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Abstract

Motivation: Pair Hidden Markov Models (PHMMs) are probabilistic models used for pairwise

sequence alignment, a quintessential problem in bioinformatics. PHMMs include three types of

hidden states: match, insertion and deletion. Most previous studies have used one or two hidden

states for each PHMM state type. However, few studies have examined the number of states suit-

able for representing sequence data or improving alignment accuracy.

Results: We developed a novel method to select superior models (including the number of hidden

states) for PHMM. Our method selects models with the highest posterior probability using

Factorized Information Criterion, which is widely utilized in model selection for probabilistic models

with hidden variables. Our simulations indicated that this method has excellent model selection

capabilities with slightly improved alignment accuracy. We applied our method to DNA datasets

from 5 and 28 species, ultimately selecting more complex models than those used in previous

studies.

Availability and implementation: The software is available at https://github.com/bigsea-t/fab-

phmm.

Contact: mhamada@waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The alignment of biological sequences (e.g. DNA, RNA and pro-

teins) is one of the most classical and important problems in the field

of bioinformatics. Sequence alignment permits the assessment of the

functional relationships among biological sequences by quantifying

sequence similarity. Since similar nucleotides or amino acids sequen-

ces are often functionally related, the development of quantitative

evaluations of sequence similarity has been of great interest. This

high demand for similarity evaluations has driven the development

of a variety of alignment programs (Altschul et al., 1990; Frith et al.,

2010; Thompson et al., 1994). Moreover, sequence alignments are

essential for analyzing the huge amounts of sequence data produced

by high-throughput sequencers in computational tasks such as map-

ping read sequences onto reference genomes (Hamada et al., 2017;

Li and Homer, 2010).
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For this alignment task, probabilistic approaches are widely

recognized. These probabilistic approaches include Pair Hidden

Markov Models (PHMMs) (Durbin et al., 1998), which handle

indels and substitutions that occur throughout molecular evolution

by using sequentially dependent unobserved hidden states, specifi-

cally the match, insertion and deletion states as well as their corre-

sponding probabilistic symbol emissions (cf. Fig. 1).

There have been several attempts to construct slightly more com-

plex PHMMs. Bradley et al. (2009), Lunter et al. (2008) and Paten

et al. (2008) used PHMMs with two insertion and two deletion

states, and Cartwright (2009) proposed a general version of

PHMMs that employs a zeta power-law model of indel lengths.

Additionally, a few generalizations of PHMMs have been proposed

(such as Pachter et al., 2002), which introduced generalized

PHMMs for DNA–DNA, DNA–cDNA and DNA–protein align-

ments. However, to the best of our knowledge, no previous study

has focused on determining the suitable number of states for repre-

senting the biological models that describe sequence evolution or for

achieving better alignment accuracy.

Bayesian model selection provides a sophisticated approach for

selecting the best model by maximizing model evidence. In this,

some parameters are marginalized out, and so a preference for sim-

pler models is inherent to the method. When the model prior is uni-

form, maximizing model evidence is equivalent to maximizing the

posterior probability of model given data, so we can choose the

model with the largest posterior by maximizing the model evidence.

The well-known difficulty of Bayesian model selection is that the

model evidence is analytically intractable in general, including for

PHMMs. Markov Chain Monte Carlo (MCMC) (Hastings, 1970)

and Variational Inference (VI) (Beal, 2003; Blei et al., 2016; Jordan

et al., 1999) enable approximation of the difficult-to-compute

model evidence, but both approaches have a drawback: high compu-

tational cost. In contrast, the Factorized Asymptotic Bayesian (FAB)

algorithm (Fujimaki and Hayashi, 2012; Fujimaki and Morinaga,

2012; Hayashi et al., 2015) is a promising alternative model

selection technique based on the Factorized Information Criterion

(FIC). One advantage of the FAB algorithm is its simultaneous

optimization of the model structure and the parameters, which

makes the FAB algorithm more scalable than VI and MCMC. The

advantages are further discussed in Section 2.2.

The contributions of this study are summarized as follows:

1. We developed a novel FIC-based model selection algorithm for

PHMMs and demonstrate the reasonably good accuracy in

model selection using a synthetic dataset. To the best of our

knowledge, this is the first attempt in the literature to apply a

model selection method to PHMMs.

2. The model selection method slightly improved evaluation met-

rics on the same synthetic dataset.

3. We conducted experiments on real DNA sequences and found

that our method selects a more complex probabilistic structure

than the ones that have been traditionally used for pairwise

alignment of these species.

2 Materials and methods

PHMMs are a type of probabilistic generative model for sequence

alignment (Durbin et al., 1998) with three types of hidden states: a

match-type state M, an X-insertion-type state X and a Y-insertion-

type state Y (Fig. 1). The insertion states model the molecular evolu-

tion of indels, and the emission probability of the match states

characterizes the substitution rates.

In this study, we employed the FAB algorithm (Fujimaki and

Morinaga, 2012; Hayashi et al., 2015) to select the best model struc-

ture for a PHMM. The FAB algorithm is an information criterion-

based technique that enables the simultaneous optimization of both

the parameters and the model structure. The properties of the FAB

algorithm are explained in Section 2.2 in more detail. Note that we

modified the standard formalization of PHMM (e.g. Durbin et al.,

1998) because it does not use hidden variables explicitly, which is

inappropriate for the FAB algorithm. In this section, we introduce

our formalization of the PHMM with explicit hidden variables

(Section 2.1) and then develop a proposed model selection method

using the FAB algorithm (Section 2.2).

In the following, we denote the number of match-type states,

X-insertion-type states and Y-insertion-type states as KM, KX

and KY, respectively. Additionally, K represents the total number

of hidden states, that is K ¼ KM þ KX þ KY . Formally, we regard

model selection as selecting the number of hidden states

KM;KX;KYð Þ.

2.1 Pair Hidden Markov Model
Let observed sequences be x ¼ fxngn2 1;N½ � and y ¼ fyngn2 1;N½ �,

where N is the number of sequence pairs. The nth sequences are

xn ¼ fxn
t gt2 1;Tn

X½ � and yn ¼ fyn
ugu2 1;Tn

Y½ �, where Tn
X and Tn

Y are the

lengths of xn and yn, respectively. We abbreviate all the observed

sequences as X ¼ fx; yg. Unlike normal HMMs, PHMMs have hid-

den variables Z ¼ fzngn2 1;N½ �, which are two-dimensional and the

nth of which is zn ¼ fzn
tugt2 0;Tn

X½ �;u2 0;Tn
Y½ � (Fig. 2). Note that these

two-dimensional hidden variables are not a common formalization

and include a zero-state, introduced below. The value zn
t;u corre-

sponds to the hidden state where, for match states, xn
t and yn

u are

matched. For insertion states, zn
tu represents that xt corresponds to

the gap ‘–’ and that the last used symbol in yn is yn
u and vice versa

for Y-insertion states. The hidden state zn
tu ¼ fzn

t;u;kgk2 1;K½ � is a 1-of-

K representation, but slightly modified to allow a zero-state, where

zn
t;u;k for all k is zero and does not emit any symbols from that varia-

ble (an example is shown in Fig. 3). This is because of the unique

characteristics of PHMMs (in comparison with conventional

HMMs); only a subset of the hidden variables emit symbols, that is

only the hidden variables corresponding to aligned positions emit

symbols (Fig. 3). The set P ¼ fa;b;/g is a parameter set, where a; b

and / represent the initial probability, transition probability and

emission probability parameters, respectively. Also, each hidden

state k corresponds to one of the state types {M, X, Y}, which is

given by a function S where S kð Þ 2 fM;X;Yg.

Fig. 1. Transition diagram of hidden states in a PHMM. The match states,

which emit a pair of characters (M1 . . . MKM
), are connected to all the other

states, whereas the X- and Y-insertion states, which emit a pair of a character

and a gap symbol ‘-’ (X1 . . . XKX
and Y1 . . . YKY

), are only connected to the

match states
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Now we can write the complete log-likelihood of PHMM as

ln pðX;Z jPÞ ¼
XN
n¼1

�
ln pðzn

in j aÞ

þ
XTn

X

t¼0

XTn
Y

u¼0

�
ln pðzn

tu jpaðzn
tuÞ; bÞ þ ln pðxn

t ; y
n
u j zn

tu;/Þ
�� (1)

where zn
in is a set of hidden variables corresponding to the initial

states. The initial hidden variable varies with the type of hidden state

because each hidden state’s type uses a different number of original

sequences; an M-type state uses both x1 and y1, whereas X-type and

Y-type states each use one of them. For this reason, the initial hidden

variable of an M-type state is z1;1, whereas it is z1;0 and z0;1 for

X-type and Y-type states, respectively. For the transition probability,

we use pa zn
tu

� �
¼ fzt0u0kgk2 1;K½ � as a set of (previous) hidden variables

from which this can transit to zt;u. We further denote the emission

probability as a categorical distribution using new variables fwn
tukg

as

p xt; yu j zn
tuk ¼ 1

� �
¼ wn

tuk ¼

/k xt; yuð Þ if S kð Þ ¼M

/k xt;�ð Þ if S kð Þ ¼ X

/k �; yuð Þ if S kð Þ ¼ Y

8>><
>>: (2)

where /k represents the categorical emission probability of the kth

hidden state. Note that the X-type and Y-type states emit the gap ‘–’

instead of the normal symbols (e.g. A, T, G or C in the case of DNA

alignments). Thus, the dimensionality of the parameter of the emis-

sion probability differs with the type of hidden states, namely,

L2 � 1 for the match states and L – 1 for the insertion states, where

L is the number of symbols (L¼4 in the case of DNA sequences).

Using this notation, we can rewrite the complete likelihood in an

explicit form.

ln pðX;Z jPÞ ¼
XN
n¼1

�
ln pðzn

in j aÞ

þ
XTX

t¼0

XTY

u¼0

XK

k¼1

�
paðzn

tuÞkln pkðzn
tu jbkÞ þ zn

tukln pðxn
t ; y

n
u j zn

tu;/kÞ
��

¼
XN
n¼1

XK

k¼1

"
zn

dxk ;dyk ;k
ln ak

þ
XTn

X

t¼0

XTn
Y

u¼0

 XK

l¼1

zn
ðt�dxkÞ;ðu�dykÞ;kzn

tulln bkl þ zn
tukln wn

tuk

!#
(3)

where pkðztu jbkÞ ¼
QK

l¼1 pðztul ¼ 1 j zðt�dxlÞ;ðu�dylÞ;k ¼ 1Þztul and

dxk; dyk

� �
is a transition direction defined as

dxk;dyk

� �
¼

1; 1ð Þ if S kð Þ ¼M

1; 0ð Þ if S kð Þ ¼ X

0; 1ð Þ if S kð Þ ¼ Y:

8>><
>>:

Again, it should be noted that the representation in Equation (3) is

essential for a derivation of our model selection algorithm in the fol-

lowing section.

2.2 PHMM model selection algorithm: FAB-PHMM
We formalize the model selection problem for PHMM as a

maximization of the model evidence.

M� ¼ arg max
M

ln p X jMð Þ (4)

where the evidence is given by p X jMð Þ ¼
Ð P

Z p X ;Z;P jMð ÞdP.

Note that the model sizeM¼ fKM;KX;KYg is parameterized by the

number of hidden states of each state type. However, the model evi-

dence is difficult to compute; thus, we generally need approxima-

tions. In this study, we use FIC as an asymptotically accurate

approximation.

FIC has following three appealing properties:

1. Asymptotic equivalence to marginal likelihood. Although

Bayesian Information Criterion (BIC) is a widely used and sim-

ple information criterion, it lacks theoretical justification

because of the non-regularity of the latent variable models

(Watanabe, 2009). PHMM is not an exception to this, so the

BIC’s approximation is invalid for PHMMs. Unlike BIC, FIC is

consistent with the marginal likelihood for latent variable

models. Practically speaking, Fujimaki and Hayashi (2012)

empirically showed that BIC-HMM tends to choose overly com-

plicated models, while FIC-HMM chooses optimal models more

often.

2. Simultaneous optimization of model and parameters. VI is

closely related to FIC. Both of them perform similar approxima-

tion using variational distribution. One advantage of FIC is that

it can optimize parameters and models simultaneously. This

makes FIC-based optimization computationally more efficient.

3. Prior free. Unlike VI, FIC does not require prior distributions

because it treats priors as O 1ð Þ. Thus, FIC is hyper-parameter

tuning free and easier to optimize.

In the following, we will start with the derivation of FICPHMM

(Section 2.2.1), then take a lower bound to derive FICLB (Section

Fig. 2. Graphical model representation of (a) HMMs and (b) PHMMs. The hid-

den states, denoted by zt, are one-dimensional in the normal HMM, whereas

they, denoted by ðzt ;uÞ, are two-dimensional in the PHMM. In the PHMM, a

pair of symbol emissions (xt, yu) is an emission from the hidden state zt ;u ,

describing a pair of (aligned) nucleotides in the case of DNA alignments, for

example

Fig. 3. An alignment example for a pair of DNA sequences x and y as well as

the corresponding two-dimensional hidden states, where ðKM ;KX ;KY Þ ¼
ð1; 1; 1Þ, illustrating how hidden states are encoded. 0 ¼ ð0; 0; 0Þ is the zero-

state that does not emit any symbols, and zM ¼ ð1; 0; 0Þ; zX ¼ ð0; 1; 0Þ and zY

¼ ð0; 0; 1Þ are the 1-of-K coding corresponding to the M-type, X-type and

Y-type states, respectively. This hidden state encoding allows us to generate

the alignment
��GG
AAGG

from the sequence pair GG and AAGG
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2.2.2) for optimization via expectation maximization (EM). We iter-

atively optimize the target function FICLB with respect to a varia-

tional distribution q and parameters P in the E step (Section 2.2.3)

and M step (Section 2.2.4), respectively. The modelM is tuned via

model pruning (Section 2.2.5).

2.2.1 Factorized information criterion

Let N be a set of local (component-dependent) parameters and H be

a set of global (component-independent) parameters. Additionally,

we denote all the parameters as P ¼ fN;Hg (in the case of PHMM,

local parameters N ¼ fb;/g and global parameters H ¼ fag).
Hayashi et al. (2015) have shown that the model evidence can be

approximated as an asymptotically accurate information criterion,

FIC, which can be expressed as

FIC Mð Þ ¼ Eq�� ln p X;Z j �P;Mð Þ � 1

2
ln j F�N j

� �

�1

2
DP ln N þH q��ð Þ:

where DP is the number of free parameters in P; �P ¼ f�N; �Hg is a

maximum joint likelihood estimators (MJLEs), F�N is the Hessian

matrix of �ln p X ;Z jPð Þ with respect to �N; q�� Zð Þ ¼ p Z jX;Mð Þ is

the marginal posterior and H q��ð Þ is the entropy of q��. In FIC, the

penalty term is given by the volume of the Fisher information matrix

j F�N j , which penalizes complexity in the model.

Here we derive FIC for PHMM, FICPHMM. Since the local

parameters N ¼ fb1; . . . ; bK;/1; . . . ;/Kg do not interact with each

other, the Fisher information matrix FN is a block diagonal

matrix whose blocks are fFb1
; . . . ;FbK

;F/1
; . . . ; F/K

g, thus

ln j FN j ¼
P

k ln jFnk
j þ ln j Fbk

j Þ
�

. Here, using the Equation (3),

we can write these Fisher information matrices as

Fbk
¼ 1

N

XN
n¼1

XTX

t¼0

XTY

u¼0

pa zn
tu

� �
k
r2

b ln pk zn
tu j bkÞ

�

and

F/k
¼ 1

N

XN
n¼1

XTX

t¼0

XTY

u¼0

zn
tukr2

/ ln p xn
t ; y

n
u j zn

tu;/k

� �
;

where both ln pk zn
tu j bkÞ

�
and ln p xn

t ; y
n
u j zn

tu;/k

� �
are O 1ð Þ with

respect to the number of samples N. Thus, the penalty term is

ln jFbk
j ¼ Dbk

ln
ftrans

k ðZÞ
N

þOð1Þ

ln jF/k
j ¼ D/k

ln
femit

k ðZÞ
N

þOð1Þ

where

ftrans
k ðZÞ ¼

XN
n¼1

XTX

t¼0

XTY

u¼0

paðzn
tuÞk

¼
XN
n¼1

XTn
x ;T

n
y

t¼0;u¼0

zn
tuk �

XN
n¼1

zn
Tn

x ;T
n
y
:

femit
k ðZÞ ¼

XN
n¼1

XTn
x ;T

n
y

t¼0;u¼0

zn
tuk:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

The newly introduced symbols femit
k and ftrains

k are effective samples

of, respectively, transition and emission probability for the kth

latent variable. The values Dbk
and D/k

are the dimensionalities of

parameters bk and /k, respectively.

Finally, ignoring the O 1ð Þ term, we derive FIC for PHMM as

FICPHMMðMÞ ¼ Eq��

�
ln pðX;Z j �PÞ �

XK

k¼1

Dbk

2
ln

ftrans
k ðZÞ

N

�
XK

k¼1

D/k

2
ln

femit
k ðZÞ

N

�
�DP

2
log N þHðq��Þ:

The penalty terms are now sums of parameter dimensionality

weighted by the corresponding effective samples. For example, the

dimensionality of the kth emission probability D/k
is weighted by

femit
k Zð Þ. When the effective sample of the kth component is small,

the penalty term for the kth latent variable also becomes small. In

this case, Z is degenerate and we can safely prune the kth latent

component. This model pruning is further discussed in Section

2.2.5.

2.2.2 FIC lower bound

We employ an EM algorithm to optimize the parameters. To make

the EM algorithm tractable, we further take the lower bound of FI

CPHMM and derive FICLB. We use three approximations to con-

struct the lower bound. (i) Since the MJLEs �P is unavailable in

practice, we replace it by the arbitrary parameter P, which is

optimized in the M step. (ii) Instead of the marginal posterior q��,

we use a variational distribution q, which is optimized in the E step.

(iii) We take a lower bound of the negative logarithm as

�log
P

ntu zn
tuk

� �
� �L

P
ntu zn

tuk;
P

ntu ~q zn
tuk

� �� �
, where L is linear

approximation of the logarithm function L a;bð Þ ¼ log bþ a� bð Þ=
b and ~q is any distribution over Z. During the optimization proce-

dure, ~q is set to be the variational distribution q of the previous time

step. Using these approximations, we now get the lower bound

FICPHMM Mð Þ � FICLB M;q; ~q;Pð Þ

¼ Eq log p X ;Z jPð Þ þ
XN
n¼1

XTn
x ;T

n
y

t¼0;u¼0

zn
tuk log dtuk

2
4

3
5

�Da

2
log N �

XK

k¼1

Dbk

2
log

X
n;t;u

ftrans
k

~Z
� �
� 1

 !

�
XK

k¼1

D/k

2
log femit

k
~Z
� �
� 1

� �
þH qð Þ

where dtuk ¼

exp � D/k

2femit
k

~Z
� �

 !
if t ¼ TX and u ¼ TY

exp � D/k

2femit
k

~Z
� �� Dbk

2ftrans
k

~Z
� �

 !
otherwise:

8>>>>>><
>>>>>>:

Here, we introduced the auxiliary variable ~Z ¼ f~q zn
tuk

� �
gt;u;k;n for

simplicity. The full algorithm including model pruning (the model

selection mechanism) is explained in Section 2.2.5.

2.2.3 E-step updates

We need to obtain the distribution q� that maximizes FICLB (see

Algorithm 2.1 for details). This can be done using a modified for-

ward–backward algorithm as follows:

f n
tuk ¼

0 if t < 0 or u < 0 or t; uð Þ ¼ 0; 0ð Þ

akw
n
tukdtuk if initial position

wn
tukdtuk

XK

j¼1

f n
t�dxk ;u�dyk;k

bj;k otherwise

8>>>>><
>>>>>:

(5)
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bn
tuk ¼

0 if t > Tn
x or u > Tn

y

1 if t ¼ Tn
x and u ¼ Tn

y

XK

l¼1

wn
tuldtulb

n
tþdxl ;uþdyl ;l

bk;l otherwise

8>>>>><
>>>>>:

(6)

Using these forward–backward variables, the optimal variational

distribution q� is obtained as follows:

q� zn
tuk

� �
¼

f n
tukbn

tukP
l f n

Tn
x ;T

n
y ;l

(7)

q� zn
t�dxk ;u�dxy ;j

; zn
tuk

� 	
¼

f n
t�dxk ;u�dxy ;j

bjk/
n
tukbn

tukP
l f n

Tn
x ;T

n
y ;l

(8)

2.2.4 M-step updates

Now, we want to find the P that maximizes FICLB for fixed q (see

Algorithm 2.1 for details). For those parameters, we have the update

function:

ak /
X

n

q zn
dxk ;dyk;k

� 	
(9)

bjk /
P

n;t;u q zn
t�dxk ;u�dxy ;j

; zn
tuk

� 	

/k x; yð Þ /

P
ntu q zn

tuk

� �
I x ¼ xt ^ y ¼ yuð Þ if S kð Þ ¼M

P
ntu q zn

tuk

� �
I x ¼ xtð Þ if S kð Þ ¼ X

P
ntu q zn

tuk

� �
I y ¼ yuð Þ if S kð Þ ¼ Y

:

8>>>><
>>>>:

(10)

For calculation of bjk, out-of-range indexing is treated as zero, that

is qðzn
dxk ;dyk;k

Þ ¼ 0 if t � dxk < 0 or u� dyk < 0.

2.2.5 Pruning degenerated components

In contrast to VI, the FAB algorithm enables simultaneous

optimization of a modelM and its parameters P via model pruning

(Hayashi et al., 2015). Let us call Z degenerated when there

exists an equivalent likelihood for a smaller model ~M, that is

p X;Z jP;Mð Þ ¼ p X ; ~Z j ~P; ~M
� �

; whereM > ~M. In such cases,M
is overcomplete so we can transform the model Z;Pð Þ ! ~Z; ~P

� �
to obtain a new smaller and equivalent model. This transformation

is called model pruning. In the case of FAB-PHMM, we can

prune the components k with effective samples
P

ntu q zn
tuk

� �
=N,

which are beneath some threshold �. Starting from a sufficiently

large model, we can prune redundant components while optimizing

parameters. This model pruning algorithm is shown in Algorithm

2.1.

We observed that this model pruning algorithm sometimes fails

by being captured within poor local optima. In such cases, degener-

ated components are not pruned. To avoid this problem, we incor-

porate greedy pruning (Algorithm 2.2). When the algorithm

converged, we append the current model P;M; qð Þ to model candi-

dates. Then, delete the component with the fewest effective samples

(greedy_pruning) and restart the algorithm. After finding the small-

est possible model KM;KX;KYð Þ ¼ 1; 1;1ð Þ, we choose the model

with the largest FIC from among the model candidates.

2.2.6 Computational complexity

For each iteration in Algorithm 2.1, the computational complexity

is O N max Tn
X

� �
max Tn

Y

� �
K2

� �
for the E and M steps, and O

N max Tn
X

� �
max Tn

Y

� �
K

� �
for model pruning. Therefore, the overall

complexity for each step is O N max Tn
X

� �
max Tn

Y

� �
K2

� �
. Note

that this complexity is exactly the same as ordinary parameter learn-

ing for PHMM using the Baum–Welch algorithm (Durbin et al.,

1998).

3 Experiments

We performed three types of experiments to answer the following

three questions. First, how accurate is the proposed method in

selecting the optimal model (Section 3.1)? Next, how much does the

proposed method contribute to alignment accuracy relative to fixed-

size models (Section 3.2)? Finally, what kinds of models are selected

when we train our proposed method against real DNA data (Section

3.3)?

In this study, because of the high computational cost of parame-

ter learning, we concentrated on short alignments (up to 200 bp).

Additionally, we considered only global alignments. Extensions for

the alignment of longer sequences and local alignment will be dis-

cussed in Section 4. Moreover, following previous research (Bradley

Algorithm 2.1 The FAB-PHMM algorithm

Input: data X , initial model M¼ KM;KX;KYð Þ, initial varia-

tional distribution q, initial parameter P, stopping threshold g
and pruning threshold �

FICLBprev ¼ 1
loop

~q  q

q arg maxqFICLB M; q; ~q;Pð Þ " E-step

for all k that satisfy
P

n;t;u q zn
tuk

� �
� � do

delete the kth hidden state of model M " Pruning

end for

P arg max ~PFICLB M;q; ~q; ~P
� �

" M-step

if j FICLB M;q; ~q;Pð Þ � FICLBprev j < g then

end loop

end if

FICLBprev  FICLB M;q; ~q; ~P
� �

end loop

Algorithm 2.2 The greedy FAB-PHMM algorithm

Input: data X , initial model M¼ KM;KX;KYð Þ, initial varia-

tional distribution q, initial parameter P, stopping threshold g
and pruning threshold �

Initialize candidates with an empty list

loop
�P; �M; �q
� �

 FABPHMM-algorithm(X;P;M; q; g; �) " Alg. 2.1

append �P; �M; �q
� �

to candidates

if �M ¼ 1; 1; 1ð Þ then

end loop

end if

(P;M; q)  greedy_pruning( �P; �M; �q)

" Delete the component with fewest effective samples

end loop

choose model with highest FIC from candidates
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et al., 2009; Lunter et al., 2008), we here concentrate on models

with a single match state and multiple insertion states, although our

method is potentially applicable to multiple match states (cf. Fig. 1

and Section 4). For all the experiments, we set the stopping thresh-

old g ¼ 10�5 and pruning threshold � ¼ 10�4.

3.1 Model selection capability
We first investigated the model selection capability of the proposed

method. We used synthetic data because the true model is not avail-

able for real dataset. We defined parameters of PHMMs of different

sizes manually and generated alignments from them. The true model

sizeMtrue ¼ K�M;K
�
X;K

�
Y

� �
and their names are provided in Table 1.

From the manual models, we generated N alignments of fixed length

100. After removing the gaps from each alignment, we fed the

sequences to Algorithm 2.2 and estimated the optimal model only

from the data (pairs of sequences). We then determined if it can

recover the true model. We set the initial model size to be

KM;KX;KYð Þ ¼ 1;10;10ð Þ. We ran experiments for sample sizes

N ¼ 100; 200;300; 400; 500;600; 700;800; 900;1000. Parameters

for each model can be found in Supplementary Section S3 and

Figures S1–S7.

Table 2 shows the fraction of models that were correctly pre-

dicted—prediction is correct when the true model size and predicted

model size are exactly the same. As the number of samples N grew,

the approximation became more precise. Also, some models tend to

require more samples for precise model selection. With sufficient

samples, FAB-PHMM successfully recovered models almost per-

fectly except in some cases [i.e. in experiments (med, N¼1000) and

(small, N¼1000)]. Even in these cases, the inaccurately selected

models have smaller FIC values than accurately selected models, and

we assumed that the algorithm was trapped in a poor local opti-

mum. However, we can easily avoid this problem by using multiple

runs and choosing the model with the largest FIC. Indeed, when we

picked such a model out of 10 replicates generated with a different

random seed, the predictions were always correct when the sample

size was greater than or equal to 700 (see bold-face text in Table 2;

the bold-face font indicates that the model with the highest FIC

value successfully predicted the correct model).

Note that this experimental setting is much simpler than the real

setting, where the true model is not in the PHMM class (i.e. the real

DNA sequences are not PHMM generated). However, we assume

that FAB-PHMM can select the optimal model, in the sense of

choosing the closest possible models.

3.2 Alignment accuracy
We also explored the alignment accuracy of the proposed method.

Since it is difficult to obtain true genome alignments, we reused the

generated data from the manual models in the model selection

experiment. For alignment accuracy assessments, we had five align-

ment datasets for each different model size. We first trained multiple

models on each of those datasets and then performed alignments.

For training, we used PHMM (with a fixed model size) of those

eight different model sizes with random parameter initializations in

addition to FAB-PHMM, which automatically chose the optimal

model size. In total, we used nine PHMMs, including one with the

true model sizes as well as one FAB-PHMM. In order to avoid poor

local optima, we ran five trainings for each setting and selected the

model with the best score (FIC for FAB-PHMM and likelihood for

PHMM).

As a measure of performance in terms of accuracy, we used the

f1 score, which is the harmonic mean of precision and recall:

f1 ¼ 2
precision � recall

precisionþ recall
(11)

precision ¼ # correctly inferred positions

# inferred positions
(12)

recall ¼ # correctly inferred positions

# true positions
: (13)

For example, when the true alignment is x1x2x3x4�y1y2y3
and the inferred

alignment is x1x2x3x4
y1 � y2y3

, the true and inferred positions are f x2; y1ð Þ;

x3; y2ð Þ; x4; y3ð Þg and f x1; y1ð Þ; x3; y2ð Þ; x4; y3ð Þg, respectively. The

correctly inferred position is simply the intersection of the true posi-

tions and inferred positions: f x3; y2ð Þ; x4; y3ð Þg. In this case, preci-

sion is 2/3 and recall is 2/3; thus, the f1 score is 2/3.

We report the result of the number of sequences where N¼1000

in Table 3. For every dataset, the proposed method performed on

par with the true model while all the other fixed-size models per-

formed relatively poorly in some cases: for example for the large

model dataset experiment, FAB-PHMM and the large model (i.e.

the same model size as the one that produced dataset) performed

better than others, whereas the large model performed relatively

poorly for smaller datasets.

Although this alignment accuracy measure is widely used (e.g.

Rivas and Eddy, 2015), this approach only considers aligned bases

that correspond to match states and ignores all those corresponding

to insertion states. For this reason, we also evaluated the insertion

Table 2. Fraction of precise model selections from multiple estima-

tions for data produced with different model sizes

No. of samples Precise model selection for different model sizes

small med large imb imb_large huge imb_huge

100 10/10 0/10 0/10 10/100/10 0/10 0/10

200 10/10 0/10 0/10 9/10 0/10 0/10 0/10

300 10/10 0/10 0/10 4/10 7/10 0/10 0/10

400 10/10 0/10 0/10 9/10 10/10 0/10 10/10

500 10/10 0/10 0/10 7/10 9/10 0/10 5/10

600 10/10 5/10 0/10 9/10 10/10 5/10 9/10

700 10/10 10/103/10 5/10 10/10 10/1010/10

800 10/10 10/1010/10 7/10 10/10 10/1010/10

900 9/10 10/1010/10 8/10 10/10 10/1010/10

1000 9/10 8/10 10/10 7/10 10/10 10/1010/10

Note: We ran the model selection algorithm 10 times for each combination

of sample number and model size (shown in Table 1) with random initial

parameters. Each table entry indicates the fraction of runs in which the cor-

rect optimal model was selected. The bold-face font indicates precise predic-

tion of the model size, that is when the method selected the model with the

largest FIC correctly.

Table 1. Model sizes of hand-crafted models

small med large imb imb_large huge imb_huge

(1, 1, 1) (1, 2, 2) (1, 4, 4) (1, 2, 1) (1, 4, 2) (1, 6, 6) (1, 6, 3)

Note: The first, second and third values in each triplet are the numbers of

match states (KM), X-insertion states (KX) and Y-insertion states (KY), respec-

tively. Model names including the term ‘imb’ indicate an imbalanced model

with unequal values of KX and KY. See Supplementary Figures S1–S7 for

details of the parameters.
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counterparts of the f1 score (see Supplementary Section S1 for fur-

ther details).

In addition to assessing alignment accuracy, we also calculated

the perplexity of each trained model in order to show how well the

models explain the data. Refer to Supplementary Section S2 for fur-

ther details.

3.3 Model selection from real DNA sequences
We used real DNA data to explore the resulting models selected by

FAB-PHMM. Since this study concentrates on global alignments of

short sequences, proper analyses require homologous DNA

sequence pairs. For this reason, we used locally aligned DNA data

produced by Frith and Kawaguchi (2015) (https://zenodo.org/

record/17436##.WA3REpOLQYM) and multiple-aligned DNA

data produced by MULTIZ (http://hgdownload-test.cse.ucsc.edu/

goldenPath/hg38/multiz20way/).

3.3.1 LAST dataset

The LAST dataset (Frith and Kawaguchi, 2015) contains pairwise

alignments of human sequences to those of four other species (dog,

orangutan, mouse and chimpanzee). For our purposes, we selected

the alignments with lengths between 100 and 200. Additionally, we

removed the alignments with a ‘missmap’ probability (an alignment

ambiguity measure provided with the dataset) of less than 10�5

because we wanted to use only highly reliable homologous pairs.

This resulted in 1640 to 94 904 remaining alignments for each

of the alignments between the human sequences and those of the

four species. We extracted overlapping regions from across all

four species and cropped alignments to include only those overlap-

ping regions. Then, we randomly sampled 1000 alignments and

removed gaps from them in order to input them into FAB-PHMM.

We ran 10 trainings with different random seeds (which determine

the initial parameters in PHMM) and selected the best model

with the highest FIC value. We set the initial model size to be

KM;KX;KYð Þ ¼ 1;12;12ð Þ.

Figure 4 shows the selected model size for each species. For spe-

cies more closely related to humans (i.e. orangutan and chimpan-

zee), the algorithm selected a similar model and vice versa for

species more distantly related to humans (i.e. dog and mouse).

Specifically, in the case of chimpanzee and orangutan alignments,

the simplest model KM;KX;KYð Þ ¼ 1;1; 1ð Þ was chosen, whereas

many more X- and Y-insertion states were estimated in the case of

dog and mouse alignments. Additionally, it was observed that more

X-insertion states were predicted than Y-insertion states for dog and

mouse alignments.

Figures 5 and 6, Supplementary Figures S8 and S9 provide the

detailed parameters of the selected models from human–chimpan-

zee, human–mouse, human–orangutan and human–dog sequence

alignments, respectively. Overall, all the trained substitution

matrixes are almost symmetric. We have the following observations

about the human–mouse alignment: (i) two X-insertion states, X3

and X4, with similar and relatively high transition probabilities

from the match state (M) were predicted and (ii) X3 had higher

emission probabilities of A and C while X4 has higher emission

probabilities of T and G. In contrast, the human–dog sequence

alignment provides the following observations: (i) the self-transition

probabilities of X1, X3 and X5 were similar (about 0.8), though the

emission probability of X1 had an almost uniform distribution while

those of X3 and X5 were skewed with different profiles; (ii) the self-

transition probability of X2 and X4 were smaller (about 0.4) than

those of the others, meaning the states corresponded to shorter gaps;

(iii) we obtained two long insertion states, Y1 and Y3, and one short

insertion state, Y2, while Y2 and Y3 had similar emission profiles.

3.3.2 MULTIZ dataset

We also used the multiz20way dataset, which consists of multiple

alignments of 19 different species’ genome assemblies to the human

genome. As with the previous experiment, we randomly selected

1000 alignments of human sequences to sequences from each of the

19 species where each was restricted to have lengths of 90–110 bp.

These alignments were then used as a training set in FAB-PHMM.

We set the initial model size to be KM;KX;KYð Þ ¼ 1;12;12ð Þ.
The selected model sizes are shown on a phylogenetic tree in

Figure 7. In general, we can see species that are more distantly

related to humans tend to have alignments with humans that are

described by large models, for example the human–bushbaby

alignment model has a model size of (1, 9, 7) and the human–dog

alignment model is (1, 9, 9). However, for species that are more

closely related to humans, somewhat random model sizes were

selected to describe alignments, for example the human–gorilla

Table 3. Alignment f1 score

Simulated models Training models

small med large imb imb_large huge imb_huge fab

small 0.9286 0.9286 0.9255 0.9283 0.9281 0.9247 0.9262 0.9287

med 0.8337 0.8327 0.8318 0.8342 0.8324 0.8258 0.8279 0.8328

large 0.8196 0.8255 0.8309 0.8238 0.8278 0.8277 0.8313 0.8315

imb 0.8882 0.8963 0.8927 0.8965 0.8925 0.8919 0.8928 0.8968

imb_large 0.8602 0.8694 0.8681 0.8659 0.8686 0.8654 0.8678 0.8688

huge 0.9419 0.9473 0.9506 0.9449 0.9490 0.9513 0.9510 0.9515

imb_huge 0.9681 0.9688 0.9717 0.9690 0.9715 0.9717 0.9719 0.9717

Average 0.9035 0.9066 0.9071 0.9061 0.9069 0.9052 0.9068 0.9083

Note: For each model of data generation (i.e. the simulated models shown in Table 1), we trained models of fixed sizes including the true model and proposed

model (fab) before the f1 score evaluation. The italic and bold values indicate the result of training with the true model size and the best score obtained without

the true model size, respectively. See Table 1 for the details of the models.

Fig. 4. Trained model sizes for the LAST dataset shown on a phylogenetic

tree generated using phyloT and the ETE Toolkit. The model sizes are to the

right of the species names, for example ‘Mouse—1 6 3’ means the selected

model for the human–mouse alignment is ðKM ;KX ;KY Þ ¼ ð1; 6; 3Þ
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alignment model size is (1, 3, 3), whereas the human–chimpanzee

model (a closer species’ alignment model) has a model size of

(1, 5, 4).

4 Discussion

Although our proposed method may be potentially adapted to have

multiple match states (cf. Fig. 1), we have concentrated on a method

with a single match state and multiple X- and Y-insertion states.

This is because some previous studies focused only on multiple inser-

tion states, and learning multiple match states in addition to

multiple insertion states would lead to more complex models that

are not interpretable. (Also, the use of multiple match states incurs

more computational cost due to the increase in trained parameters.)

Still, it might be interesting to investigate multiple match states for

further improvement of alignment accuracy or making novel infer-

ences about sequence evolution, because multiple match states could

correspond to the substitution rate of regions.

Our experiments in Section 3.2 show that models trained by our

proposed method achieved better alignment accuracy than other

models, but the improvement was only marginal. We assume that

this is because maximizing model evidence not always result in

maximizing alignment accuracy: higher model evidence might con-

tribute to better sequence modelling, but it might not affect align-

ment accuracy metric. This result is consistent with previous

research by Lunter et al. (2008) in which the authors indicated that

modifications of insertion states can result in only small improve-

ments in alignment accuracy.

In our analyses using real data (Section 3.3), we utilized limited

datasets owing to the high computational cost of our proposed

method. Even with these limited datasets, we observed that much

more complex models than traditionally used models are selected as

optimal. This result implies a possibility that much more complex

probabilistic structures exist behind the probabilistic alignments

than previously believed.

As well as improving alignment accuracy, the selected model

structure may provide interesting insight about biological sequences

because the selected probabilistic model structure contains latent

information of input data. In other words, the selected model may

provide insights into the biological functions of sequences. Similarly,

decoded hidden states of PHMMs may reveal (e.g. in DNA align-

ments) that regions with different hidden states correspond to differ-

ent functions, such as exon versus intron sequences, non-coding

RNAs and regulatory elements. This information can be useful for

inferring novel biological insights from sequences.

For the best model selection for real data, however, a compre-

hensive dataset (including, e.g. coding, non-coding and repetitive

regions) is required because the trained model structures depend on

input data. Indeed, our analyses led to different model selections

based on the LAST and MULTIZ datasets. This could be because

the homologous pairs taken for the LAST dataset were more similar

than those taken for the MULTIZ dataset due to the protocols of

generating input sequences (cf. Section 3.3). In our future work, we

will utilize larger and unbiased datasets in order to select more reli-

able models. The main bottleneck is the high computational cost of

Fig. 7. Trained model sizes for the MULTIZ dataset using the proposed

method with an inferred phylogenetic tree. See the caption of Figure 4

(a) (b)

Fig. 5. Trained PHMM for human–chimpanzee alignments for sequences

from the LAST dataset using the proposed method. The resulting model is

the simplest one, ðKM ;KX ;KY Þ ¼ ð1; 1; 1Þ. (a) Trained initial and transition

probabilities and (b) emission probabilities

(a)

(b)

Fig. 6. Trained PHMM and its parameters for alignments between human and

mouse sequences. Panel (a) shows X1–X5 and Y1–Y3 have five X-insertion

states and three Y-insertion states, respectively, where each value is an esti-

mated initial/transition probability. For example, the value of 0.4793 in cell ðM
;Y 3Þ is equal to the transition probability from Y3 to M. Panel (b) shows emis-

sion probabilities of each hidden states. For example, the value 0.0173 in cell

(T, A) in the left most panel is equal to the probability of a match state emit-

ting a nucleotide pair ðx ¼ A; y ¼ T Þ
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our algorithm. To address this, we will attempt to accelerate the

training process, such as by parallelization of the algorithms, sto-

chastic optimization (Hoffman et al., 2013; Liu et al., 2015;

Robbins and Monro, 1951) and seed-extension heuristics in forward

and backward algorithms (Hamada et al., 2017).

In this study, we focused on genomic DNA sequences, but our

method is also applicable to RNA or protein sequences. The number

of characters in protein sequences greatly exceeds those in DNA

sequences, which would lead to more complex models that may pro-

vide interesting biological insights. These applications will be

included in our future research as well.

5 Conclusions

In this study, we proposed a novel method to develop PHMMs

based on FIC and demonstrated the model selection capability of the

proposed model using a synthetic dataset. We believe this is the first

study that focuses on model selection of PHMM. On the same syn-

thetic dataset, we observed slight improvement of evaluation metrics

of sequence alignments. Additionally, we conducted experiments on

real DNA sequences and found that they are best handled with a

more complex probabilistic structure than the ones that have been

traditionally used for pairwise alignment of these species. This result

implies a possibility that more complex probabilistic structures exist

behind probabilistic alignments than previously believed.
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