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Tolloid-like 1 genetic variants 
determine fibrosis regression in 
chronic hepatitis C patients with 
curative antivirals
Chung-Feng Huang1,2,3, Ming-Lun Yeh1,2, Ching-I Huang1, Zu-Yau Lin1,2, Shinn-Cherng Chen1,2, 
Jee-Fu Huang1,2, Chia-Yen Dai1,2,4, Wan-Long Chuang1,2, Jyh-Jou Chen5 & Ming-Lung Yu   1,2,6,7

Hepatitis C virus (HCV) eradication by antivirals promote fibrosis modification. Whether host genetics 
determined fibrosis regression in chronic hepatitis C (CHC) patients with sustained virological response 
(SVR) is to be determined. One hundred and fifty-six SVR patients with paired liver biopsy before 
and after antivirals were enrolled. Host genetic factors including single nucleotide polymorphism 
rs17047200 of tolloid-like 1(TLL-1) were analyzed for their association with fibrosis modification. The 
proportions of improved, unchanged and worsening fibrotic stags were 39.1% (n = 61), 39.1% (n = 61), 
and 21.8% (n = 34), respectively. The rate of annual fibrotic improvement was 0.16 ± 0.79. There was a 
significant trend of increased fibrotic improvement rate in patients from F01 to F4 (P < 0.001). However, 
the rate of improvement seemed more limited in cirrhotic patients among those with advanced liver 
disease. Patients with fibrotic improvement had a significantly higher proportion of TLL-1 rs17047200 
AA genotype compared to those without (92.5% vs. 79.3%, p = 0.039). Logistic regression analysis 
revealed that the TLL-1 rs17047200 AA genotype was the only independent factor associated with 
fibrosis improvement (odds ratio/95% confidence intervals: 3.2/1.01–10.12, p = 0.047). Compared with 
TLL-1 rs17047200 non-AA carriers, a significantly higher proportion of fibrosis improvement in AA 
genotype carriers was observed among patients with F0-2 (33.3% vs. 0%, p = 0.005) but not with F34 
(70% vs. 80%, p = 1). We concluded that TLL-1 genetic variants determined fibrotic improvement in CHC 
with curative antivirals, particularly in patients with mild liver disease.

The chronic inflammatory state during hepatitis C virus (HCV) infection drives liver fibrogenesis, which in turns 
leads to end-stage liver disease. It takes 20–30 years for the development of liver cirrhosis in patients with chronic 
hepatitis C (CHC). The acceleration of the fibrosis varies among patients. The determining factors largely include 
environmental factors (e.g., alcohol consumption and diabetics1), virological factors (e.g., HCV genotype 3, hep-
atitis B virus [HBV] and human immunodeficiency virus co-infection) and host factors (e.g., age at infection and 
sex2,3). Host genetic predispositions, such as genetic variants of interleukin 28B (IL-28B), patatin-like phospholi-
pase domain-containing 3 (PNPLA3) and other immunogenetic profiles, have also been recognized as potential 
determinants of liver fibrosis progression1,2,4. The term fibrosis progression rate FPR has been adopted as a meas-
ure of the change of fibrotic stage in a given time period2,4. It has been estimated that the median rate of fibrosis 
progression to be 0.13 fibrosis units per year albeit the progression is more exponential rather than linear5.

On the other hand, successful viral eradication by antivirals would halt liver fibrosis progression and prevent 
the development of cirrhosis6. In addition, the achievement of sustained virological response (SVR) may also 
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ameliorate portal hypertension7 and prompt fibrosis regression8. The magnitude and extent of fibrosis regres-
sion following SVR has been previously studied9. It is estimated that up to 57–94% of patients have improved 
histology in terms of necroinflammation and fibrosis scores after viral eradication8. However, some patients 
may have passed “the point of no return” and remain to have fibrosis progression even after viral eradication. 
Notably, whether host genetic variants would determine fibrotic augmentation after viral eradication has not been 
clearly addressed. In the current study, we aimed to elucidate the modification of fibrosis after viral eradication in 
well-characterized CHC patients who received paired liver biopsy before and after achieving SVR. We also aimed 
to explore the potential contribution of host genetic factors to fibrotic modification in this Taiwanese cohort.

Methods
Patients.  CHC patients who received paired liver biopsy before and after interferon-based therapy were con-
secutively enrolled from 2001 to 2012. Patients who failed to achieve SVR, defined as HCV RNA seronegativity 
throughout 6 months of post-treatment follow-up period, were excluded. Patients whose paired biopsy interval 
was less than 1 year; patients with human immunodeficiency virus co-infection and patients with documented 
alcohol abuse (defined as alcohol consumption >20 gm/day) were also excluded from the current study. This 
study was conducted according to The Declaration of Helsinki. The institutional review board of the Kaohsiung 
Medical University Hospital approved the protocols, which conformed to the guidelines of the International 
Conference on Harmonization for Good Clinical Practice. All patients provided written informed consent. All 
procedures were followed in accordance with the ethical standards of the responsible conduct of human experi-
mentation and with the Helsinki Declaration of 1975, as revised in 2008.

Laboratory and histological analyses.  Biochemistry was measured on a multichannel autoana-
lyzer (Hitachi Inc., Tokyo, Japan). HCV antibodies (Anti-HCV) were measured by a third-generation enzyme 
immunoassay (Abbott Laboratories, North Chicago, IL). Hepatitis B surface antigen (HBsAg) was determined 
using a standard quantitative chemiluminescent microparticle immunoassay (ARCHITECT HBsAg, Abbott 
Diagnostics). Serum HCV RNA was detected using qualitative real-time polymerase chain reaction (PCR) 
(COBAS AMPLICOR Hepatitis C Virus Test, ver. 2.0; Roche, Branchburg, NJ, USA, detection limit: 50 IU/ml) 
and quantification branched DNA assay (Versant HCV RNA 3.0, Bayer, Tarrytown, New Jersey, USA; quan-
tification limit: 615 IU/ml) before 2011. The HCV genotypes were determined using the Okamoto method 
before 201110. Both HCV RNA and genotype were detected using real-time PCR assay (RealTime HCV; Abbott 
Molecular, Des Plaines IL, USA; detection limit: 12 IU/ml) since 201211. Serum HBV DNA was detected using 
a standardized automated quantitative PCR assay (COBAS TaqMan HBV test, Roche Diagnostics, Branchburg, 
NJ; detection limit 12 IU/ml). A liver biopsy specimen of at least 2 cm in length was obtained and fixed in 10% 
formalin buffer. Biopsy samples were stained with hematoxylin-eosin, and the results were then reported by one 
pathologist who was blinded to the treatment of each patient. The liver histology was graded and staged according 
to the scoring system described by Scheuer12.

Single nucleotide polymorphism (SNP) genetic testing.  SNPs rs8099917 of IL-28B, rs738409 of 
PNPLA3 and rs2596542 of MHC class I polypeptide-related chain A (MICA) were selected as candidate genes 
as previously described1,13,14. SNP rs17047200 of tolloid-like 1(TLL-1) was selected and determined by ABI 
TaqMan® SNP genotyping assays (Applied Biosystems, Foster City, CA, USA) by using the pre-designed com-
mercial genotyping assays (ABI Assay ID: C__33773674_10). Briefly, PCR primers and two allelic-specific probes 
were designed to detect specific SNP target. The PCR reactions were performed in 96-well microplates with ABI 
7500 real-time PCR. Allele discrimination was achieved by detecting fluorescence using System SDS software 
version 1.2.3. All the allele and genotype frequencies were consistent with the Hardy-Weinberg equilibrium.

Statistical analyses.  Frequencies were compared between groups using either the χ2 test with the Yates 
correction or Fisher’s exact test. Group means, presented as the mean values and standard deviations, were com-
pared using analysis of variance and either the Student’s t test or Mann-Whitney U test. The serum HCV RNA 
levels were expressed after logarithmic transformation of the original values. A significant fibrotic change was 
defined as ≥1-point modification in Metavir score between biopsies. A stepwise logistic regression analysis was 
performed to evaluate the independent factors associated with fibrotic improvement or deterioration by analyzing 
covariates with P values <0.05 in the univariate analysis. The statistical analyses were performed using the SPSS 
12.0 statistical package (SPSS, Chicago, IL, USA). All statistical analyses were based on two-tailed hypothesis tests 
with a significance level of p < 0.05.

Results
Patient profile.  A total of 294 patients who received paired biopsy before and after antiviral therapy were 
initially enrolled. After excluding those patients without SVR (n = 57) and those patients whose paired biopsy 
interval was <1 year (n = 81), one hundred and fifty-six patients were included in the current analysis. The mean 
age was 50.4 years, and males accounted for 50.4% of the population. The median (25, 75 percentile) interval 
between biopsy was 1.53 (1.34, 1.75) year. The proportion of pretreatment fibrotic stage F0-1, F2, F3 and F4 was 
44.9% (n = 70), 28.2% (n = 44), 16.7% (n = 26) and 10.3% (n = 16), respectively (Table 1).

Fibrotic change after achieving SVR.  The proportion of improved, unchanged and worsening fibrotic 
stages was 39.1% (n = 61), 39.1% (n = 61) and 21.8% (n = 34), respectively. The rate of annual fibrotic improve-
ment was 0.16 ± 0.79. The annual fibrotic improvement rate was significantly higher in patients with advanced 
liver fibrosis (F34) than those with mild liver disease (F0-2) (0.62 ± 0.82 vs. −0.01 ± 0.71, P < 0.001). The rate 
of fibrotic improvement was substantially higher in patients whose biopsy interval was >1.5 years than in the 
patients with shorter biopsy intervals. However, this difference did not reach statistical significance. There was 
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a significantly increased trend of fibrotic improvement rate in patients from F01 to F4 (P < 0.001). However, the 
rate of improvement seemed more limited to patients with cirrhosis compared to those with F3 (Table 2 and 
Fig. 1).

Factors associated with fibrotic change.  We further analyzed the factors associated with fibrotic 
improvement or deterioration in this cohort. As shown in Table 3, patients with fibrotic improvement had a 
significantly higher proportion of TLL-1 rs17047200 AA genotype carriage compared to those without (92.5% 
vs. 79.3%, p = 0.039). A substantially higher annual fibrosis regression rate was observed in TLL-1 rs17047200 
AA genotype carriers compared to those with non-AA genotype (0.18 + 0.77 vs. 0.10 + 0.97), albeit it did not 
reach statistical difference (P = 0.36). Logistic regression analysis revealed that the carriage of TLL-1 rs17047200 
AA genotype was the only independent factor associated with fibrosis improvement (odds ratio [OR]/95% con-
fidence intervals [CI]: 3.2/1.01-10.12, p = 0.047). We further stratified patients by their pretreatment fibrotic 
stages. Among patients with advanced liver fibrosis (F3-4), the proportion of fibrotic improvement did not differ 
between patients with TLL-1 rs17047200 AA versus non-AA genotype (70% vs. 80%, P = 1). However, among 
patients with mild liver disease (F0-2), the proportion of fibrosis improvement was significantly higher in those 
with the TLL-1 rs17047200 AA genotype compared to those with a non-AA genotype at (33.3% vs. 0%, p = 0.005) 
(Fig. 2). On the other hand, patients with fibrosis deterioration had a higher r-GT level (94.9 ± 87.7 U/L vs. 
60.2 ± 54.6 U/L, p = 0.027). Logistic regression analysis revealed that r-GT was the only independent factor asso-
ciated with worsening fibrosis (OR/CI: 1.007/1.002-1.013, p = 0.01) (Table 4).

Age (years, mean + SD) 50.4 + 11.1

Male gender, n (%) 85 (54.5)

Body mass index (kg/m2, mean + SD) 25.1 + 3.3

DM, n (%) 19 (12.2)

AST (U/L, mean + SD) 104 + 71

ALT (U/L, mean + SD) 158 + 105

Platelet counts (x103u/L, mean + SD) 168 + 61

r-GT (U/L,mean + SD) 67.9 + 64.7

α-fetoprotein (ng/mL, mean + SD) 11.4 + 17.2

HCV genotype 1, n (%) 93 (59.6)

HCV RNA (log IU/mL, mean + SD) 5.23 + 0.95

HBsAg (+), n (%) 21 (13.5)

HBV DNA undetectable or <2000 IU/mLa, n (%) 19 (12.2)

Hepatic steatosis, n (%) 55 (35.3)

HAI, moderate to severe degree, n (%) 10 (6.4)

Fibrosis 01/2/3/4, n 70/44/26/16

TLL-1 rs17047200 AA genotype*, n (%) 114 (84.4)

IL-28B rs8099917 TT genotype†, n (%) 131 (86.2)

PNPLA3 rs738409 GG genotype‡, n (%) 13 (8.8)

MICA rs2596542 A allele§, n (%) 73 (49.7)

Table 1.  Basic characteristics of the patients. Note: HCV: hepatitis C virus; r-GT: r-glutamyltransferase; SD: 
standard deviation; DM: diabetes mellitus; AST: aspartate aminotransferase; ALT: alanine aminotransferase; 
PLT: platelet count; HBsAg: hepatitis B surface antigen; HAI: histological activity index. TLL1: tolloid like 1; 
IL-28B: interleukin 28B; MICA: MHC class I polypeptide-related chain A;PNPLA3: patatin-like phospholipase 
domain-containing 3; OR: odd ratio; C.I.: 95% confidence intervals. *Data available in 135 patients. †Data 
available in 152 patients. ‡Data available in 148 patients. §Data available in 147 patients. aOne patient with dual 
infection did not have available HBV DNA level before anti-HCV treatment.

All patients 
(n = 156)

interval <1.5 year 
(n = 70)

interval >1.5 year 
(n = 86) P value

All patients 0.16 + 0.79 0.13 + 0.99 0.19 + 0.57 0.58

F01 (n = 70) −0.10 + 0.58a −0.18 + 0.74 (n = 30) −0.04 + 0.42 (n = 40) 0.65

F2 (n = 44) 0.14 + 0.87a 0.06 + 0.99(n = 27) 0.25 + 0.63 (n = 17) 0.49

F3 (n = 26) 0.69 + 0.97a 1.22 + 1.31 (n = 8) 0.46 + 0.70 (n = 18) 0.11

F4 (n = 16) 0.51 + 0.49a 0.60 + 0.61 (n = 5) 0.48 + 0.46 (n = 11) 0.58

Table 2.  Annual fibrotic change in patients with different fibrotic stages. Note: F: fibrosis. Interval: interval 
between paired biopsy. aTrend P < 0.001.
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Discussion
Successful HCV eradication may halt and eventually reverse the natural course of liver deterioration in terms 
of fibrogenesis. In the current study, we demonstrated that the majority of patients have stable or improved 
liver fibrotic stages after HCV eradication. The extent of fibrotic recovering varied by underlying fibrotic stage. 
Notably, we identified that TLL-1 genetic variation was the only factor associated with fibrotic improvement. 
Patients with the TLL-1 rs17047200 AA genotype were more likely to benefit from rapid fibrotic regression after 
HCV eradication. In addition, this impact of host genetic predisposition on fibrosis improvement was particularly 
enhanced in patients with mild liver disease.

Although there is ample evidence that supports the beneficial effect of HCV eradication on fibrotic regression, 
the relentless recover may not be taken for granted across all pupations and studies. The regression slop has been 
suggested to be very slow by non-invasive modalities15,16. It has also been reported that cirrhosis patients experi-
ence only 5% of net fibrosis improvement after 10 years of follow-up15. More convincing evidence may come from 
studies documenting sequential histological changes by liver biopsy. Pooled data have suggested that the propor-
tion of fibrotic improvement ranged widely from 21–82%, whereas one- to two-thirds of the subjects maintained 
stable disease with a mean or median observation period of 0.5 to 5.2 years17. The current study is consistent with 

Figure 1.  Rate of annual fibrotic change after achieving sustained virological response, stratified by 
pretreatment fibrotic status. Each bar represents mean value ± standard error.

Improvement 
(n = 61)

Unchanged/Worsening 
(n = 95) P value

Logistic regression analysis

OR C.I. P value

Age (years, mean + SD) 49.3 + 11.7 51.1 + 10.7 0.34

Male gender, n (%) 35 (57.4) 50 (52.6) 0.56

Body mass index (kg/m2, mean + SD) 25.0 + 3.0 25.1 + 3.4 0.91

DM, n (%) 8(13.1) 11 (11.6) 0.78

AST (U/L, mean + SD) 98 + 62 108 + 77 0.39

ALT (U/L, mean + SD) 147 + 96 164 + 110 0.29

Platelet counts (x103 u/L, mean + SD) 166 + 61 169 + 61 0.71

r-GT (U/L,mean + SD) 57.9 + 57.8 77.2 + 68.3 0.16

α-fetoprotein (ng/mL, mean + SD) 12.1 + 21.0 10.9 + 14.3 0.71

HCV genotype 1, n (%) 40 (65.6) 53 (55.8) 0.22

HCV RNA (log IU/mL, mean + SD) 5.38 + 0.87 5.13 + 0.99 0.10

HBsAg (+), n (%) 9 (14.8) 12 (12.6) 0.71

Hepatic steatosis, n (%) 22 (36.1) 33 (34.7) 0.87

HAI, moderate to severe degree, n (%) 6 (9.8) 4 (4.2) 0.19

TLL-1 rs17047200 AA genotype*, n (%) 49 (92.5) 65 (79.3) 0.039 3.2 1.01–10.12 0.047

IL-28B rs8099917 TT genotype†, n (%) 52 (88.1) 79 (84.9) 0.58

PNPLA3 rs738409 GG genotype‡, n (%) 6 (10.3) 7 (7.8) 0.59

MICA rs2596542 A allele§, n (%) 27 (47.4) 46 (51.1) 0.66

Table 3.  Factors associated with fibrosis improvement in the SVR patients. Note: HCV: hepatitis C virus; r-GT: 
r-glutamyltransferase; SD: standard deviation; DM: diabetes mellitus; AST: aspartate aminotransferase; ALT: 
alanine aminotransferase; PLT: platelet count; HBsAg: hepatitis B surface antigen; HAI: histological activity 
index. TLL1: tolloid like 1; IL-28B: interleukin 28B; MICA: MHC class I polypeptide-related chain A;PNPLA3: 
patatin-like phospholipase domain-containing 3; OR: odd ratio; C.I.: 95% confidence intervals. *Data available 
in 135 patients. †Data available in 152 patients. ‡Data available in 148 patients. §Data available in 147 patients.
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previous reports that HCV eradication results in suppression of ongoing liver damage and fibrogenesis in the 
majority patients.

Liver fibrosis progression in viremic patients may be more exponential rather than linear5. The shape of the 
recovery curve after viral clearance remains unclear since repeated liver biopsy may not be feasible after viral 
eradication. A more rapid fibrosis regression rate of up to 0.28 to 0.59/year has been proposed9,18. It has also been 
suggested that regression rate was more evident in patients whose biopsy intervals were more than 3 years com-
pared to those with shorter observation periods4. In the current study, we observed the annual fibrosis regression 
rate of 0.16, which was similar to the fibrosis progression rate in viremic patients reported by Poynard et al.5 
Interestingly, we observed that the recovery rate was more rapid with the advancement of underlying liver fibro-
sis. This finding echoed the observation that platelet counts, an indicator of liver disease severity, may recover 
in SVR patients with all stages of liver diseases and were more pronounced in patients with progressed liver 
fibrosis19. Notably, we observed that the regression rate seemed to slow in cirrhotic patients. Indeed, cirrhosis 
represents more than merely severe fibrosis17. Semi-quantitative scoring by Metavir or Ishak may not represent 
the whole spectrum of cirrhotic architecture17,20, which may limit the prognostic prediction on an individual 
basis21,22. Complex features of different degrees of extracellular matrix deposition vary among cirrhotic patients. 
This may account for variable reversibility and degradation of collagen and elastin within the cirrhotic tissues17. 
As a result, some cirrhotic patients may encounter refractory fibrotic down-staging that leads to slower fibrosis 
regression rate, as was observed in the current study.

The fact that genetic predispositions determine fibrosis progression and liver disease severity has been doc-
umented1,23,24. Whether these genetic factors are involved in fibrotic resolution has not yet been explored. Balart 
et al. have reported different proportions of fibrotic regression between Latinos and non-Latinos who achieved 

Figure 2.  Proportion of fibrotic improvement in patients with different tolloid-like 1 genetic variants, stratified 
by liver disease severity (fibrotic stage 0–2 and 3–4).

Improvement 
Unchanged/(n = 122)

Worsening 
(n = 34) P value

Logistic regression analysis

OR C.I. P value

Age (years, mean + SD) 49.5 + 10.9 53.3 + 11.2 0.08

Male gender, n (%) 70 (57.4) 15 (44.1) 0.17

Body mass index (kg/m2, mean + SD) 25.1 + 3.3 24.8 + 3.2 0.65

DM, n (%) 13 (10.7) 6 (17.6) 0.37

AST (U/L, mean + SD) 104 + 76 103 + 51 0.93

ALT (U/L, mean + SD) 150 + 103 184 + 110 0.1

Platelet counts (x103u/L, mean + SD) 168 + 61 166 + 59 0.86

r-GT (U/L, mean + SD) 60.2 + 54.6 94.9 + 87.7 0.027 1.007 1.002–1.013 0.01

α-fetoprotein (ng/mL, mean + SD) 11.2 + 17.8 12.0 + 15.3 0.8

HCV genotype 1, n (%) 74 (60.7) 19 (55.9) 0.62

HCV RNA (log IU/mL, mean + SD) 5.25 + 0.95 5.18 + 0.98 0.71

HBsAg (+), n (%) 15 (12.3) 6 (17.6) 0.41

Hepatic steatosis, n (%) 39 (32.0) 16 (47.1) 0.1

HAI, moderate to severe degree, n (%) 8 (6.8) 2 (5.9) 1

TLL-1 rs17047200 AA genotype*, n (%) 89 (84.0) 25 (86.2) 1

IL-28B rs8099917 TT genotype†, n (%) 100 (84.7) 31 (91.2) 0.41

PNPLA3 rs738409 GG genotype‡, n (%) 11 (9.6) 2 (6.1) 0.73

MICA rs2596542 A allele§, n (%) 55 (48.2) 18 (54.5) 0.52

Table 4.  Factors associated with fibrosis deterioration in the SVR patients. Note: HCV: hepatitis C virus; r-GT: 
r-glutamyltransferase; SD: standard deviation; DM: diabetes mellitus; AST: aspartate aminotransferase; ALT: 
alanine aminotransferase; PLT: platelet count; HBsAg: hepatitis B surface antigen; HAI: histological activity 
index. TLL1: tolloid like 1; IL-28B: interleukin 28B; MICA: MHC class I polypeptide-related chain A; PNPLA3: 
patatin-like phospholipase domain-containing 3; OR: odd ratio; C.I.: 95% confidence intervals. *Data available 
in 135 patients. †Data available in 152 patients. ‡Data available in 148 patients. §Data available in 147 patients.
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SVR25, giving a hint that genetic variants may also determine fibrosis regression. However, no robust evidence has 
identified any genetic factors associated with fibrosis regression until recently. In the current study, we identified 
that SNP rs17047200 of TLL-1 was independently associated with fibrosis resolution. A genome-wide association 
study has demonstrated the association of this genetic locus with hepatocellular carcinoma occurrence in SVR 
patients26. In addition, it seems that the impact of SNP rs17047200 of TLL-1 on HCC development is particularly 
enhanced in patients with mild fibrosis. The elderly who carried a non-AA genotype had a more than 4-fold HCC 
risk compared to those with the protective AA genotype26. Coincidently, we noted that association of this SNP 
with fibrosis improvement was also restricted to patients with mild liver disease. None of 16 non-AA genotype 
carriers with mild liver disease could benefit from fibrotic regression after achieving SVR during the observation 
period. TLL1 is one of the bone morphogenetic protein 1/tolloid (BMP1/TLD)-like proteinase family. TLL1 and 
BMP1 has been reported to have a biologically impact on transforming growth factor-β signaling transduction 
and extracellular matrix assembly regulation27,28. Increased TLL1 mRNA expression has been associated with 
fibrogenesis both in vivo and in vitro, and patients with unfavorable TLL-1 genetic variants were noted to have a 
higher expression of TLL-1 short isoform26. Further study is warranted to clarify the potential pathophysiological 
role of TLL-1 in fibrotic resolution such as extracellular matrix degradations or satellite cell senescence17.

Notably, a minority of patients continued to have fibrosis progression following HCV eradication8,17,18,29. 
Additional coexisting profibrogenic stimuli, such as alcohol consumption or metabolic disarrangement, may in 
part account for this result30,31. Progress to decompensated status may even occur in certain cirrhotic patients. 
Van der Meer et al. have reported an annual risk of approximately 2% for clinical disease progression in cirrhotic 
patients after a median follow-up period of 5.7 years32. In the current study, one-fifth of the patients had deterio-
rated liver fibrosis, and a high r-GT level was the only factor associated with this deterioration. r-GT is responsible 
for the catabolism of extracellular glutathione (GSH) and other γ-glutamyl compounds, and it may serve as a sur-
rogate for oxidative stress. We have previously demonstrated that high pretreatment r-GT level was independently 
predictive of HCC occurrence in SVR patients, particularly in those without cirrhosis33. As r-GT level has been 
recognized as a predictor of liver fibrosis progression in CHC34, the current study reinforced its role in fibrotic 
deterioration in the curative status. One-tenth of the patients were dually infected with inactive HBV in the 
current population. HBV reactivation after HCV eradication by interferon-based therapy is very rare35,36, and we 
have reported a cumulative HBsAg seroclearance rate of up to 30.0% after 5 years of post-HCV curative follow-up 
period37. The impact of HBV dual infection on fibrosis augmentation in the current cohort should be limited.

The current study was limited by the relatively short interval between paired biopsies. To overcome the pitfall, 
we excluded the patients whose biopsy interval was less than 1 year. There may exist sampling variability and 
inter/intra-observer bias of biopsy tissues. More quantitative analyses, including immunostaining for cell-specific 
markers or morphometric analysis, may provide a future solution20,36. As noninvasive tests are widely applied in 
the directly acting antivirals (DAAs) era, accuracy is challenging and doubtful in the post-curative status16,38. 
Liver biopsy remains the gold standard to assess liver fibrosis. In conclusion, the majority of Taiwanese CHC 
patients maintained or had fibrosis regression after HCV eradication. The magnitude of fibrotic improvement 
varied among patients with different disease severities. Host genetic variation of TLL-1 determined fibrosis 
improvement in Asian patients, and validation of this finding in different ethnicities is warranted. Since repeated 
liver biopsy in larger patient cohorts may not be feasible in the DAAs era, the current study may shed light for 
future fundamental studies in terms of host genetics and fibrotic resolution.
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