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Abstract: This study determined the potential of computer vision systems, namely the whole-side
carcass camera (HCC) compared to the rib-eye camera (CCC) and dual energy X-ray absorptiometry
(DXA) technology to predict primal and carcass composition of cull cows. The predictability (R2)
of the HCC was similar to the CCC for total fat, but higher for lean (24.0%) and bone (61.6%).
Subcutaneous fat (SQ), body cavity fat, and retail cut yield (RCY) estimations showed a difference
of 6.2% between both CVS. The total lean meat yield (LMY) estimate was 22.4% better for CCC
than for HCC. The combination of HCC and CCC resulted in a similar prediction of total fat, SQ,
and intermuscular fat, and improved predictions of total lean and bone compared to HCC/CCC.
Furthermore, a 25.3% improvement was observed for LMY and RCY estimations. DXA predictions
showed improvements in R2 values of 26.0% and 25.6% compared to the HCC alone or the HCC +
CCC combined, respectively. These results suggest the feasibility of using HCC for predicting primal
and carcass composition. This is an important finding for slaughter systems, such as those used for
mature cattle in North America that do not routinely knife rib carcasses, which prevents the use
of CCC.

Keywords: beef primals; computer vision system; dual energy X-ray absorptiometry; mature cows;
rib-eye camera; whole-side camera

1. Introduction

In Canada, ~425,000 mature cows are harvested annually, producing over ~100,000 Tm
of meat [1]. Recently, the reduced availability of cattle and the increase in beef demand have
increased beef prices, particularly in cull cows [1]. In the Canadian Grading System, cull
cows are segregated as Canada D-grades based on a broad classification of carcass types [2].
In contrast to the top youthful grades (Canada Prime, AAA, AA, and A), where estimations
for retail cut yield are routinely provided, Canada D-grades are lacking prediction of
carcass yields before carcass breakdown. Because mature beef carcasses are often boned
out for further processing, yield assessments of carcasses would be an important attribute
to enhance fair compensation to the cattle producers. Furthermore, accurate estimations
of carcass composition have been suggested to assure an efficient utilization of specific
muscles from cull cow carcasses. In this sense, Roberts et al. [3] reported that, despite darker
lean, many muscles from D-grade carcasses had higher intramuscular fat content than
in the youthful A/AA carcasses. Given this retail performance of muscles from cull cow
carcasses, opportunities may exist to better utilize specific muscles from these carcasses.

For decades, in North America, the carcass classification has been carried out by
trained personnel (graders), thus implying a certain degree of subjectivity on the quantified
parameters [4]. The latest improvements in technologies to estimate body/carcass compo-
sition have shown applicability on different species, genetics, production systems, etc. [5,6].

Foods 2021, 10, 1118. https://doi.org/10.3390/foods10051118 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-7090-7124
https://orcid.org/0000-0001-6655-2586
https://orcid.org/0000-0002-2346-0451
https://www.mdpi.com/article/10.3390/foods10051118?type=check_update&version=1
https://doi.org/10.3390/foods10051118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10051118
https://www.mdpi.com/journal/foods


Foods 2021, 10, 1118 2 of 14

Computer vision systems (CVS) were implemented in the early 1980s as a computerized,
non-destructive, non-invasive, objective, cost-effective, and automatable technology, based
on image analysis that provides measurements of the beef carcass or rib-eye proportions [6].
The CVS have been recognized as useful tools to improve the grading accuracy, precision,
and consistency, thus benefiting all segments of the beef production and consumption sup-
ply chain [7]. Typically, at least one of the two CVS approaches is used. Whole-side carcass
image analysis, also known as hot carcass camera (HCC) system, which is designed to be
integrated into the slaughter chain to work autonomously, and/or the rib-surface image
analysis system, also known as cold carcass camera (CCC), which mimics the traditional
visual assessment of the knife-ribbed surface of the rib-eye at the 12th thoracic vertebrae.
The HCC uses a color camera and a lighting system, including structured (striped) light.
The half carcass holds steady in front of a colored background and one or two images
(if ambient light must be compensated) are taken to obtain 2D information, and a third
image is taken with the structured light to capture 3D information of the carcass from
the degree of curvature of the striped light [8,9]. Using proprietary software, the CCC
provides an objective measure of rib-eye length, width, and area, and fat thickness, which
are then used to predict carcass yield, as well as marbling, lean, and fat contents, and
color assessments [6]. Currently, the CCC system is widely utilized by the beef industry in
North America [8–11], particularly in youthful carcasses. However, unlike youthful beef,
mature cull cows are generally marketed without knife-ribbing the carcass at the grade
site. Hence, prediction of lean yield using rib-eye assessment or CCC is not achievable and
development of alternative methods is particularly pertinent for the industry.

On the other hand, Dual-energy X-ray absorptiometry (DXA) technology is a promis-
ing indirect method to estimate carcass composition due to its relatively low cost, high
reliability of data collection, and ease of use [5]. In the literature, the feasibility, accuracy,
and precision of DXA technology has been reported on salmon [12], broiler chickens [13],
sheep [14], swine [15], and cattle [16]. In addition, Soladoye et al. [15], Kipper et al. [17], and
López-Campos et al. [18] assessed the accuracy of DXA technology on mass measurement
of primal cuts from pigs and steers. Most of the published studies reported on the use of
DXA in youthful populations, with information being scarce or almost lacking for mature
animals, particularly in the case of cull cows. Contrary to the CVS, DXA technology is at
the early stages of industry implementation.

Thus, the objective of the present study was to evaluate the potential of computer
vision systems, namely the whole-side carcass camera compared to the rib-eye camera, as
well as the emerging DXA technology to predict whole-carcass and primal composition (fat,
lean, and bone) of mature cows. Furthermore, the combination of both computer vision
systems was also explored in order to evaluate this approach as an alternative for the beef
industry to further improve the prediction accuracy on primals and carcass composition of
mature beef.

2. Materials and Methods
2.1. Animals

A total of 111 cull cow left carcass sides (hot carcass weight: HCW = 346 ± 33.3 kg),
sourced from a commercial abattoir (n = 72) and from the AAFC-Lacombe Research and
Development Centre (AAFC-Lacombe RDC) cow herd (n = 39), were used in the present
study. AAFC-Lacombe RDC animals were cared for according to the Canadian Council on
Animal Care Guidelines [19] (AAFC-Lacombe RDC study plan No. 201705).

2.2. Carcass Sides, Cut-Out, and CVS and DXA Scanning

Cull cows sampled from the AAFC-Lacombe RDC herd were slaughtered at the AAFC-
Lacombe RDC federally inspected abattoir. Following slaughter, carcasses were dressed
and split and HCW were recorded. In turn, commercial carcass sides, harvested following
the Guidelines for the humane care and handling of food animals at slaughter (Canadian
Food Inspection Agency, CFIA) [20], were shipped to AAFC-Lacombe RDC facilities in a
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refrigerated truck following guidelines for transportation of carcasses over thirty months
of age (CFIA) [21]. At the time of slaughter, HCW were recorded by the personnel of the
slaughter plant. In both sample populations, pictures of each carcass side were taken using
a HCC unit VBS 2000, e+v® Technology GmbH, Oranienburg, Germany.

Raw output data of the HCC images were composed of 187 variables describing carcass
dimensions: angle (W00-W99), length (L00-L19), area (F00-F13, F20-F29), carcass contour
and volumes (V00-V13, V20-V29), and color (Fe00-Fe18). Following 72 h of chilling at 2 ◦C,
left carcass sides were weighed (CCW) to determine shrink loss. Physiological maturity
of the carcasses were assessed based on the extent to which caps of the spinal processes
and ribs had ossified (i.e., >50% ossification, a carcass receives a D grade) in accordance
with López-Campos et al. [22] and the Canadian Beef Grading Agency (CBGA) [2]. Left
carcass sides were then knife-ribbed between the 12th and 13th ribs. After 20 min of
atmospheric oxygen exposure, full Canadian grading data were collected by a certified
grader from the CBGA. The assessments included grade fat (minimum fat thickness over
the rib in 4th quadrant from the spinous process, mm), fat thickness (at the three-quarters
position from the spinous process, mm), rib-eye area (REA; in cm2 of the Longissimus
thoracis), and marbling score, subjectively assessed using United States Department of
Agriculture (USDA) beef marbling pictorial standards as reference points [23]. Muscle
scores (1–4) were also determined based on L. thoracis length and width, measured at the
grade site [24,25]. Then, rib-eye pictures from each carcass side were taken using CCC: VBG
2000 (e+v® Technology GmbH, Oranienburg, Germany). Each image was then processed by
manufacturer software, in real-time, to produce raw output data composed of 99 variables
describing a number of measurements related to measurements on the rib-eye (n = 22), fat
thickness (n = 15), and muscle and fat color (n = 15), as well as other variables (n = 47, e.g.,
marbling assessment, back fat dressing corrections, etc.).

Estimated total lean meat yield (LMY) was calculated according to the Jones et al. [24,25]
equation LMY (%) = 63.5 + 1.05 × (muscle score) − 0.76 × (grade fat). The retail cut yield
(RCY) percentage was calculated using the equation RCY (%) = 51.34 − 5.78 × (fat thickness
at the 3

4 , inches) − 0.46 × (kidney, pelvic, and heart fat percent, KPH, %) − 0.0093 × (hot
carcass weight, HCW, pounds) + 0.74 × (REA, square inches) [25].

Left carcass sides were fabricated into primal cuts with carcass breakpoints identified
following the Institutional Meat Purchase Specifications (IMPS) for Fresh Beef Products,
Series 100 [26]. The primals collected from the left fabricated carcass side were the chuck
(IMPS #113), rib (IMPS #103), brisket (IMPS #118), flank (IMPS #193, non-trimmed), fore-
shank (IMPS #117), loin (IMPS #172A), round (IMPS #158A), and plate (IMPS #121). Follow-
ing procedures described by López-Campos et al. [18], each primal cut was scanned with a
GE Lunar iDXA unit (GE Lunar, General Electric, Madison, WI, USA) using the whole-body
scan option on standard mode to estimate fat, lean, and bone weights. After DXA scanning,
all left primals were fully dissected into subcutaneous fat (SQ), intermuscular fat (IM),
body cavity fat (BC), lean, and bone, then weighed by trained personnel. An adequate
dissection processing was carried out by highly skilled meat cutters ensuring that the
difference between primal weight and the sum of total bone, total lean, and total fat was
not higher than a 2%.

2.3. Statistical Analyses

All the statistical analyses were performed using SAS v. 9.4 (SAS Institute Inc., Cary,
NC, USA, 2014) [27]. Either CVS or DXA estimates of lean, fat, and bone weights from
each primal cut, and the overall fat, lean, and bone weights were included as independent
variables in a partial least square regression (PLSR) to generate prediction equations.
Therefore, four different groups were defined depending on the regression estimating
variables used: HCC, CCC, combination of HCC + CCC, and DXA. All models were used
to predict the reference values from the manual dissections and the calculations of LMY
and RCY equations.



Foods 2021, 10, 1118 4 of 14

All PLSR models were fit using an internal full leave-one-out cross-validation, to
avoid overfitting in the calibration set, and the number of latent variables (LV) used to
minimize predicted residual error sums of squares (PRESS) was reported for the calibrated
PLSR models.

The predictive ability of the PLSR models was evaluated in terms of coefficient of
determination (R2) and the mean square prediction error (MSPE), which was decomposed
into error in central tendency (ECT), error due to regression (ER), and error due to dis-
turbances (ED) [18]. These three fractions were calculated and expressed as percentages,
as suggested by Benchaar et al. [28], as a means of describing the residual error in the
models. ECT indicates how the average of CVS/DXA values deviates from the average of
dissection values. ER measures the deviation of the least square regression coefficient from
one, which is the value that it would have been if dissection and CVS/DXA measurements
were in complete agreement. The ED is the variation in dissection measurements that is not
accounted for by the least square regression of CVS/DXA measurements. In fact, this error
is the unexplained variance and represents the portion of MSPE that cannot be eliminated
by linear correction of the predictions [29]. Finally, when expressed as a percentage of the
MSPE, the ECT, ER, and ED are called bias proportion, regression proportion (deviation of
the regression slope from one), and disturbance proportion, respectively [30].

3. Results
3.1. Cow Carcass Population

All the carcasses used in the present study showed ossification processes at the caps of
the thoracic vertebrae ranging from 50% to 100% ossified, resulting in carcasses graded as
Canada D mature type grades [2]. Values of HCW (277.3–410.2 kg), CCW (271.3–401.9 kg),
grade fat (0.0–29.0 mm), fat thickness (0.0–27.9 mm), REA (60–120 cm2), LMY (49.0–61.0%),
RCY (42.9–54.5%), and marbling scores (100–733, USDA marbling score), of the carcass
population (n = 111) used were within the actual range (Table 1) of the Canadian beef
carcass market [1].

Table 1. Descriptive statistics of carcass characteristics of the population used to obtain the prediction
equations between the camera vision system values and whole carcass and primal composition (fat,
lean, and bone).

Mean (n = 111) SD 1 Min Max

HCW 2 (kg) 345.8 33.3 277.3 410.2
CCW 3 (kg) 338.7 30.0 271.3 401.9

Grade fat (mm) 9.6 8.06 0.0 29.0
Fat thickness (mm) 10.2 5.59 0.0 27.9

Rib-eye width 4 1.8 0.78 1 3
Rib-eye length 4 2.7 0.53 1 3
Muscle score 4 2.4 0.99 1 4

Ribeye area (cm2) 83.6 11.2 60.0 120.0
LMY 5 (%) 56.3 5.75 49.0 61.0
RCY 6 (%) 49.6 2.29 42.9 54.5

Marbling scores 7 455.6 143.2 100.0 733.0
Ossification (%) 8 92.8 13.4 50.0 100.0

1 SD: standard deviation; 2 HCW: Hot carcass weight; 3 CCW: Cold carcass weight; 4 Rib-eye width and length,
and muscle score in agreement with Jones [24] and Segura et al. [25]; 5 LMY: estimated total lean meat yield
[25]; 6 RCY: retail cut yield [25]; 7 Marbling scores: Official United States Standards for Grades of Beef Carcasses
(marbling scores: 0 = Devoid, 100 = Practically Devoid, 200 = Traces, 300 = Slight, 400 = Small, 500 = Modest,
600 = Moderate, 700 = Slightly Abundant, 800 = Moderately Abundant, 900 = Abundant) [23]; 8 Ossification (%):
Ossification processes of the carcasses assessed on the caps of the spinal processes and ribs (i.e., >50% ossification,
a carcass receives a D grade) according to López-Campos et al. [22] and the Canadian beef Grading Agency [2].

3.2. Primal Weight Estimation

Overall, CVS lean and fat predictions (Table 2) showed high R2 values for most of the
primal cuts, while R2 values for bone were much lower. The HCC had similar performance
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to the CCC for fat predictions in the primal cuts, ranging from R2 = 0.47 to 0.88 compared
to R2 = 0.51–0.92, respectively. More specifically, fat foreshank regression models showed
the lowest R2 values, while plate, rib and round showed a 14.4% improvement with the
HCC compared to CCC. Likewise, lean weight predictions in the primal cuts were superior
using the HCC compared to the CCC, except for the rib with R2 ranging from a low of 0.53
in the foreshank to a high of 0.90 in the round for the HCC, and 0.32 in the foreshank to
0.69 in the rib for the CCC. Additionally, the HCC outperformed the CCC in the prediction
of bone weight, showing R2 values as high as 0.79 in the round, while the highest R2 for the
CCC bone weight was 0.38 in the chuck. Neither of the camera systems studied was able to
accurately predict flank bone weight, and the CCC could not either accurately predict bone
weight in the brisket, loin, rib, plate, or foreshank (R2 < 0.10, LV = 1 related variable was
considered for prediction equation development).

When considering the error and/or variance partitioning, no remarkable differences
were found for bone estimations. Nevertheless, CCC showed ECT values 97.4% higher and
ED values 5.8% lower than HCC for fat primal estimations, although no difference was
observed for MSPE. In the case of lean primal estimations, MSPE value for CCC resulted
63.2% higher than for HCC, although ED values for HCC resulted only 0.7% higher than
CCC, and 81.7% of the difference was due to ER instead of ECT (24.4%) when compared to
CCC (Table 2).

The combination of both CVS technologies did not improve fat estimations for most of
the primals; only the round predictions (R2 = 0.88) showed some improvements compared
to the HCC or CCC estimations; 3.4% and 18.2%, respectively. Conversely, lean estimations
of brisket, chuck, plate, and rib showed, respectively, a 10.8%, 3.3%, 10.1%, and 16.2%
higher R2 values for HCC + CCC than for HCC. Additionally, HCC + CCC improved
bone estimations in the case of brisket (R2 = 0.42), chuck (R2 = 0.71), and loin (R2 = 0.76)
compared to the individual CVS.

In the HCC+CCC, the contribution of ED to MSPE value was again much higher than
the inputs coming from ER and ECT values (Table 2). For fat estimations, HCC + CCC
showed lower ED and ER values and higher ECT values than HCC, and lower ECT and
ER but higher ED values than CCC. In the case of lean estimations, HCC + CCC showed
MSPE similar values to HCC, but these were lower than CCC. The ED values were lower
than HCC and similar to CCC. The ER values were again higher than ECT, as observed in
the HCC to CCC comparison. In addition, no remarkable differences were found for bone
estimations. Interestingly, for fat estimations, the LV number for HCC + CCC was lower
than for HCC or CCC.

In contrast, DXA primal estimations (Table 3), on average, had R2 values for fat
(0.95), lean (0.97), and bone (0.82) higher than those for CVS, and even outperformed the
prediction equations utilizing all camera variables (HCC + CCC; Table 2). Except for the
foreshank fat weight (R2 = 0.74), DXA lean and fat weight predictions for the rest of the
primals showed R2 values between 0.94 and 0.99 and 0.96 and 0.99, respectively. Similar
to the CVS, lower values of R2 were observed for bone than for fat and/or lean variables;
however, even flank bone weight (R2 = 0.31) was predicted more accurately using DXA than
by using both camera systems combined. For the other primal bone weight predictions,
DXA R2 ranged from 0.85 to 0.94, whereas the combined camera R2 values ranged from
0.36 to 0.76. Overall, there were improvements in most tissue primal predictions using
DXA when compared to the camera systems. On average, for all the primals, there was an
overall proportional improvement in DXA R2 values of 26.0%, 48.9%, and 24.8% compared
to HCC, CCC, or HCC + CCC, respectively, as well as an increase in the DXA R2 values
of 16.0%, 29.0%, and 54.7% for fat, lean, and bone estimations, respectively. The MSPE
showed relatively low values and was defined by ED in a percentage higher than 98.7% for
fat estimations, and higher than 99.8% for lean and bone tissue estimations (Table 3).
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Table 2. Partial least square regression models estimating lean, fat, and bone for individual primal cuts from computer vision system (CVS) values. Coefficient of determination (R2), mean
square prediction error (MSPE), error in central tendency (ECT), error due to regression (ER), error due to disturbances (ED), and the number of latent variables (LV) are presented for
each model.

Tissue Primal 4
HCC 1 (n = 105) CCC 2 (n = 102) HCC + CCC 3 (n = 95)

R2 MSPE ECT (%) ER (%) ED (%) LV R2 MSPE ECT (%) ER (%) ED (%) LV R2 MSPE ECT (%) ER (%) ED (%) LV

Fat (kg)

Brisket 0.86 0.1942 0.35 0.14 99.51 8 0.88 0.1817 6.46 0.09 93.44 10 0.80 0.2872 2.68 0.01 97.31 2
Chuck 0.88 2.3678 0.25 0.14 99.61 8 0.91 2.1435 9.98 0.29 89.73 10 0.87 2.8515 5.95 0.01 94.04 3
Flank 0.86 0.9713 0.15 0.18 99.67 7 0.92 0.6498 9.23 0.12 90.66 10 0.88 0.8844 5.50 0.05 94.45 3
Loin 0.81 2.5542 0.00 0.18 99.82 9 0.91 1.3322 8.29 0.23 91.48 10 0.85 2.1950 5.90 0.02 94.08 3
Plate 0.87 0.6728 0.00 0.10 99.90 10 0.73 1.4707 2.74 0.02 97.24 4 0.84 0.9188 5.35 0.01 94.64 3
Rib 0.87 1.1126 0.07 0.15 99.78 10 0.78 2.0276 3.66 0.04 96.30 3 0.86 1.3099 5.21 0.02 94.77 3

Round 0.85 0.6854 0.27 0.01 99.71 4 0.72 1.3811 4.01 0.26 95.73 2 0.88 0.6259 6.71 0.49 92.80 2
Foreshank 0.47 0.0332 0.08 0.00 99.92 2 0.51 0.0309 0.51 0.00 99.49 4 0.50 0.0316 1.17 0.00 98.83 2

Lean (kg)

Brisket 0.67 0.2783 0.06 0.10 99.85 2 0.62 0.3286 0.55 0.76 98.69 4 0.76 0.2107 0.48 0.70 98.83 3
Chuck 0.85 4.6386 1.10 0.04 98.86 4 0.52 14.710 1.02 0.83 98.15 3 0.88 3.9094 0.70 4.53 94.77 5
Flank 0.82 0.3376 2.26 0.03 97.71 9 0.55 0.8112 1.57 0.37 98.06 2 0.74 0.4638 0.13 1.11 98.75 3
Loin 0.82 1.5263 0.41 0.16 99.43 5 0.58 3.5920 0.72 0.22 99.06 3 0.82 1.5196 0.47 0.19 99.34 4
Plate 0.75 0.5167 0.04 0.08 99.87 3 0.46 1.1186 0.32 0.25 99.43 4 0.83 0.3492 0.66 0.73 98.61 5
Rib 0.66 1.2365 0.41 0.07 99.52 2 0.69 1.1224 0.45 1.02 98.53 3 0.79 0.7751 0.00 0.86 99.14 3

Round 0.90 2.0669 0.59 0.26 99.15 10 0.65 7.2982 1.20 0.58 98.23 4 0.86 2.9706 1.28 0.90 97.82 4
Foreshank 0.53 0.1596 0.14 0.03 99.83 2 0.32 0.2328 0.80 0.17 99.03 2 0.51 0.1681 0.53 0.20 99.27 2

Bone (kg)

Brisket 0.37 0.0566 0.05 0.00 99.95 2 0.01 5 0.0855 0.30 0.00 99.70 1 0.42 0.0526 0.25 0.00 99.75 2
Chuck 0.68 0.4167 0.01 0.01 99.98 4 0.38 0.8187 0.14 0.08 99.78 4 0.71 0.3886 0.46 0.24 99.31 3
Flank 0.09 5 0.0086 0.03 0.01 99.97 1 0.03 5 0.0091 0.00 0.01 99.99 1 0.09 5 0.0086 0.06 0.05 99.89 1
Loin 0.64 0.1272 0.05 0.00 99.95 4 0.03 5 0.3185 0.01 0.01 99.99 1 0.76 0.0848 0.03 0.25 99.72 6
Plate 0.62 0.0598 0.02 0.01 99.97 2 0.09 5 0.1329 0.01 0.01 99.99 1 0.62 0.0595 0.09 0.02 99.89 2
Rib 0.36 0.1358 0.14 0.01 99.85 2 0.04 5 0.1896 0.08 0.04 99.88 1 0.36 0.1369 0.59 0.33 99.08 2

Round 0.79 0.2256 0.17 0.12 99.71 5 0.36 0.6723 0.05 0.07 99.88 4 0.75 0.2622 0.64 0.10 99.26 3
Foreshank 0.60 0.0504 0.00 0.05 99.94 2 0.02 5 0.1156 0.13 0.04 99.83 1 0.55 0.0574 0.28 0.32 99.40 2

1 HCC = hot carcass (whole-side) camera: regression models obtained using HCC variables. 2 CCC = cold carcass (rib-surface) camera: regression models obtained using CCC variables. 3 HCC + CCC =
regression models obtained using the variables from both CVS. 4 Primals according to Institutional Meat Purchase Specifications (IMPS) for Fresh Beef Products, Series 100 [26]. 5 No statistically significant
regression model (p > 0.05) was obtained. LV = 1 was considered to establish a prediction equation.
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Table 3. Partial least square regression models estimating fat, lean, and bone for individual primal
cuts from dual-energy X-ray absorptiometry (DXA) values (n = 111). Coefficient of determination
(R2), mean square prediction error (MSPE), error in central tendency (ECT), error due to regression
(ER), error due to disturbances (ED), and the number of latent variables (LV) are presented for
each model.

Tissue Primal 1 R2 MSPE ECT (%) ER (%) ED (%) LV

Fat (kg)

Brisket 0.99 0.0143 0.521 0.021 99.46 10
Chuck 0.99 0.3074 0.335 0.019 99.65 10
Flank 0.98 0.1540 0.097 0.049 99.85 6
Loin 0.98 0.2395 0.219 0.032 99.75 10
Plate 0.98 0.1039 1.054 0.254 98.69 10
Rib 0.98 0.1384 0.940 0.095 98.96 10

Round 0.96 0.1734 0.253 0.001 99.75 10
Foreshank 0.74 0.0160 0.096 0.025 99.88 4

Lean (kg)

Brisket 0.99 0.0128 0.088 0.094 99.82 10
Chuck 0.99 0.4146 0.023 0.135 99.84 10
Flank 0.97 0.0519 0.004 0.066 99.93 10
Loin 0.95 0.3825 0.003 0.042 99.96 6
Plate 0.95 0.0964 0.041 0.024 99.93 7
Rib 0.98 0.0569 0.006 0.126 99.87 10

Round 0.99 0.2775 0.123 0.093 99.78 10
Foreshank 0.94 0.0205 0.047 0.013 99.94 9

Bone (kg)

Brisket 0.89 0.0096 0.141 0.013 99.85 5
Chuck 0.92 0.1081 0.009 0.019 99.97 8
Flank 0.31 0.0066 0.043 0.007 99.95 3
Loin 0.88 0.0420 0.106 0.005 99.89 9
Plate 0.94 0.0088 0.044 0.017 99.94 9
Rib 0.85 0.0313 0.006 0.009 99.98 5

Round 0.92 0.0875 0.038 0.008 99.95 6
Foreshank 0.86 0.0179 0.026 0.004 99.97 4

1 Primals according to Institutional Meat Purchase Specifications (IMPS) for Fresh Beef Products, Series 100 [26].

3.3. Overall Carcass Tissue Composition and Yield Estimations

Overall, relatively high R2 values (>0.75) were obtained between the estimations with
the different technologies and the actual dissection values and yield equation estimates
of LMY and RCY. Particularly, high relationships (R2 > 0.80) were observed between the
estimations with DXA and HCC and the actual dissection values (Table 4). With the
exception of LMY (R2 = 0.66 vs. 0.85), the HCC had similar or higher predictions for overall
total carcass composition than the CCC (Table 4). In particular, the HCC predicted fat
weights similar to (R2 = 0.92 vs. 0.93) and lean weights (R2 = 0.89 vs. 0.67) and bone weights
(R2 = 0.82 vs. 0.31) better than the CCC camera. In fact, the HCC performed similar to DXA
for all the total carcass composition estimates (R2 > 0.80), and only dropped in prediction
accuracy for the LMY and RCY (R2 = 0.66 and 0.68 for the HCC and R2 = 0.81 and 0.86
for the DXA). Adding the CCC variables to the prediction (HCC + CCC) resulted in very
similar prediction accuracies to those of DXA for all overall total carcass composition,
including the estimates of LMY and RCY.
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Table 4. Partial least square regression models estimating total fat, lean, and bone amounts, and total subcutaneous (SQ), body cavity (BC), and intermuscular (IM) fat amounts for
whole carcass sides and total lean meat yield (LMY) and retail cut yield (RCY) from dual-energy X-ray absorptiometry (DXA) and computer vision system (CVS) values. Coefficient of
determination (R2), mean square prediction error (MSPE), error in central tendency (ECT), error due to regression (ER), error due to disturbances (ED), and the number of latent variables
(LV) are presented for each model.

HCC 1 (n = 105) CCC 2 (n = 102) HCC + CCC 3 (n = 95) DXA (n = 111)

R2 MSPE ECT
(%)

ER
(%)

ED
(%) LV R2 MSPE ECT

(%)
ER
(%)

ED
(%) LV R2 MSPE ECT

(%)
ER
(%)

ED
(%) LV R2 MSPE ECT

(%)
ER
(%)

ED
(%) LV

Fat (kg) 0.92 29.407 0.130 0.249 99.62 10 0.93 30.104 11.66 0.427 87.91 10 0.91 35.532 9.073 0.011 90.92 3 0.99 2.5943 1.107 0.000 98.89 7
Lean (kg) 0.89 36.092 1.066 0.165 98.77 5 0.67 104.53 1.305 1.276 97.42 4 0.93 23.044 1.403 5.401 93.20 6 0.99 3.1380 0.046 0.180 99.77 8
Bone (kg) 0.82 2.4731 0.000 0.039 99.96 5 0.31 9.2266 0.061 0.151 99.79 1 0.84 2.1539 0.323 1.360 98.32 5 0.92 1.0459 0.029 0.013 99.96 5
SQ (kg) 0.88 6.5924 0.219 0.086 99.69 8 0.82 9.7306 4.224 0.007 95.77 3 0.88 6.5623 4.704 0.063 95.23 3 0.95 2.5014 0.038 0.025 99.94 10
BC (kg) 0.81 0.5213 0.404 0.136 99.46 10 0.75 0.6954 1.960 0.307 97.73 7 0.75 0.6965 4.453 0.084 95.46 4 0.81 0.5184 0.111 0.024 99.87 5
IM (kg) 0.91 10.189 0.145 0.269 99.59 10 0.91 12.097 10.30 0.462 89.24 10 0.90 12.709 8.903 0.026 91.07 3 0.98 1.7734 0.742 0.022 99.24 7

LMY (%) 0.66 7.3418 3.603 0.034 96.36 5 0.85 3.1867 4.719 0.113 95.17 5 0.90 2.2255 8.180 0.069 91.75 6 0.81 3.9807 0.176 0.482 99.34 5
RCY (%) 0.68 1.7008 0.641 0.001 99.36 10 0.65 1.8364 1.321 0.054 98.63 4 0.86 0.7776 6.983 0.589 92.43 6 0.86 0.7566 0.027 0.003 99.97 6

1 HCC = hot carcass (whole-side) camera: regression models obtained using HCC variables. 2 CCC = cold carcass (rib-surface) camera: regression models obtained using CCC variables. 3 HCC + CCC =
regression models obtained using the variables from both CVS systems.
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In general, DXA estimations showed lower MSPE values than any CVS (2.0% vs.
14.6% on average, respectively), and, particularly, higher MSPE values were observed for
the CCC procedure than for the HCC or HCC + CCC ones (21.4%, 11.8%, and 10.5% on
average, respectively). Besides, IM, total fat, and total lean estimates showed the highest
MSPE values, whereas BC fat showed the lowest. Implicating MSPE components, 88% for
ED input was observed for the estimation of total fat using CCC variables, while values
higher than 90% were observed for the others.

4. Discussion

Canadian mature cow grades (D grades) are assigned to one of the D1, D2, D3, or D4
grades depending on variables such as muscling (excellent, medium, or deficient), fat color
(white or yellow), and fat measure (lower than, equal to, or higher than 15 mm) [2]. In
the present study, similar numbers of carcasses for each grade were considered (26.2%,
25.0%, 23.8%, and 25.0%, respectively for D1, D2, D3, and D4). The ranges of the HCW,
CCW, grade fat and fat thickness, LMY and RCY, REA, and marbling scores of the research
carcass population used in the present study were representative of those found in the
Canadian beef market [1].

The technologies used in the present study provided estimation values of the total
amount of tissue and an overall description of the composition of the whole carcass and
primal cuts without requiring the destructive procedure of dissection.

In the literature, most of the studies considering the use of CVS in beef carcass
classification have focused on the quantification of LMY, RCY, and/or the total amount of
fat, lean, and bone using CCC systems. Among others, Farrow et al. [31], Lu and Tan [32],
McEvers et al. [10], and Shackelford et al. [33] used several variables obtained from the
analysis of rib-eye images to define different regression equations to improve the accuracy,
precision, and robustness of total tissue amount, LMY, or RCY estimations. The results
reported by these authors (R2 = 0.43–0.91) are within the range of those observed in the
present study. All the authors agreed that CVS-related equations were an improvement on
current prediction systems.

In agreement with the present study, Borggaard et al. [34] described similar R2 values
for total fat and RCY (%) using a BCC-2 camera and a HCC system, but carried out the
statistical analysis by means of principal component analysis (PCA) and neural networks.
Likewise, Pabiou et al. [35] used the VBS 2000 carcass grading unit (HCC) to predict carcass
cut yields in cattle. Diverging from our study, HCC and CCW variables were used in the
estimation models, and it was stated that stepwise regression showed slightly better R2

values than the PLSR procedure, thus explaining 71%, 72%, and 75% of the variance for
RCY (%), total fat (%), and total bone (%), respectively.

Vote et al. [36] compared BCSys (HCC) and CVS BeefCam (CCC) to study their
potential as grading systems for Uruguayan beef carcasses. They reported higher RCY R2

values for CVS estimations than for values from the USDA equation (values coming from
graders). In agreement with the present study, for total fat and bone estimations, higher
R2 values were shown when using HCC or HCC + CCC technologies than when the CCC
system was considered. In addition, in Vote et al. [36], bone amount estimations resulted in
lower R2 values than fat amount estimations, and HCW was also included in the models.

RCY and LMY values are commonly obtained from equations in which rib-eye and fat
thickness measurements are considered [25]. Because the equations are built from these
variables, it is not surprising that the CCC predicts RCY and LMY better than HCC, as
the linear measures of rib-eye and rib-eye area along with the fat thickness obtained with
the CCC are likely improving these estimates. Nevertheless, in the case of cull cows, it
is possible that the industry could be more interested in lean to fat ratios, in which case,
HCC predictions outperformed CCC. Hence, cows could be graded accurately in terms of
lean/fat ratio using a camera system that does not require knife-ribbing.

The literature regarding the estimation of cattle primal composition is scarce. Using a
dual CVS system (HCC + CCC), Cannell et al. [37] tested a total of 296 carcasses: 158 steers
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(103 light (HCW ≤ 339 kg) and 55 heavy (HCW > 340 kg)) and 138 heifers (51 light and
87 heavy), and described, in agreement with our results, R2 > 0.65 for primal fabrication
yields on average using a selection of HCC and CCC variables (higher coefficient of
correlation), HCW, and stepwise regression (higher R2). Using a similar statistical approach,
the HCC system, including the CCW variable (VBS 2000), Pabiou et al. [35] defined four
cut-out groups according to their retail value (low, medium, high, and very high value)
and obtained higher R2 values (0.84, 0.65, and 0.87) than in the present study for wholesale
primal weights for steers, heifers, and bulls, respectively. In turn, Craigie et al. [11] used
VBS 2000 technology (HCC system) and described R2 > 0.80 for the estimation of saleable
(retail cut) sirloin weight, considering HCW in the regression models.

In other species, Rius-Vilarrasa et al. [38], using VSS 2000 (HCC system for lambs)
and PLSR statistical analysis, reported R2 values of 0.86 for breast and 0.96 for leg primals.
Lorenzo et al. [39] reported R2 values between 0.53 and 0.89 for the prediction of foal
carcass composition and wholesale cut yields using HCC. Nevertheless, CCW was also
considered as a describing variable in the prediction models, whereas HCW was used in
the present study. The CCW has been described as a good estimator in the case of lamb
carcasses [40]; however, its suitability has been questioned for cattle [35].

Kipper et al. [17] assessed the accuracy of the methodology using the concepts of
trueness, defined in our case as the degree of agreement between the dissection and
the instrumental estimation values, and precision, as indicative of the degree of internal
agreement (dispersion). In addition, the trueness was considered to be the sum of ECT
and ER; precision was associated with ED and overall accuracy was related to MSPE [17].
Paying attention to error parameters, higher ECT values in CCC and HCC + CCC than in
HCC were detected in fat estimates, whereas the opposite behavior was observed for ED.
Therefore, the similar values of R2 and high values of ED imply that the three instrumental
approaches could be considered highly accurate and precise, the PLSR analysis being
suitable for estimation. However, CCC and HCC + CCC fat estimations showed lower
trueness than HCC estimations (Table 2).

In agreement with the present results, the feasibility of DXA technology in assessing
carcass composition has been stated for broiler chickens [13], pigs [15], and sheep [14], and
good R2 values have also been described for calves [16,18]. Aligning with our results, in all
these studies, higher R2 values were described for total fat and total lean estimations than
for total bone estimations.

López-Campos et al. [18] described similar results for the estimation of fat, lean, and
bone mass of primals using DXA with youthful cattle. The basis of the DXA technology
lies in the different absorption ratios from a low and a high energy X-ray beams when
interacting with the tissues. The software estimates the mass of two different tissues at
each scanned voxel; therefore, it is possible to differentiate between fat and lean when no
bone is present but, where the sample matrix contains bone, fat, and lean, the mass fraction
can only be established as bone and soft tissue, with the individual measurements of fat
and lean obtained from other regions of the scan. Therefore, the higher the amount of bone
detected, the more difficult the differentiation between fat and lean. In addition, a medical
DXA unit has been used in the present study, thus being calibrated for the measurement of
human bone mineral content and bone mineral density, but not for the whole bone content
of livestock.

Again, the fact that ED explained more than 99% of the MSPE values would imply
that the differences among R2 values were highly related to the dispersion (precision) and
poorly related to the trueness. Therefore, the external factors such as calibration method,
software analysis, the defining variables considered for the estimation models (HCW, CCW,
marbling, color, gender, etc.), and the meat cutters’ decision making (tissue differentiation
and cutting) would be the defining variables of dispersion. Accordingly, the low R2 value
of flank bone might be a consequence of the low amount of bone included in this primal,
thus implying a high variability in both DXA estimations and weight measurements. The
foreshank showed the highest bone to soft tissue ratio, although the different contributions
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to lean or fat estimates remain unclear: higher and lower accuracy of lean and fat estimates
of foreshank, respectively.

Regarding bone prediction, similar results to those from this study were described in
pigs [41] and chickens [42]. Kipper et al. [41] and Schallier et al. [42] described better R2

values when the predicted amount of bone was correlated with ash content. This implies
that the presence of small pieces of lean or fat that were adhered to the bone decreases the
accuracy and precision of the analysis, whereas it increases the error between actual and
predicted values.

Similarly to DXA, computed tomography (CT) is a technology also based on X-ray
attenuation. Prieto et al. [43] described lower R2 values for IM and total fat than for SQ and
total lean predictions (0.77, 0.89, 0.94, and 0.99, respectively) using spiral CT. Concurring
with the present study, Navajas et al. [44] described lower R2 values for carcass total bone
than for fat and/or lean estimates when using CT technology (R2 = 077, 0.92, and 0.96). In
addition, Navajas et al. [45] described R2 values of 0.92, 0.99, and 0.97, respectively, for fat,
lean, and bone for the primal estimations.

To date, DXA has been limited by practical constraints for deployment in the industry
(horizontal table scans, operation at room temperature, and rate of scan in minutes rather
than seconds). However, Scott Technologies Ltd. (New Zealand) has developed an upright
DXA scanner, capable of scanning at a rate of 540 lamb carcasses per hour while maintaining
performance accuracy. This technology adaptation was originally used to mark anatomical
features to program robotic cutting. The technology is now being envisioned as a means of
lean yield prediction in beef and lamb plants in Australia and New Zealand.

May et al. [46] reported that estimated yield differences could be attributed partially to
differences in seam fat deposition (different fat deposition along the carcass). Likewise, in
practice, the fabrication of the boneless, closely trimmed round, loin, rib, and chuck retail
cuts is performed manually by meat cutters, thus implying another subjective source of
variability. Although these factors might introduce variations in the cutability, the present
results suggest that both CVS and DXA technologies have the potential to estimate beef
carcass traits such as total or retail cut yield performance.

Finally, it is worth mentioning that, based on its performance, DXA might be seen as
the gold standard candidate technology for carcass composition estimation. Currently, DXA
technology is still under development and it is also being used as a means of envisioning
bone location for robotic carcass fabrication. The costs and other operational factors are
limiting its industrial implementation. However, if a facility had the capabilities to set up
both camera systems, and knife rib cows at the 12/13th, combining the HCC and CCC
data, could result in prediction accuracies very similar to DXA. This approach would be
of benefit to the plants in determining which carcasses would be profitable for specific
fabrication lines.

5. Conclusions

The results of the present study suggest that tissue composition (fat, lean, and bone),
either from primal cuts or full carcass sides, and yield percentages of LMY and RCY of
mature cows can be accurately predicted by CVS or DXA technologies by applying partial
least square regression statistical analysis.

Although DXA results showed higher accuracy, precision, and robustness than results
from CVS technologies, DXA technology is still in development for cattle and would
require further design adjustments for full implementation and integration into commercial
slaughter plants with moving carcass lines.

On the contrary, CVS technologies (HCC and CCC cameras) are widely implemented
in North America. In the present study, predictions using HCC variables led to similar
or even better results (higher R2 and lower MSPE values) than those from CCC. The
implementation of HCC technology for the carcass composition estimations of mature
cows has the benefit that knife ribbing of the carcasses is not required, not even for RCY
(%) or LMY (%) estimations. Furthermore, the combination of both CVS technologies
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led to significant improvements in the tissue predictions of primal cuts and total carcass
composition, particularly for lean/fat ratios, suggesting this approach as an alternative
for the enhancement of the prediction accuracy on primals and carcass composition of
cull cows.

Author Contributions: Data curation, I.L.L.; formal analysis, J.S. and I.L.L.; funding acquisition,
J.L.A.; investigation, J.S., N.P. and Ó.L.-C.; project administration, Ó.L.-C.; supervision, Ó.L.-C.;
writing—original draft, J.S.; writing—review and editing, J.L.A., N.P., M.J. and Ó.L.-C. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was funded by Agriculture and Agri-Food Canada (AAFC) as part of their
AgriInnovation Program Stream B, grant number AIP-P335.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the AAFC-Lacombe Research and Development Centre
Animal Care committee. The code for this study was 201702.

Acknowledgments: The authors express their gratitude to the AAFC-Lacombe Research and De-
velopment Centre (AB, Canada) Beef Unit and Meat Centre staff for animal care and management,
animal slaughter and carcass fabrication, and technical collection and compilation of the research
data. José Segura Plaza gratefully acknowledges the support from the Canada Sustainable Beef
and Forage Science Cluster, through funding provided by the Canadian Cattlemen’s Association
and Agriculture and Agri-Food Canada. The authors also sincerely and gratefully acknowledge the
cooperation and assistance of the Canadian Cattlemen’s Association.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Canfax. Annual Report.Canfax/Canfax Research Services. 2020. Available online: www.canfax.ca (accessed on 25 March 2021).
2. Canadian Beef Grading Association (CBGA). 2020. Available online: www.beefgradingagency.ca (accessed on 25 March 2021).
3. Roberts, J.; Rodas-González, A.; Juárez, M.; López-Campos, Ó.; Larsen, I.L.; Aalhus, J.L. Muscle profiling of retail characteristics

within the Canadian cull cow grades. Can. J. Anim. Sci. 2017, 97, 562–573. [CrossRef]
4. Aalhus, J.L.; López-Campos, Ó.; Prieto, N.; Rodas-González, A.; Dugan, M.E.R.; Uttaro, B.; Juárez, M. Review: Canadian beef

grading—Opportunities to identify carcass and meat quality traits valued by consumers. Can. J. Anim. Sci. 2014, 94, 545–556.
[CrossRef]

5. Scholz, A.M.; Buenger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and
carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and
ultrasound: Invited review. Animal 2015, 9, 1250–1264. [CrossRef]

6. López-Campos, Ó.; Prieto, N.; Juárez, M.; Aalhus, J.L. New technologies available for livestock carcass classification and grading.
CAB Rev. 2019, 14, 1–10. [CrossRef]

7. Woerner, D.R.; Belk, K.E. The History of Instrument Assessment of Beef: A Focus on the Last Ten Years. Cattlemen’s Beef Board
and National Cattlemen’s Beef Association. 2008. Available online: www.beefresearch.org/CMDocs/BeefResearch/The%20
History%20of%20Instrument%20Assessment%20of%20Beef.pdf (accessed on 25 March 2021).

8. Allen, P. Automated Grading of Beef Carcasses. In Improving the Sensory and Nutritional Quality of Fresh Meat; Kerry, J.P., Ledward,
D., Eds.; Series in Food Science Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2009; pp. 479–492.

9. Craigie, C.R.; Navajas, E.A.; Purchas, R.W.; Maltin, C.A.; Buenger, L.; Hoskin, S.O.; Ross, D.W.; Morris, S.T.; Roehe, R. A review
of the development and use of video image analysis (VIA) for beef carcass evaluation as an alternative to the current EUROP
system and other subjective systems. Meat Sci. 2012, 92, 307–318. [CrossRef] [PubMed]

10. McEvers, T.J.; Hutcheson, J.P.; Lawrence, T.E. Quantification of Saleable Meat Yield Using Objective Measurements Captured by
Video Image Analysis Technology. J. Anim. Sci. 2012, 90, 3294–3300. [CrossRef] [PubMed]

11. Craigie, C.R.; Ross, D.W.; Maltin, C.A.; Purchas, R.W.; Buenger, L.; Roehe, R.; Morris, S.T. The relationship between video image
analysis (VIA), visual classification, and saleable meat yield of sirloin and fillet cuts of beef carcasses differing in breed and
gender. Livest. Sci. 2013, 158, 169–178. [CrossRef]

12. Lovett, B.A.; Firth, E.C.; Plank, L.D.; Symonds, J.E.; Preece, M.A.; Herbert, N.A. Investigating a relationship between body
composition and spinal curvature in farmed adult New Zealand king salmon (Oncorhynchus tshawytscha): A novel application
of dual-energy X-ray absorptiometry. Aquaculture 2019, 502, 48–55. [CrossRef]

13. Goncalves, C.A.; Sakomura, N.K.; da Silva, E.P.; Baraldi Artoni, S.M.; Suzuki, R.M.; Gous, R.M. Dual energy X-ray absorptiometry
is a valid tool for assessing in vivo body composition of broilers. Anim. Prod. Sci. 2019, 59, 993–1000. [CrossRef]

14. Hunter, T.E.; Suster, D.; Dunshea, F.R.; Cummins, L.J.; Egan, A.R.; Leury, B.J. Dual energy X-ray absorptiometry (DXA) can be
used to predict live animal and whole carcass composition of sheep. Small Rumin. Res. 2011, 100, 143–152. [CrossRef]

www.canfax.ca
www.beefgradingagency.ca
http://doi.org/10.1139/CJAS-2017-0001
http://doi.org/10.4141/cjas-2014-038
http://doi.org/10.1017/S1751731115000336
http://doi.org/10.1079/PAVSNNR201914018
www.beefresearch.org/CMDocs/BeefResearch/The%20History%20of%20Instrument%20Assessment%20of%20Beef.pdf
www.beefresearch.org/CMDocs/BeefResearch/The%20History%20of%20Instrument%20Assessment%20of%20Beef.pdf
http://doi.org/10.1016/j.meatsci.2012.05.028
http://www.ncbi.nlm.nih.gov/pubmed/22726699
http://doi.org/10.2527/jas.2011-4223
http://www.ncbi.nlm.nih.gov/pubmed/22966082
http://doi.org/10.1016/j.livsci.2013.09.014
http://doi.org/10.1016/j.aquaculture.2018.12.017
http://doi.org/10.1071/AN17637
http://doi.org/10.1016/j.smallrumres.2011.07.003


Foods 2021, 10, 1118 13 of 14

15. Soladoye, O.P.; López-Campos, Ó.; Aalhus, J.L.; Gariepy, C.; Shand, P.; Juárez, M. Accuracy of dual energy X-ray absorptiometry
(DXA) in assessing carcass composition from different pig populations. Meat Sci. 2016, 121, 310–316. [CrossRef] [PubMed]

16. Scholz, A.M.; Nuske, S.; Forster, M. Body composition and bone mineralization measurement in calves of different genetic origin
by using dual-energy X-ray absorptiometry. Acta Diabetol. 2003, 40 (Suppl. 1), S91–S94. [CrossRef] [PubMed]

17. Kipper, M.; Marcoux, M.; Andretta, I.; Pomar, C. Assessing the accuracy of measurements obtained by dual-energy X-ray
absorptiometry on pig carcasses and primal cuts. Meat Sci. 2019, 14, 79–87. [CrossRef] [PubMed]

18. López-Campos, Ó.; Roberts, J.C.; Larsen, I.L.; Prieto, N.; Juárez, M.; Dugan, M.E.R.; Aalhus, J.L. Rapid and non-destructive
determination of lean fat and bone content in beef using dual energy X-ray absorptiometry. Meat Sci. 2018, 146, 140–146.
[CrossRef] [PubMed]

19. Canadian Council of Animal Care. Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing; Canadian
Council on Animal Care: Ottawa, ON, Canada, 2009.

20. The Safe Food for Canadians and Health of Animals Acts of CFIA Guidelines (A). Available online: https://inspection.canada.ca/
food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/guidelines-humane-
care-and-handling/eng/1525374637729/1525374638088 (accessed on 25 March 2021).

21. The Safe Food for Canadians and Health of Animals Acts of CFIA Guidelines (B). Available online: https://inspection.canada.ca/
food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/srm/eng/1369768468
665/1369768518427 (accessed on 25 March 2021).

22. López-Campos, Ó.; Aalhus, J.L.; Prieto, N.; Larsen, I.L.; Juárez, M.; Basarab, J.A. Effects of production system and growth
promotants on the physiological maturity scores in steers. Can J. Anim. Sci. 2014, 94, 607–617. [CrossRef]

23. USDA. Official United States Standards for Grades of Beef Carcasses; Agricultural Marketing Service, United States Department of
Agriculture: Washington, DC, USA, 1989. Available online: https://www.ams.usda.gov/grades-standards/carcass-beef-grades-
and-standards (accessed on 5 May 2021).

24. Jones, S.D.M. Evaluation of the Grade Ruler Approach for the Yield Grading of Beef Carcasses. Published as Appendix 1. Available
online: https://cdnsciencepub.com/doi/suppl/10.1139/cjas-2020-0035/suppl_file/cjas-2020-0035suppla.pdf (accessed on 25
March 2021).

25. Segura, J.; Aalhus, J.L.; Prieto, N.; Larsen, I.; Dugan, M.E.R.; López-Campos, Ó. Development and validation of the Canadian
retail cut beef yield grades. Can. J. Anim. Sci. 2021, 101, 196–200. [CrossRef]

26. USDA. Institutional meat purchasing specifications for fresh beef. 2014. Available online: https://www.ams.usda.gov/grades-
standards/imps (accessed on 25 March 2021).

27. SAS Institute Inc. SAS 9.4 for Windows; SAS Institute Inc: Cary, NC, USA, 2014.
28. Benchaar, C.; Rivest, J.; Pomar, C.; Chiquette, J. Prediction of methane production from dairy cows using existing mechanistinc

models and regression equations. J. Anim. Sci. 1998, 76, 617–627. [CrossRef]
29. Theil, H. Applied Economic Forecasting; North-Holland Publishing Company: Amsterdam, The Netherlands, 1966.
30. Mercier, J.; Pomar, C.; Marcoux, M.; Goulet, F.; Thériault, M.; Castonguay, F.W. The use of dual-energy X-ray absorptiometry to

estimate the dissected composition of lamb carcasses. Meat Sci. 2006, 73, 249–257. [CrossRef]
31. Farrow, R.L.; Loneragan, G.H.; Pauli, J.W.; Lawrence, T.E. An exploratory observational study to develop an improved method

for quantifying beef carcass salable meat yield. Meat Sci. 2009, 82, 143–150. [CrossRef]
32. Lu, W.; Tan, J. Analysis of image-based measurements and USDA characteristics as predictors of beef lean yield. Meat Sci. 2004,

66, 483–491. [CrossRef]
33. Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Coupling of image analysis and tenderness classification to simultaneously

evaluate carcass cutability, longissimus area, subprimal cut weights, and tenderness of beef. J. Anim. Sci. 1998, 76, 2631–2640.
[CrossRef]

34. Borggaard, C.; Madsen, N.T.; Thodberg, H.H. In-line image analysis in the slaughter industry, illustrated by Beef Carcass
Classification. Meat Sci. 1996, 43 (Suppl. 1), 151–163. [CrossRef]

35. Pabiou, T.; Fikse, W.F.; Cromie, A.R.; Keane, M.G.; Nasholm, A.; Berry, D.P. Use of digital images to predict carcass cut yields in
cattle. Livest. Sci. 2011, 137, 130–140. [CrossRef]

36. Vote, D.J.; Bowling, M.B.; Cunha, B.C.N.; Belk, K.E.; Tatum, J.D.; Montossi, F.; Smith, G.C. Video image analysis as a potential
grading system for Uruguayan beef carcasses. J. Anim. Sci. 2009, 87, 2376–2390. [CrossRef] [PubMed]

37. Cannell, R.C.; Belk, K.E.; Tatum, J.D.; Wise, J.W.; Chapman, P.L.; Scanga, J.A.; Smith, G.C. Online evaluation of a commercial
video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment
of USDA yield grades. J. Anim. Sci. 2002, 80, 1195–1201. [CrossRef] [PubMed]

38. Rius-Vilarrasa, E.; Buenger, L.; Maltin, C.; Matthews, K.R.; Roehe, R. Evaluation of Video Image Analysis (VIA) technology to
predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Sci. 2009, 82, 94–100. [CrossRef]

39. Lorenzo, J.M.; Güedes, C.M.; Agregan, R.; Sarries, M.V.; Franco, D.; Silva, S.R. Prediction of foal carcass composition and
wholesale cut yields by using video image analysis. Animal 2018, 12, 174–182. [CrossRef]

40. Einarsson, E.; Eythorsdottir, E.; Smith, C.R.; Jonmundsson, J.V. The ability of video image analysis to predict lean meat yield and
EUROP score of lamb carcasses. Animal 2014, 8, 1170–1177. [CrossRef]

41. Kipper, M.; Marcoux, M.; Andretta, I.; Pomar, C. Repeatability and reproducibility of measurements obtained by dual-energy
X-ray absorptiometry on pig carcasses. J. Anim. Sci. 2018, 96, 2027–2037. [CrossRef]

http://doi.org/10.1016/j.meatsci.2016.06.031
http://www.ncbi.nlm.nih.gov/pubmed/27395824
http://doi.org/10.1007/s00592-003-0037-7
http://www.ncbi.nlm.nih.gov/pubmed/14618444
http://doi.org/10.1016/j.meatsci.2018.10.005
http://www.ncbi.nlm.nih.gov/pubmed/30340164
http://doi.org/10.1016/j.meatsci.2018.07.009
http://www.ncbi.nlm.nih.gov/pubmed/30145410
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/guidelines-humane-care-and-handling/eng/1525374637729/1525374638088
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/guidelines-humane-care-and-handling/eng/1525374637729/1525374638088
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/guidelines-humane-care-and-handling/eng/1525374637729/1525374638088
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/srm/eng/1369768468665/1369768518427
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/srm/eng/1369768468665/1369768518427
https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/srm/eng/1369768468665/1369768518427
http://doi.org/10.4141/cjas-2014-022
https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards
https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards
https://cdnsciencepub.com/doi/suppl/10.1139/cjas-2020-0035/suppl_file/cjas-2020-0035suppla.pdf
http://doi.org/10.1139/cjas-2020-0035
https://www.ams.usda.gov/grades-standards/imps
https://www.ams.usda.gov/grades-standards/imps
http://doi.org/10.2527/1998.762617x
http://doi.org/10.1016/j.meatsci.2005.11.024
http://doi.org/10.1016/j.meatsci.2008.12.014
http://doi.org/10.1016/S0309-1740(03)00139-6
http://doi.org/10.2527/1998.76102631x
http://doi.org/10.1016/0309-1740(96)00062-9
http://doi.org/10.1016/j.livsci.2010.10.012
http://doi.org/10.2527/jas.2009-1791
http://www.ncbi.nlm.nih.gov/pubmed/19395512
http://doi.org/10.2527/2002.8051195x
http://www.ncbi.nlm.nih.gov/pubmed/12019606
http://doi.org/10.1016/j.meatsci.2008.12.009
http://doi.org/10.1017/S1751731117001537
http://doi.org/10.1017/S1751731114000962
http://doi.org/10.1093/jas/skx046


Foods 2021, 10, 1118 14 of 14

42. Schallier, S.; Li, C.; Lesuisse, J.; Janssens, G.P.J.; Everaert, N.; Buyse, J. Dual-energy X-ray absorptiometry is a reliable non-invasive
technique for determining whole body composition of chickens. Poult. Sci. 2019, 98, 2652–2661. [CrossRef]

43. Prieto, N.; Navajas, E.A.; Richardson, R.I.; Ross, D.W.; Hyslop, J.J.; Simm, G.; Roehe, R. Predicting beef cuts composition, fatty
acids and meat quality characteristics by spiral computed tomography. Meat Sci. 2010, 86, 770–779. [CrossRef] [PubMed]

44. Navajas, E.A.; Richardson, R.I.; Fisher, A.V.; Hyslop, J.J.; Ross, D.W.; Prieto, N.; Simm, G.; Roehe, R. Predicting beef carcass
composition using tissue weights of a primal cut assessed by computed tomography. Animal 2010, 4, 1810–1817. [CrossRef]
[PubMed]

45. Navajas, E.A.; Glasbey, C.A.; Fisher, A.V.; Ross, D.W.; Hyslop, J.J.; Richardson, R.I.; Simm, G.; Roehe, R. Assessing beef carcass
tissue weights using computed tomography spirals of primal cuts. Meat Sci. 2010, 84, 30–38. [CrossRef] [PubMed]

46. May, S.G.; Mies, W.L.; Edwards, J.W.; Williams, F.L.; Wise, J.W.; Morgan, J.B.; Savell, J.W.; Cross, H.R. Beef carcass composition of
slaughter cattle differing in frame size, muscle score, and external fatness. J. Anim. Sci. 1992, 70, 2431–2445. [CrossRef]

http://doi.org/10.3382/ps/pez013
http://doi.org/10.1016/j.meatsci.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20655149
http://doi.org/10.1017/S1751731110001096
http://www.ncbi.nlm.nih.gov/pubmed/22445141
http://doi.org/10.1016/j.meatsci.2009.08.006
http://www.ncbi.nlm.nih.gov/pubmed/20374751
http://doi.org/10.2527/1992.7082431x

	Introduction 
	Materials and Methods 
	Animals 
	Carcass Sides, Cut-Out, and CVS and DXA Scanning 
	Statistical Analyses 

	Results 
	Cow Carcass Population 
	Primal Weight Estimation 
	Overall Carcass Tissue Composition and Yield Estimations 

	Discussion 
	Conclusions 
	References

