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OBJECTIVE—A1C is widely considered the gold standard for
monitoring effective blood glucose levels. Recently, a genome-
wide association study reported an association between A1C and
rs7072268 within HK1 (encoding hexokinase 1), which catalyzes
the first step of glycolysis. HK1 deficiency in erythrocytes (red
blood cells [RBCs]) causes severe nonspherocytic hemolytic
anemia in both humans and mice.

RESEARCH DESIGN AND METHODS—The contribution of
rs7072268 to A1C and the RBC-related traits was assessed in
6,953 nondiabetic European participants. We additionally ana-
lyzed the association with hematologic traits in 5,229 nondiabetic
European individuals (in whom A1C was not measured) and
1,924 diabetic patients. Glucose control–related markers other
than A1C were analyzed in 18,694 nondiabetic European individ-
uals. A type 2 diabetes case-control study included 7,447 French
diabetic patients.

RESULTS—Our study confirms a strong association between
the rs7072268–T allele and increased A1C (� � 0.029%; P �

2.22 � 10�7). Surprisingly, despite adequate study power,
rs7072268 showed no association with any other markers of
glucose control (fasting- and 2-h post-OGTT–related parameters,
n � 18,694). In contrast, rs7072268–T allele decreases hemoglo-
bin levels (n � 13,416; � � �0.054 g/dl; P � 3.74 � 10�6) and
hematocrit (n � 11,492; � � �0.13%; P � 2.26 � 10�4),
suggesting a proanemic effect. The T allele also increases risk for
anemia (836 cases; odds ratio 1.13; P � 0.018).

CONCLUSIONS—HK1 variation, although strongly associated
with A1C, does not seem to be involved in blood glucose control.
Since HK1 rs7072268 is associated with reduced hemoglobin
levels and favors anemia, we propose that HK1 may influence
A1C levels through its anemic effect or its effect on glucose
metabolism in RBCs. These findings may have implications for
type 2 diabetes diagnosis and clinical management because
anemia is a frequent complication of the diabetes state.
Diabetes 58:2687–2697, 2009

T
ype 2 diabetes is a major source of early excess
morbidity and mortality, which result from lack
of adequate blood glucose control in most dia-
betic patients (1). In the absence of widely

available continuous glucose monitoring, the A1C assay
has become the most popular index to evaluate the
efficiency of type 2 diabetes treatments on long-term blood
glucose control (2,3). A1C, which is formed through the
nonenzymatic attachment of glucose to the NH2-terminal
of the �-chain of hemoglobin, is indeed commonly consid-
ered a surrogate marker of mean blood glucose concen-
tration over the previous 8–12 weeks (i.e., a 120-day life
span of erythrocytes) (4). Furthermore, the A1C assay is
often used for confirming type 2 diabetes diagnosis when
fasting plasma glucose (FPG) is in the pre-diabetes range
(6.1 � FPG �7.0 mmol/l, defining normal glycemia and
overt diabetes, respectively [2]), as postprandial or post–
glucose load measurements of blood glucose are difficult
to widely apply in clinical practice. However, the A1C
measurement displays well-known caveats, such as genet-
ically inherited hemoglobin defects or erythrocyte (red
blood cell [RBC]) life span heterogeneity in hematologi-
cally normal people, that would oblige the use of more
complex measurement of glycated serum proteins or
fructosamine as a surrogate of blood glucose levels (5,6).

Thus far, several genome-wide association (GWA) stud-
ies have identified 22 genes or loci, increasing the risk for
type 2 diabetes or modulating FPG levels (7–19). Recently,
Pare et al. (20) reported a single nucleotide polymorphism
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France; the 15Paris Diderot University, Paris, France; the 16Department of
Epidemiology and Public Health, Imperial College London, London, U.K.;
the 17Steno Diabetes Center, Gentofte, Denmark; the 18Department of
Health Sciences, University of Aarhus, Aarhus, Denmark; the 19Department
of Health Sciences, University of Copenhagen, Copenhagen, Denmark; the
20Department of Human Genetics, McGill University, Montreal, Canada; the
21Genome Quebec Innovation Centre, Montreal, Canada; and 22Genomic
Medicine, Hammersmith Hospital, Imperial College London, London, U.K.

Corresponding author: Philippe Froguel, p.froguel@imperial.ac.uk.
Received 1 May 2009 and accepted 15 July 2009. Published ahead of print at

http://diabetes.diabetesjournals.org on 3 August 2009. DOI: 10.2337/
db09-0652.

© 2009 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

See accompanying commentary, p. 2444.

ORIGINAL ARTICLE

diabetes.diabetesjournals.org DIABETES, VOL. 58, NOVEMBER 2009 2687



(SNP), rs7072268, at the hexokinase 1 (HK1) locus
(chr10q22) that strongly associates with increased A1C in
a nondiabetic population. The four isozymes of the hexo-
kinase family (HK1, HK2, HK3, and glucokinase) contrib-
ute to commit glucose to the glycolytic pathway. The
predominant HK1 isozyme is expressed in the vast major-
ity of cells and tissues, including cells that are strictly
dependent on glucose uptake for their metabolic needs
(21). Importantly, while most tissues express more than
one HK isozyme, RBC glucose metabolism only depends
on HK1 activity (22). In humans, mutations including
nonsynonymous substitutions in the active site of HK1 and
intragenic deletions have been shown to cause HK1 enzy-
matic deficiency associated with autosomal recessive se-
vere nonspherocytic hemolytic anemia (21,23–25). A
similar phenotype has been described in the Downeast
Anemia (dea) mice displaying HK1 deficiency (22).

Based on these observations, we postulated that HK1
genetic variation may modulate the maintenance of the
RBC pool and thus indirectly alter A1C measurements
independently of the ambient blood glucose concentra-
tion. We evaluated this hypothesis by assessing the impact
of HK1 rs7072268 on A1C, other glucose control-related
traits, type 2 diabetes risk, and RBC-related parameters in
several prospective and case-control European cohorts.
Our data suggest that HK1 variation through its anemic
effect impairs A1C assays, which may have important
clinical implications for both type 2 diabetes diagnosis and
management because anemia is commonly associated
with diabetes.

RESEARCH DESIGN AND METHODS

Study participants. Clinical characteristics and data available on the studied
populations are reported in Table 1. The study protocol was approved by the
local ethics committee, and participants from all of the studies described (and
the parents of children) signed an informed consent form.
Genotyping of rs7072268 was performed in several cohorts

D.E.S.I.R. The Data from the Epidemiological Study on the Insulin Resis-
tance Syndrome (D.E.S.I.R.) cohort is a longitudinal French general popula-
tion described elsewhere (10,26). We analyzed 4,590 nondiabetic D.E.S.I.R.
participants successfully genotyped for rs7072268, of whom 3,795 were
examined throughout the 9-year study.
Swiss obese adults. The Swiss cohort study of obese adults has previously
been described (27). All of the subjects were recruited for obesity surgery. We
analyzed 2,363 nondiabetic participants successfully genotyped for rs7072268.
NFBC1986. The Northern Finland 1986 Birth Cohort (NFBC1986) is a
prospective 1-year birth cohort including all Finnish Caucasian mothers with
children whose expected date of birth fell between 1 July 1985 and 30 June
1986 in the two northernmost provinces of Finland (28). Clinical examination
at 15–16 years of follow-up was conducted between August 2001 and June
2002. We analyzed 5,287 nondiabetic participants successfully genotyped for
rs7072268 in the NFBC1986 cohort.
Haguenau. The Haguenau community-based cohort of young adults investi-
gates long-term consequences of being born small for gestational age and has
previously been described (29). Briefly, subjects born between 1971 and 1985
were identified from a population-based registry of Haguenau (France).
Non–European ancestry subjects are estimated to be �0.1% of the general
population (29). At a mean age of 22 years, participants under overnight
fasting conditions underwent a medical examination for assessment of
anthropometric and clinical parameters. We analyzed 1,455 nondiabetic
participants successfully genotyped for rs7072268.
Obesity French pedigrees. French children and adults with European
ancestry from families with a history of obesity were recruited at the Centre
National de la Recherche Scientifique (CNRS)-UMR8090 unit (Lille, France)
through an ongoing national media campaign (30). We analyzed 5,261 nondi-
abetic participants successfully genotyped for rs7072268.
French type 2 diabetes case-control study. We analyzed 7,447 unrelated
French individuals with type 2 diabetes ascertained from the French type 2
diabetes family and Obesity family studies, collected by the CNRS-UMR8090
unit, from the Endocrinology-Diabetology Department of the Corbeil-Es-
sonnes Hospital (7), and from the Diabhycar/Diab2-Néphrogène/Surdiagène T
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study (31). We used 5,380 unrelated normoglycemic participants (age at exam
�40 years) as control subjects (ascertained by the D.E.S.I.R. cohort; the
SU.VI.MAX study, which has previously been described [32], and the French
type 2 diabetes family and obesity family studies).

For each population, glycemic status was defined according to 1997
American Diabetes Association criteria (2): normal glucose was defined as
FPG �6.1 mmol/l without hypoglycemic treatment, and type 2 diabetes was
defined as FPG �7.0 mmol/l or treatment with antidiabetic agents. For the
Corbeil study, overt nephropathy was defined as microalbuminuria levels �30
mg/24 h or �20 mg/l in two of three urinary takings.
Genotyping. Genotyping of SNP rs7072268 was performed using a TaqMan
assay according to the manufacturer’s instructions (no. C-30005592-10; Ap-
plied Biosystems, Foster City, CA). Allelic discrimination was performed by
capillary electrophoresis analysis using an Applied Biosystems 3730xl DNA
Analyser and GeneMapper 3.7 software. The genotype success rate was at
least 98%, and no deviation (P � 0.05) from Hardy-Weinberg equilibrium was
observed in any of the examined populations. Genotyping of MTNR1B-
rs10830963, GCK-rs1799884, G6PC2-rs560887, and SLC30A8-rs13266634 in the
D.E.S.I.R. study had previously been reported (10,19,33,34).
Statistical analyses. We analyzed the effect of SNP rs7072268 on quantitative
traits using linear regression models under an additive model adjusted for age,
sex, and BMI. To take into account familial relationships within the French
obesity pedigrees, we tested the association between rs7072268 and glucose
homeostasis-related traits using Gaussian models of generalized estimated
equations (GEEs) performed with STATA software. The estimates of the effect
of rs7072268 on quantitative traits and their standard errors for each separate
population were combined in the meta-analyses using the weighted inverse
normal method. The overall effect and its CI were estimated using the inverse
variance method implemented in the “meta.summaries” function of the R
RMETA package. The effect of rs7072268 on diabetic status was assessed
using a logistic regression model adjusted for age, sex, and BMI. In the
D.E.S.I.R. participants, the effect of the rs7072268 genotype on quantitative
traits was assessed in nondiabetic individuals at baseline and using repeated
measures at 3-, 6-, and 9-year follow-up visits. We used mixed models for
analyses of repeated measures adjusted for age, sex, and BMI. Using the
QUANTO software, we estimated what significant effects of rs7072268 on
glucose homeostasis–related parameters we could expect in the related
meta-analyses, with a detection power of 80%. Given the analyzed sample
sizes, small effects of HK1 rs7072268 (estimated at � � 0.1 ) on glucose
homeostasis–related parameters can be detected with a power of 80%. All
statistical analyses were performed with R (version 2.6.1), SPSS (version 14.0
for Windows), QUANTO (version 1.2), and STATA software (version 5.0).
Indexes calculation. Homeostasis model assessment of pancreatic �-cell
function (HOMA-B) was calculated as follows: HOMA-B � (20 � fasting serum
insulin)/(FPG � 3.5), where fasting serum insulin is in milliunits per liter and
FPG is in millimoles per liter (35). Homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated as follows: HOMA-IR � (FPG � fasting
serum insulin)/22.5, where fasting serum insulin is in picomoles per liter and
FPG is in millimoles per liter (35).

The insulinogenic index, the insulin sensitivity index (ISI), and the dispo-
sition index (DI) were calculated from an oral glucose tolerance test (OGTT)
according to the following formulas:

Insulinogenic index � (serum insulin at 30 min � fasting serum insulin)/
plasma glucose at 30 min, where serum insulin
is in picomoles per liter and plasma glucose
is in millimoles (36).

ISI � 10,000/�(FPG � fasting serum insulin � mean OGTTglucose

� mean OGTTinsulin), where serum insulin is in milliunits per liter and
plasma glucose is in millimoles per liter (37).

DI � ISI � 100 � serum insulin at 30 min[plasma glucose at 30 min
� (plasma glucose at 30 min � 3.89)], where serum insulin is in
milliunits per liter and plasma glucose is in millimoles per liter (38).

ISI and DI were only calculated in the French obese pedigrees as measure-
ments of serum insulin and plasma glucose were available at 0, 30, 60, 90, and
120 min after glucose load. In the Haguenau study, measurements of serum
insulin and plasma glucose were only available at 0, 30, and 120 min after
glucose load.

RESULTS

SNP rs7072268 strongly associates with increased
A1C level in nondiabetic individuals. We first geno-
typed SNP rs7072268 in 4,590 middle-aged nondiabetic
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individuals from the French D.E.S.I.R. population (mean
age 47 years) and in 2,363 Swiss nondiabetic obese adults
(mean age 41 years) (Table 1). After an additive genetic
model adjusted for age, sex, and BMI was applied, the
rs7072268–T allele showed a consistent association with
increased A1C in the D.E.S.I.R. study at baseline and over
the 9-year follow-up (� � 0.023%A1C [95% CI 0.016–0.031],
P � 1.76 � 10�3, and � � 0.022%A1C [0.016–0.029], P �
3.93 � 10�4, respectively; Table 2) and in the Swiss obese
adults sample set (� � 0.046%A1C [0.032–0.060], P � 9.46 �
10�4; Table 2). These results were unchanged when the
additive genetic model was adjusted for age and sex only
(data not shown). When we also included FPG level in the
linear regression model, the significance of the effect on
A1C was stronger in both studies and in a meta-analysis of
the D.E.S.I.R. baseline data and the Swiss obese samples
(n � 6,953; � � 0.029%A1C [0.018–0.040], combined P �
2.22 � 10�7; Table 2).

SNP rs7072268 does not associate with any other

markers of glucose control in nondiabetic individuals.

We then assessed the impact of the rs7072268–T allele on
glucose homeostasis–related traits in the D.E.S.I.R. and
Swiss samples. After applying an additive genetic model
adjusted for age, sex, and BMI, we did not find significant
associations between rs7072268 and any glucose-related
traits including fasting glucose, fasting insulin, HOMA-B,
and HOMA-IR (Table 3).

To further support these paradoxical findings, we tested
the effect of rs7072268 on the same fasting traits in 12,003
additional nondiabetic individuals ascertained from the
NFBC1986 study (age at examination 16 years), the French
Haguenau cohort (mean age 22 years), and French obesity
pedigrees including both children and adults (mean age 11
and 46 years, respectively) (Table 1). A1C levels were not
measured in these sample sets. After applying an identi-
cally adjusted additive genetic model, we did not find

TABLE 3
Associations between rs7072268 and glucose homeostasis–related traits in nondiabetic individuals from several European
cohorts

Glucose homeostasis–related
traits

T-allele
frequency n

Mean data level by genotype
PCC CT TT

D.E.S.I.R. 0.49 4,590
Fasting glucose (mmol/l) 5.29 � 0.53 5.27 � 0.52 5.28 � 0.54 0.66
Fasting insulin (pmol/l) 39.22 (28.63–56.82) 39.15 (28.54–55.61) 39.58 (28.82–55.78) 0.78
HOMA-B 67.65 (48.06–94.05) 67.67 (49.19–95.41) 69.51 (49.52–93.61) 0.79
HOMA-IR 9.15 (6.43–13.66) 9.17 (6.48–13.23) 9.19 (6.44–13.72) 0.74

Swiss obese adults 0.54 2,101
Fasting glucose (mmol/l) 5.14 � 0.63 5.11 � 0.58 5.16 � 0.57 0.44
Fasting insulin (pmol/l) 103.5 (69–158.7) 110.4 (75.9–165.6) 110.4 (75.9–172.2) 0.08
HOMA-B 200.0 (132.5–306.1) 216.0 (137.7–329.2) 200.0 (137.5–314.3) 0.24
HOMA-IR 24.2 (15.5–36.2) 24.9 (16.9–36.7) 25.5 (16.3–38.3) 0.10

NFBC1986 0.40 5,287
Fasting glucose (mmol/l) 5.15 � 0.44 5.15 � 0.43 5.14 � 0.41 0.81
Fasting insulin (pmol/l) 66.24 (51.06–87.63) 66.24 (51.06–84.67) 67.62 (51.06–86.25) 0.53
HOMA-B 118.67 (90.00–156.67) 117.89 (92.00–156.21) 120.00 (90.00–156.67) 0.75
HOMA-IR 15.03 (11.50–20.16) 15.12 (11.43–19.77) 15.35 (11.57–19.73) 0.52

Haguenau 0.52 1,455
Fasting glucose (mmol/l) 4.76 � 0.35 4.80 � 0.38 4.79 � 0.39 0.29
Fasting insulin (pmol/l) 33.01 (22.96–44.49) 33.01 (22.96–44.49) 30.49 (21.53–43.59) 0.82
HOMA-B 78.09 (50.61–112.93) 75.09 (51.23–107.05) 72.82 (50.06–104.93) 0.74
HOMA-IR 7.08 (4.79–9.48) 6.97 (4.89–9.55) 6.57 (4.48–9.34) 0.72

French children from obesity
pedigrees 0.49 1,411

Fasting glucose (mmol/l) 4.89 � 0.47 4.93 � 0.48 4.86 � 0.51 0.30
Fasting insulin (pmol/l) 68.31 (42.78–107.30) 68.31 (42.44–107.30) 70.38 (44.85–112.47) 0.89
HOMA-B 151.76 (99.44–225.38) 145.33 (94.87–229.43) 152.73 (94.44–253.33) 0.66
HOMA-IR 15.13 (8.89–23.09) 14.95 (8.98–24.04) 14.72 (9.44–25.07) 0.98

French adults from obesity
pedigrees 0.51 3,850

Fasting glucose (mmol/l) 5.33 � 0.68 5.34 � 0.69 5.36 � 0.67 0.76
Fasting insulin (pmol/l) 54.17 (33.12–84.70) 55.20 (33.12–89.01) 58.65 (34.50–93.84) 0.25
HOMA-B 87.55 (56.32–141.14) 93.52 (57.38–142.71) 96.36 (59.64–151.54) 0.45
HOMA-IR 12.74 (7.42–20.62) 13.26 (7.43–21.42) 14.03 (7.82–23.30) 0.23

Overall meta-analysis — 18,694
Fasting glucose (mmol/l) 0.93
Fasting insulin (pmol/l) 0.79
HOMA-B 0.90
HOMA-IR 0.81

Data are means � SD or, for logarithmically transformed data, medians (interquartile range). Associations between rs7072268 and glucose
homeostasis–related traits were assessed applying an additive model adjusted for age, sex, and BMI—except for the NFBC1986 (an
adjustment for sex and BMI was only performed because all of the subjects were 16 years old). Data for fasting serum insulin, HOMA-B, and
HOMA-IR were logarithmically transformed before statistical analysis.
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significant associations with any of these traits as analyzed
in each cohort or in the overall combined meta-analysis
(Table 3). Furthermore, analyses of glucose and insulin
levels after an oral glucose load in 1,440 individuals from
Haguenau and in 1,055 children and 2,294 adults from the
French obesity pedigrees did not show any significant
associations (Table 4).
SNP rs7072268 associates with RBC-related parame-
ters and anemia in nondiabetic individuals. Since our
results thus far suggested that the effect of rs7072268 on
A1C was not due to differences in glycemic status, we
assessed the impact of rs7072268 on RBC-related param-
eters available in D.E.S.I.R. and the Swiss obese adults
sample set and also in 5,229 participants from the

NFBC1986 study (where RBC-related traits but not A1C
were measured). After an additive genetic model adjusted
for age, sex, and BMI was applied, our combined analysis
demonstrated an association between the rs7072268–T
allele and decreased hematocrit (n � 11,492; � �
�0.13%hematocrit [95% CI �0.20 to �0.06], combined P �
2.26 � 10�4; Table 5) and decreased hemoglobin levels
(� � �0.044 g/dl [�0.071 to �0.017], combined P � 1.43 �
10�3; Table 5). Combined case-control studies for anemia
(stringently defined by hemoglobin �12 g/dl for women
and �13 g/dl for men; 669 cases) from the same cohorts
further supported the anemic effect of the rs7072268–T
allele (odds ratio [OR] 1.13 [95% CI 1.01–1.27]; combined

TABLE 4
Associations between rs7072268 and quantitative metabolic traits during an OGTT in nondiabetic French individuals from the
Haguenau study and obesity pedigrees

Quantitative metabolic traits during
an OGTT

Data level by genotype
PCC CT TT

French children from obesity
pedigrees with T-allele
frequency 0.49 (n � 1,055)

Plasma glucose (mmol/l)
30-min post-OGTT 7.24 � 1.42 7.20 � 1.52 7.29 � 1.49 0.85
120-min post-OGTT 5.47 � 1.13 5.39 � 1.18 5.39 � 1.16 0.22

Serum insulin*
30-min post-OGTT 498 (283–732) 448 (275–698) 461 (274–763) 0.57
120-min post-OGTT 206 (107–411) 193 (99–401) 213 (100–451) 0.72

Insulinogenic index* 58.7 (34.5–84.7) 54.4 (31.6–82.4) 54.3 (33.4–89.9) 0.96
ISI* 32.5 (21.3–55.4) 37.0 (23.4–58.1) 33.8 (21.3–57.2) 0.43
DI* 10,025 (5,539–18,125) 10,827 (6,013–18,391) 9,012 (5,345–16,832) 0.83

French children from obesity
pedigrees with T-allele
frequency 0.51 (n � 2,294)

Plasma glucose (mmol/l)
30-min post-OGTT 8.22 � 1.67 8.40 � 1.90 8.32 � 1.85 0.70
120-min post-OGTT 5.68 � 1.95 5.72 � 1.92 5.78 � 1.97 0.43

Serum insulin*
30-min post-OGTT 293 (167–490) 305 (182–481) 295 (165–485) 0.97
120-min post-OGTT 168 (79–366) 182 (83–370) 190 (91–364) 0.27

ISI* 106.6 (60.2–192.6) 102.4 (62.3–170.0) 107.0 (57.5–174.8) 0.46
DI* 13,046 (6,496–26,909) 12,806 (6,130–25,563) 13,005 (5,841–24,931) 0.41

Haguenau with T-allele frequency 0.52
(n � 1,440)

Plasma glucose (mmol/l)
30-min post-OGTT 7.51 � 1.42 7.61 � 1.46 7.49 � 1.40 0.60
120-min post-OGTT 5.40 � 1.22 5.30 � 1.14 5.27 � 1.18 0.17

Serum insulin*
30-min post-OGTT 294 (185–445) 287 (187–420) 287 (181–434) 0.82
120-min post-OGTT 165 (93–266) 172 (108–273) 165 (101–266) 0.99

Insulinogenic index* 34.9 (20.6–53.6) 33.1 (21.6–50.8) 34.8 (21.6–50.9) 0.87
Overall meta-analysis (n � 4,789)

Plasma glucose (mmol/l)
30-min post-OGTT 0.99
120-min post-OGTT 0.24

Serum insulin*
30-min post-OGTT 0.71
120-min post-OGTT 0.83

Insulinogenic index* 0.84
ISI* 0.92
DI* 0.42

Data are means � SD or, for logarithmically transformed data, median (interquartile range). Associations between rs7072268 and quantitative
metabolic traits during an OGTT were assessed applying an additive model adjusted for age, sex, and BMI. Meta-analyses of both ISI and DI
included association data of the participants from French obesity pedigrees only. *Data logarithmically transformed before statistical
analysis.
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P � 0.032). We next studied the effects of variation at
rs7072268 on mean corpuscular hemoglobin (MCH) and
mean corpuscular volume (MCV) indexes: because the P
values for heterogenity in effects on both traits were
�0.05, our analysis was performed in each cohort in
isolation. In Swiss obese adults, the rs7072268–T allele
associates with both decreased MCH and MCV parameters
(� � �0.21 pg/cell [95% CI �0.28 to �0.14], P � 2.16 �
10�3, and � � �0.56 � 10�15 l/cell [�0.72 to �0.38], P �
1.29 � 10�3, respectively; Table 5), suggesting a micro-
spherocytocytic anemic state. In the D.E.S.I.R. partici-
pants, the RBC count also showed a negative association
with the rs7072268–T allele both at baseline (� � �0.018
� 1012/l [95% CI �0.025 to �0.011], P � 8.01 � 10�3; Table
5) and over the 9-year follow-up (� � �0.020 � 1012/l
[�0.027 to �0.014], P � 9.63 � 10�4, respectively; Table
5).
Effect of SNP rs7072268 on RBC-related parameters
in type 2 diabetic individuals. The rs7072268–T allele
was also associated with decreased hemoglobin level in
1,924 French type 2 diabetic subjects from the Corbeil
Hospital cohort, in whom this parameter was measured
(� � �0.13 g/dl [95% CI �0.16 to �0.09], P � 7.66 � 10�4;
Table 5). When the presence of overt nephropathy, the
microalbuminuria level, or the albumin-to-creatinine ratio
were introduced in the linear regression model, this asso-
ciation remained significant (P � 1.5 � 10�3), suggesting
that the effect of HK1 on RBC is independent of diabetes-
linked kidney disease. We also identified in type 2 diabetic
subjects a trend for association between the rs7072268–T
allele and decreased MCV (Table 5).
Combined meta-analysis of SNP rs7072268 on RBC-
related parameters. In a combined meta-analysis includ-
ing nondiabetic and type 2 diabetic participants, the
rs7072268–T allele strongly associated with decreased
hemoglobin levels (n � 13,416; � � �0.054 g/dl [95% CI
�0.076 to �0.031], combined P � 3.74 � 10�6; Table 5). In
addition, the trend for an increased risk for clinical anemia
was further supported (836 cases; OR 1.13 [95% CI 1.02–
1.25]; combined P � 0.018).
Impact of SNP rs7072268 on type 2 diabetes risk. We
then assessed the contribution of rs7072268 to type 2
diabetes risk in 7,447 French type 2 diabetic individuals
and 5,380 unrelated normoglycemic French control sub-
jects (age at exam �40 years). The type 2 diabetes
case-control analysis only displayed a nominal association
between the rs7072268–T allele and increased risk of type
2 diabetes (OR 1.07 [95% CI 1.00–1.14], P � 0.045; Table 6).
These findings were not supported by GWA studies meta-
analyses carried out by the DIAGRAM	 consortium, in-
cluding 8,130 type 2 diabetic and 38,987 control European
participants (OR 0.98 [0.94–1.02]; P � 0.40) (M. McCarthy,
unpublished data). Therefore, the weak HK1 rs7072268
effect on increased type 2 diabetes risk, found in our
samples, is not supported by other European populations.

Impact of the five established genetic determinants
of A1C on A1C levels, FPG, and RBC-related param-
eters in D.E.S.I.R. We then analyzed the contribution of
four previously reported genetic determinants of A1C
(MTNR1B-rs10830963 [9,34], GCK-rs1799884 [20], G6PC2-
rs560887 [20], and SLC30A8-rs13266634 [20]) on A1C
levels in the D.E.S.I.R. cohort. We confirmed the contribu-
tion of these SNPs to A1C levels in 
4,500 nondiabetic
individuals from the D.E.S.I.R. study at baseline—except
for SLC30A8-rs13266634, which displayed only a trend for
association with A1C levels (PMTNR1B � 2.25 � 10�4, PGCK �
1.32 � 10�4, PG6PC2 � 2.31 � 10�6, and PSLC30A8 � 0.063;
Table 7). Analysis of HK1-rs7072263 combined with the
four other SNPs demonstrated a significant additive effect
on A1C levels (�per allele � 0.032%, P � 1.49 � 10�15; Fig.
1). Individuals carrying seven or more “high-A1C” alleles
(n � 415; 
11% of the European population) showed a
mean 0.17% increase in A1C compared with individuals
carrying fewer than two high-A1C alleles (n � 219; Fig. 1).

We then assessed the effect of MTNR1B-rs10830963,
GCK-rs1799884, G6PC2-rs560887, and SLC30A8-rs13266634 on
FPG levels and RBC-related parameters including RBC
count, hemoglobin, and hematocrit levels. As previously
reported (9,10,19,33), the four SNPs are strongly associ-
ated with FPG levels (Table 7). SNPs GCK-rs1799884,
G6PC2-rs560887, and SLC30A8-rs13266634 are not associ-
ated with RBC-related parameters (Table 7). In contrast,
the MTNR1B-rs10830963–T allele associates with de-
creased RBC count and hemoglobin and hematocrit levels
(� � �0.017 � 1012/l [95% CI �0.025 to �0.001], P � 0.022;
� � �0.055 g/dl [�0.076 to �0.033], P � 0.011; and � �
�0.19% hematocrit [�0.25 to �0.12], P � 4.13 � 10�3,
respectively; Table 7).

DISCUSSION

Our data unambiguously demonstrate that HK1 rs7072268
strongly associates with increased A1C levels in European
general populations, as reported by Pare et al. (20). In
contrast, we failed to find any further association with
other quantitative metabolic traits commonly used to
monitor glucose control. In addition, it is unlikely that
HK1 rs7072268 significantly increases risk for type 2
diabetes. Our data suggest that the effect of HK1 variation
on A1C levels may be due to a molecular mechanism
involving RBC function rather than related to impaired
blood glucose homeostasis. In this regard, we found that
the HK1 rs7072268–T allele increasing A1C is strongly
associated with reduced hemoglobin and hematocrit levels
(Spearman correlation between hematocrit and hemoglo-
bin levels in nondiabetic subjects from D.E.S.I.R.: r2 �
0.94; P � 0.0001). In addition, the rs7072268–T allele
contributes to an increase in the risk of clinical anemia.
However, this result has to be confirmed in large-scale and
more powered case-control studies. In support of our

TABLE 6
French type 2 diabetes case-control analyses according to SNP rs7072268

T-allele
frequency n CC CT TT OR (95% CI)* P

Type 2 diabetic participants 0.51 7,447 1,784 (0.24) 3,708 (0.50) 1,955 (0.26) Ref. —
Control subjects 0.50 5,380 1,327 (0.25) 2,715 (0.50) 1,338 (0.25) 1.069 (1.001–

1.142)
0.045

Data are n (frequency) unless otherwise indicated. Type 2 diabetes was defined according to 1997 American Diabetes Association criteria (2).
*OR from additive logistic regression models adjusted for age, sex, and BMI.
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findings, dea mice with an HK1 deficiency also display
lower RBC count and hemoglobin and hematocrit levels
(22). Indeed, these mice show severe anemia, with exten-
sive tissue iron deposition and marked reticulocytosis,
which results from significant intravascular hemolysis
(22). Approximately 20 patients with nonspherocytic he-
molytic anemia due to HK1 deficiency have been described
thus far (21), but there is no information available about
their A1C levels. SNP rs7072268 is located in the first
intron of the HK1 isoform, HK1-R, specifically expressed
in RBC and is in intermediate linkage disequilibrium with
a common nonsynonymous coding SNP, rs1133189 (ac-

cording to the HapMap CEU population: r2 � 0.58).
Although we have no obvious information about the truly
causative common SNPs in the HK1 locus associated with
anemia (that might be obtained from fine-mapping stud-
ies), we speculate they may impair HK1 expression or the
maturation of this hexokinase enzymatic isoform in reticu-
locytes and in mature RBCs, as known in monogenic HK1
deficiency (21,23).

In RBCs, the oxygen affinity of hemoglobin is strongly
regulated by 2,3-biphosphoglycerate (2,3-DPG) produced
by a bypass in glycolysis (21). Increasing 2,3-DPG levels
cause a decreased oxygen affinity and thus improve the
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FIG. 1. Cumulative effect of HK1-rs7072268, MTNR1B-rs10830963, GCK-rs1799884, G6PC2-rs560887, and SLC30A8-rs13266634 on A1C in
nondiabetic individuals from the D.E.S.I.R. study. A linear regression model was carried out with application of an additive model adjusted for
age, sex, and BMI. Data are presented as means [95% CI]. The �-coefficient corresponds with the increase in A1C levels (%) by additional
high-A1C alleles. The numbers of individuals per category of high-A1C alleles and corresponding percentages are shown below the graph.

TABLE 7
Association of A1C, fasting glucose, hemoglobin, hematocrit, and RBC count with candidate SNPs in nondiabetic participants of the
D.E.S.I.R. study at baseline

HK1 rs7072268-T
(frequency: 0.49; n � 4,590)

MTNR1B rs10830963-G
(frequency: 0.28; n � 4,597)

� (95% CI) P � (95% CI) P

A1C (%) 0.023 (0.016–0.031) 1.76 � 10�3 0.031 (0.023–0.039) 2.25 � 10�4

Fasting glucose (mmol/l) �0.004 (�0.014 to 0.006) 0.66 0.093 (0.082–0.104) 1.32 � 10�16

Hemoglobin (g/dl) �0.054 (�0.074 to �0.035) 5.20 � 10�3 �0.055 (�0.076 to �0.033) 0.011
Hematocrit (%) �0.18 (�0.24 to �0.12) 2.11 � 10�3 �0.19 (�0.25 to �0.12) 4.13 � 10�3

RBC count (�1012/l) �0.018 (�0.025 to �0.011) 8.01 � 10�3 �0.017 (�0.025 to �0.0097) 0.022

Associations between SNPs and quantitative traits were assessed with the application of an additive model adjusted for age, sex, and BMI.
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transfer of oxygen to tissues and ameliorate the anemic
state. HK1 deficiency contributes to decrease 2,3-DPG
levels and thus annuls its beneficial effect (21). HK1 is also
known to bind in mitochondria to the voltage-dependent
anion channels, known as mitochondrial porins (39). Mi-
tochondrial-associated hexokinase activity has been
shown to protect cells from entering apoptosis via the
blockade of the interaction of the proapoptotic BAX with
the voltage-dependent anion channels (40–42). We specu-
late that HK1 variation may impair the HK1 antiapoptotic
effect in reticulocytes (i.e., the precursors of RBCs), as
well as in kidney and brain where HK1 is expressed
(21,43). It may have deleterious effects on maturation of
RBCs and on erythropoiesis via decreased synthesis of
kidney and brain erythropoietin (Epo).

The mechanism by which HK1-related anemia increases
A1C levels is unknown. Using a conditional regression
model, we failed to clearly show that the HK1 effect on
A1C was affected by adjustment for the hemoglobin or
hematocrit levels (supplemental Table A1, available in
the online appendix, available at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0652/DC1). This
may suggest that the hemoglobin or hematocrit levels
would explain a small variance of A1C. However, larger
studies are needed for confirmation of these findings. A
higher turnover of the RBC pool should diminish protein
glycation as a result of the reduced hemoglobin half-life
(5). Alternatively, we speculate that the enhanced accu-
mulation of unprocessed glucose resulting from the HK1
deficiency may favor hemoglobin glycation within RBCs,
which in turn may increase the RBC death rate via their
impaired deformability (44). Importantly, anemia due to
iron deficiency often seen in late pregnancy also causes
increased A1C levels (45), and A1C levels significantly
decrease after iron or vitamin B12 treatment in patients
with iron or vitamin B12 deficiency anemia, respectively
(46,47). Therefore, different anemia-inducing mechanisms
increase A1C levels.

Other genes associated with RBC-related parameters
may also interfere with the glycation of hemoglobin. In
this regard, our present data suggest that genetic variation
in MTNR1B (encoding melatonin receptor 2), which
strongly influences both A1C and fasting glucose (9), also
associates with decreased RBC count and hemoglobin and
hematocrit levels. Melatonin is a neurohormone mainly
involved in the regulation of circadian rhythms. Recently,
Bozek et al. (48) provided evidence of a circadian oscilla-
tion of Epo gene expression in the kidney, a tissue that
strongly expresses MTNR1B in rats (49). In contrast, three
other genetic determinants of A1C (GCK, G6PC2, and
SLC30A8) modulate fasting glucose but do not influence
hematologic parameters measured in our cohorts. Alto-

gether, A1C levels seem to be largely genetically deter-
mined (Fig. 1), possibly via the modulation of blood
glucose or hematologic parameters.

As both the American Diabetes Association and the
European Association for the Study of Diabetes have
proposed to use A1C as a criterion for type 2 diabetes
diagnosis (an individual with A1C �6% is considered as
nondiabetic), both genetic and environmental factors (in-
cluding iron and vitamin B12) interacting with RBC func-
tion and survival have to be taken into consideration to
better interpret A1C levels in the general population.
Furthermore, diabetes by itself is a known cause for
anemia through a range of deleterious mechanisms (44),
and it would be important to better determine the impact
of anemia on A1C assays.

In conclusion, our study presents mechanisms that may
underlie the consistent association between HK1 genetic
variation and A1C but also identifies for the first time a
gene contributing to a common proanemic state. At a time
when the utility of GWA studies is debated for disease
prediction (50), our study highlights the power of GWA to
identify physiological determinants of complex conditions
such as anemia having serious implications for health.
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