pri-
marily focused on the roles of mir-466 and miR-709, and
the specific roles in AKI need to be further studied.

5. Conclusion

After analyzing the GEO database, DEGs were extracted
from different AKI models for GO and KEGG analyses. It
was concluded that apoptosis was dominant in CIS-induced
AKI lesions and that IRI is characterized by an increasing
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inflammatory response of the system accompanied by local
kidney injury. Combining the construction of PPI networks
and miRNA-mRNA networks, we identified possible key
genes and miRNAs as Myc, Mcm5, E2f1, Oip5, Mdm2,

E2f8, mir-466, and mir-709. These node genes and miRNAs
are all associated with the cell repair regeneration process.
We established the AKI model, and the expression of these
key genes and miRNAs in the CIS- or IRI-induced AKI
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model was basically consistent with the data analysis. Since
mir-466 and mir-709 have not been studied deeply in kidney
disease, their role in AKI needs further investigation. These
DEGs and miRNAs can serve as targets for future AKI
therapy.
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