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Editorial on the Research Topic

Machine Learning and Mathematical Models for Single-Cell Data Analysis

Understanding how individual cells communicate with each other and respond to evolution and
perturbations is a central challenge of biology (Altschuler and Wu, 2010). Due to the heterogeneity
of cells, studying a bulk population of cells may confound the variability of cell-type compositions, single
cell analysis has the potential to enable a more systematic study of the inner workings of biological
systems, and allows us to uncover the underlying mechanisms for cellular functions and biological
processes such as cell differentiation and disease development. In the past decade, advances in single-cell
isolation and sequencing technologies have enabled the assay of DNA,mRNA, and protein abundances at
single-cell resolution, which promote the study of genomics, transcriptomics, proteomics and
metabolomics at the sinlge cell level. For example, single-cell genomic analysis can shed light to the
genomic variability of individual cells, while single-cell transcriptomic and proteomic analysis can help to
reveal the types and functional states of individual cells (Shapiro et al., 2013). However, processing single-
cell data of high dimensionality and scale is inherently difficult, especially considering the degree of noise,
sparsity, batch effects and heterogeneity in the data (Amodio et al., 2019). Thus, there is an urgent need for
developing computational models which can handle the size, dimensionality, and various characteristics
of single-cell data. In this Research Topic of Frontiers in Genetics on “Machine Learning and
Mathematical Models for Single-Cell Data Analysis,” we have collected eight manuscripts that used
machine learning algorithms or mathematical models to solve problems in single cell analysis.

Single-cell and whole tissue RNA sequencing technologies enable the Research Topic of detailed
information about biological processes at genomic and transcriptomic levels. Besides, existing
microscopy and cell-resolution imaging techniques allow the high-quality characterization of
morphology and physiology at the level of extended fragments of tissues and organs.
Bobrovskikh et al. summarized the potential of single-cell technologies together with advanced
imaging techniques for computational modelling in plants. They reviewed currently available single-
cell data analysis approaches, advanced imaging technologies in plant research with single-cell
resolution and cell-based modelling approaches. They shown how the combination of single-cell
data, morphometric data and cell-based models help to expand the understanding of tissue and
organ morphogenesis.

Tissues are constituted of heterogeneous cell types. Although single-cell RNA sequencing has
paved the way to a deeper understanding of organismal cellular composition, the high cost and
technical noise have prevented its wide application. As an alternative, computational deconvolution
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of bulk tissues can be a cost-effective solution (Jin and Liu, 2021).
Liu et al. proposed a deconvolution method, named DecOT, to
characterize the cell type composition from bulk tissue RNA-seq
data. DecOT uses the optimal transport distance as a loss and
applies an ensemble framework to integrate reference
information from scRNA-seq data of multiple individuals.
Experiment results on real data sets demonstrated that DecOT
outperformed other existing methods and was robust to the
choice of references.

The development of single-cell sequencing technologies
promotes the researches on developmental physiology and
disease (Potter, 2018), but the spatial information of individual
cells is lost due to the tissue dissociation processes in these
technologies. Highly multiplexed imaging technologies, such as
imaging mass cytometry (IMC), are powerful tools to exploit the
composition and interactions of cells in tumor
microenvironments at subcellular resolution. However, due to
the high resolution and large number of channels, how to process
and interpret IMC image data still remains challenging (Chang
et al., 2017). To improve the accuracy of single cell segmentation,
which is a critical step to process IMC image data, Xiao et al.
developed a deep neural network (DNN)-based cell segmentation
method, named Dice-XMBD. Dice-XMBD is marker agnostic
and can perform accurate cell segmentation of IMC images of
different channel configurations without modification.

Advances in single-cell RNA-sequencing (scRNA-seq)
technology provided an unprecedented opportunity for
researchers to study the identity and mechanisms of single
cells (Morris, 2019). Besides scRNA-seq data, spatial location
data can also provide important information on the cells’ micro-
environment and cell-cell interactions (Mayr et al., 2019), which
can contribute to cell type identification. Oh et al. proposed a
hybrid clustering approach, named single-cell Hybrid
Nonnegative Matrix Factorization (scHybridNMF), to perform
cell clustering by jointly processing cell location and gene
expression data. ScHybridNMF combines sparse nonnegative
matrix factorization (sparse NMF) with k-means clustering to
cluster high-dimensional gene expression and low-dimensional
location data. Experiment results on simulated and real data sets
demonstrate the effectiveness of scHybridNMF in detecting cell
clusters.

The communication between cells plays a vital role in the
development, physicology, and pathology of muticellular
organisms. Single-cell RNA-sequencing (scRNA-seq), which
measures the expression levels of a great number of genes
across various cell types at single-cell resolution, provides a
great opportunity to study the cell-cell communication
between interacting cells and the signaling response governed
by intracellular gene regulatory networks (GRNs) (Shao et al.,
2020). Identification the changes of intercellular signaling across
different conditions is crucial for understanding how distinct cell
states respond to evolution, perturbations, and diseases. Wang
et al. generalized their previously developed tool CellChat to
enable a flexible comparison analysis of cell-cell communication
networks across multiple conditions, which facilitated the
detection of signaling changes of cell-cell communication in
response to biological perturbations. By studying the signaling

changes across three mouse embryonic developmental stages,
four time points after mouse spinal cord injury, and patients with
different COVID-19 severities (i.e., control, moderate, and critical
cases), they verified the effectiveness of their proposed
approaches. To infer the changes of GRNs between two
different states, Liu et al. proposed a general differential
network inference framework, named weighted joint sparse
penalized D-trace model (WJSDM). WJSDM can directly infer
the differential network between two different states by
integrating multi-platform gene expression data and various
existing biological knowledge. By applying WJSDM to the
gene expression data of ovarian cancer and the scRNA-seq
data of circulating tumor cells of prostate cancer, and infer the
differential network associated with platinum resistance of
ovarian cancer and anti-androgen resistance of prostate
cancer, the authors found some important biological insights
about the mechanisms underlying platinum resistance of ovarian
cancer and anti-androgen resistance of prostate cancer.

Recent advances in experimental biology have generated huge
amounts of data. For example, Microwell-Seq, a single-cell RNA-
sequencing technology, has been used to analyze the
transcriptome of more than 400,000 mouse single cells,
covering all major mouse organs (Han et al., 2018). There is
an urgent need for next generation methods to deal with large,
heterogeneous and complex data sets Camacho et al. (2018). As a
promising data processing method, deep learning methods have
been employed in biological data processing (Eraslan et al., 2019).
However, the deep learning methods usually run as a “black box,”
which is hard to interpret. The capsule network (CapsNet) is a
newly developed deep learning model for digital recognition tasks
(Sabour et al., 2017). Wang et al. (2020) proposed a modified
CapsNet model, called single cell capsule network (scCapsNet),
which is a highly interpretable cell type classifier, with the
capability of revealing cell type associated genes by model
internal parameters. Based on CapsNet and scCapsNet, Wang
et al. proposed a deep learning classifier and data integrator,
named MultiCapsNet. The MultiCapsNet model could integrate
multiple input sources and standardize the inputs, then use the
standardized information for classification through capsule
network. The experiment results on three data sets with
different data type and application scenarios proved the
validity and interpretability of MultiCapsNet.

Cancer immunotherapy has shown to elicit substantial
response to many cancers and has led to significant increases
in quality of life for cancer patients. This is especially true of
checkpoint therapy, which causes tumor regression in previously
untreatable cancers. However, the potential mechanisms of
checkpoint therapy are still being investigated and there are as
of yet few prognostic markers for response (Bai et al., 2020).
Immune checkpoint therapies such as PD-1 blockade have vastly
improved the treatment of numerous cancers, including basal cell
carcinoma (BCC). However, patients afflicted with pancreatic
ductal carcinoma (PDAC), one of the deadliest malignancies,
overwhelmingly exhibit negative responses to checkpoint
therapy. Liu et al. sought to combine data analysis and
machine learning to differentiate the putative mechanisms of
BCC and PDAC non-response. By comparing two recent single-
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cell transcriptomic datasets of PDAC and BCC, the authors
identified some potential biomarkers and mechanisms related to
BCC and PDAC non-response. By utilizing machine learning
classification algorithms, they also discovered that PDAC displays
greater similarities to melanoma, which is highly immunogenic and
undergoes rapid metastasis, than to BCC (Dollinger et al., 2020).

In summary, this Research Topic covers various aspects of
machine learning models, including supervised and unsupervised
approaches and their applications for single-cell data analysis,
which paves the way for using machine learning and

mathematical models in service of various tasks towards single
cell analysis. We hope the readers from bioinformatics and the
domain specific researchers will be benefitted by reading articles
included in this Research Topic.
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