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Lagrangian betweenness as a measure of
bottlenecks in dynamical systems with
oceanographic examples
Enrico Ser-Giacomi 1✉, Alberto Baudena 2, Vincent Rossi 3, Mick Follows1, Sophie Clayton4,

Ruggero Vasile5,6, Cristóbal López 7 & Emilio Hernández-García 7

The study of connectivity patterns in networks has brought novel insights across diverse

fields ranging from neurosciences to epidemic spreading or climate. In this context,

betweenness centrality has demonstrated to be a very effective measure to identify nodes

that act as focus of congestion, or bottlenecks, in the network. However, there is not a way to

define betweenness outside the network framework. By analytically linking dynamical sys-

tems and network theory, we provide a trajectory-based formulation of betweenness, called

Lagrangian betweenness, as a function of Lyapunov exponents. This extends the concept of

betweenness beyond the context of network theory relating hyperbolic points and hetero-

clinic connections in any dynamical system to the structural bottlenecks of the network

associated with it. Using modeled and observational velocity fields, we show that such

bottlenecks are present and surprisingly persistent in the oceanic circulation across different

spatio-temporal scales and we illustrate the role of these areas in driving fluid transport over

vast oceanic regions. Analyzing plankton abundance data from the Kuroshio region of the

Pacific Ocean, we find significant spatial correlations between measures of diversity and

betweenness, suggesting promise for ecological applications.
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In the last decades, the network formalism has provided new
and useful tools in many areas of research. This consists of
describing the structural and dynamical features of a system

using a set of objects, called nodes, joined by pairwise connections
called links1,2. Due to the typical complexity of the links’ geo-
metry, single nodes can significantly influence the dynamics of
large parts of a network3,4. Such nodes may correspond not only
to the major hubs, i.e., the ones with the largest number of
connections, but also to nodes with few links that are, however,
crucial to preserve the connectivity of the network5. Geome-
trically, the latter are associated with bottlenecks that constrain
and control the connectivity, being an obliged passage to link
different pieces of the network (see Fig. 1a).

An explicit measure to assess how much a node behaves as a
bottleneck in network theory is the betweenness centrality1,6. To
calculate betweenness, it is necessary to introduce the concept of
paths that are defined as sequences of consecutive links joining

pairs of nodes. Betweenness is then obtained by counting the
number of paths passing through each node of the network.
Depending on the kind of network studied, it can be derived from
the whole set of paths, the shortest, the fastest, or the most
probable ones7–11. Measuring the extent to which a node lies on
the existing paths linking other nodes, betweenness has been used
to highlight bottlenecks in a variety of different systems, from air
transportation networks12 to the human brain13.

The bottleneck notion could in principle be generalized beyond
the context of network theory. Let us consider indeed a generic
dynamical system and describe its dynamics in terms of trajec-
tories portraying the evolution in time and space of an arbitrary
set of initial conditions14,15. Such approach is often referred to as
Lagrangian, in contrast to the Eulerian view where the system is
characterized by quantities given at fixed locations. Hence, for a
specific interval of time, we can associate to any initial condition
at time t and position x0, a particle following a Lagrangian

Fig. 1 Betweenness concept in networks and dynamical systems. a A small network composed by nodes (colored circles) and links (black segments). The
central node A behaves as a bottleneck for the network since all the paths connecting the blue with the red part must go through it. Indeed, node A, despite
being attached to only two links, has the maximum value of betweenness centrality. b A set of Lagrangian trajectories (black lines) in a generic dynamical
system. Each trajectory represents the evolution of an initial condition in space and time. Initial conditions, depending on the case studied, can be
associated either to states of a system or to particles and agents moving across it. The yellow region A highlights a region where trajectories from different
origins are choked into a narrow passage before being dispersed again. Similarly to node A in a, this region would qualitatively represent a bottleneck of the
system and should be associated to a high value of betweenness.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25155-9

2 NATURE COMMUNICATIONS |         (2021) 12:4935 | https://doi.org/10.1038/s41467-021-25155-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


trajectory across the system. Trajectories could represent, for
example, the paths followed by a system in its state space, or the
movement of people in a city, or the dispersion of fluid particles
in the ocean or the atmosphere. Bottlenecks can then be related to
regions where trajectories converge from disparate origins and are
scattered away toward several destinations afterwards (see
Fig. 1b). Whatever the system studied, such hotspots are expected
to play a crucial role for the maintenance of the system dynamics
and for its resilience. In a highly dynamic system such as the
ocean, detecting them could have relevant implications for the
study, for example, of pollutants spreading16,17, the dispersion of
natural tracers such as biogeochemical species18, plankton19–22,
propagules or pathogens23, the spread of invasive species24, etc.

In dynamical system theory, the term bottleneck has been
referred to areas where trajectories spend a long time. These areas
are typically found as remnants or ghosts of a just-occurred
saddle-node bifurcation25 or of other types of bifurcations such as
the tangent bifurcations leading to intermittency14. Also, in the
context of chemical reaction dynamics, the concept of bottleneck
has been discussed within transition-state theory26,27. However,
here we aim to a different dynamical property: regions of phase
space where many trajectories go through, coming from diverse
origins, and then depart also to different destinations (indepen-
dently of the time spent in the focal region), as directly translated
from the concept of betweenness in a network.

To exploit this paradigm, we introduce a mathematical expres-
sion for betweenness relying only on the information provided by
trajectories sampled across a generic dynamical system. Such
quantity, called Lagrangian betweenness, is a function of backward-
and forward-in-time finite-time Lyapunov exponents
(FTLEs)14,28–30, which measure the rate of separation of trajectories
during a specific time interval. Using an ideal flow system as test-
bed, we find a strong resemblance between Lagrangian betweenness
patterns derived from trajectories and betweenness calculated using
the classical network definition. This allows to uncover an emerging
relationship between the concept of bottlenecks in networks and of
hyperbolicity14,31 in dynamical systems. Then we use the Lagran-
gian betweenness to characterize hidden circulation regimes in
realistic geophysical flows, focusing on two paradigmatic oceanic
regions: the Adriatic Sea and the Kerguelen area. These two areas
are currently the subject of intense research efforts and they
represent two examples of very different current systems; a closed
basin and an open circulation respectively32,33. In both regions,
bottlenecks of water transport persistently appear and we show their
importance in controlling the exchange of water masses between
different areas of the ocean surface. Finally, we compare between-
ness fields with measurements of plankton diversity collected dur-
ing a cruise across the Kuroshio Front, in the Pacific Ocean. We
find a remarkable correlation of high-betweenness hotspots with
large values of observed plankton diversity, suggesting that fluid
transport bottlenecks can also play a significant role in shaping
biogeographical patterns in the ocean.

Results
Theory. Betweenness centrality is usually calculated from the
number of paths crossing a given node of the network6,7,10,11. We
provide below an alternative definition of it in terms of products
of in- and out-degrees. This allows to use a relation between
degrees and Lyapunov exponents34 to finally derive the for-
mulation of the Lagrangian betweenness.

Let us consider the most general case of a network that is
directed, weighted35 and temporal36. Its structure can be entirely
encoded in the associated adjacency matrix A(t0, τ) where each
element Aðt0; τÞij corresponds to the weight of the link between i
and j for a time interval [t0, t0+ τ] (starting at t0 and with a

duration of τ). The basic metric used to quantify how much a
single node is connected to the rest of the network is called degree
and for directed networks we can distinguish between out- and
in-degree1,2. Specifically, the out-degree (KO

i ) and the in-degree
(KI

i ) are calculated by counting the number of outgoing and
incoming links attached to a given node i, respectively

KO
i ðt0; τÞ ¼ ∑

j

1 if Aðt0; τÞij > 0;

0 otherwise:

�

KI
i ðt0; τÞ ¼ ∑

j

1 if Aðt0; τÞji > 0;

0 otherwise:

� ð1Þ

Without loss of generality, we now take t0= 0 (this
corresponds to considering [0, τ] as time interval). Then, it is
easy to show that the number of two-steps paths crossing the
network node i at a generic intermediate time t (with 0 ≤ t ≤ τ) is
the product of the temporal in- and out-degree

KI
i ð0; tÞ KO

i ðt; τ � tÞ: ð2Þ
Each step is associated to a precise time interval, [0, t] and [t, τ]
respectively, that matches the interval in which the degrees
KI

i ð0; tÞ and KO
i ðt; τ � tÞ are calculated. Our goal is to use Eq. (2)

to define a quantity with the meaning of a betweenness measure.
Note that the product of degrees in Eq. (2) differs from the
classical betweenness centrality formulations in network theory in
two aspects: (i) it counts all the paths crossing the node i, not just
the shortest, fastest, or most probable ones; (ii) it considers only
the paths composed of two temporal steps that pass through node
i exactly at time t. We argue that point (i) is not an issue for our
definition, on the contrary, there is an increasing interest in
considering centrality measures that take into account the
information from all the paths across the network7,8,9. Regarding
point (ii), to overcome the limitation of forcing the path-crossing
to occur exactly and only at time t, instead of building paths of
arbitrary number of steps and fixed step duration, we look at
paths of just two steps of which we can vary the duration in time.
This allows the variable t, that is the time at which the two steps
connect in i, to take all the possible values in the interval [0, τ].
Hence, Eq. (2) can be generalized to consider all the two-step
paths crossing the node i at any t as follows:

1
τ

Z τ

0
KI

i ð0; tÞ KO
i ðt; τ � tÞdt: ð3Þ

Equation (3) represents thus a candidate for a novel continuous-
in-time definition of betweenness centrality for any network
where the time duration associated to each link can be explored.
An analogous definition of betweenness can also be derived for
time-independent networks and/or networks with fixed link-
duration by using k-neighbor degrees (“Methods”).

To extend our formulation beyond network theory, we need a
bridge with the underlying dynamical system of which the
network is a representation, as sketched in Fig. 1. We assume that
nodes are associated to specific regions of the space in which such
system is defined and links symbolizes connections between
nodes realized by trajectories. Specifically, we look for a
relationship among the degrees of Eq. (3) and the geometry of
Lagrangian trajectories in the surrounding of the position
corresponding to the node i. To this aim, we can use a relation
between in/out-degrees and backward/forward-in-time stretching
factors (“Methods”) derived in the context of flow systems within
the Lagrangian Flow Networks (LFNs) framework34,37. Stretching
factors measure the rate of separation of trajectories in a given
time interval and are expressed as exponential functions of the
FTLEs29. If we take the limit of sufficiently small nodes, we find
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the following relations:

KO
i ðt0; τÞ � eτλðxi;t0;τÞ;

KI
i ðt0; τÞ � eτλðxi;t0þτ;�τÞ;

ð4Þ

where λ(xi, t0, τ) is the standard FTLE computed for a time τ,
starting at time t0, at location xi (which denotes the position of
node i).

The last step is to combine Eqs. (3) and (4) to link the
betweenness centrality of the network with the FTLEs of the
underlying system. In such way, we finally define the Lagrangian
betweenness of node i as:

BL
i ð0; τÞ ¼

1
τ

Z τ

0
etλðxi;t;�tÞ eðτ�tÞλðxi;t;τ�tÞ dt: ð5Þ

The integrand in Eq. (5) corresponds to a product of forward and
backward stretching factors associated to xi at time t and,
consistently, BL is dimensionless. Note that, since relative stretching
measures such as λ remain invariant under coordinate transforma-
tion, BL is frame-invariant too. Under some stretching regimes, it is
possible to solve analytically the integral of Eq. (5) to obtain
analytical approximations for BL (“Methods”). However, numerical
evaluations of Eq. (5) can be easily obtained through a time
discretization (“Methods”). Then, BL can be straightforwardly
compared with a betweenness measure explicitly calculated from
the network theory definition (“Results” and “Methods”).

After defining BL
i in terms of FTLEs, we provide its interpreta-

tion from a dynamical systems theory perspective. From Eq. (5),
we see that nodes presenting, on average, high values of both
backward and forward FTLEs during the interval [0, τ] are
characterized by high BL (see Fig. 1). Interestingly, in dynamical
systems, large values of forward or backward FTLEs highlight the
locations of strongly repelling or attracting material surfaces,
related to stable or unstable manifolds, respectively29,38. Consider-
ing the case of two-dimensional motion, their intersections define,
at each instant of time, hyperbolic points with eventual heteroclinic
and homoclinic connections among them14,31 (see Fig. 2). In time-
dependent systems, such objects move in space spanning
hyperbolic trajectories (points) or areas (connections) making
their detection more difficult. Indeed, different approaches have
been devoted to the tracking of moving hyperbolic points in
dynamical systems31,39. Now, thanks to Eq. (5), an explicit
correspondence emerges between hyperbolic points, heteroclinic/
homoclinic connections, and the main bottlenecks of the system. In
this sense, BL provides a clear indication of the role of these
features in organizing, limiting, and eventually controlling any
trajectory-mediated connectivity and transport processes across a
dynamical system. We stress that there is a crucial distinction
between hyperbolic points and connections in terms of transport,
while relative velocities of trajectories in the neighborhood of
hyperbolic points are close to zero, velocities along connections can
be significantly large29. In fact, bottlenecks are not determined
locally by the magnitude of fluxes but rather by the entire topology
of the system that amalgamate around them trajectories coming
from diverse origins and going to several other destinations1,10.

Though many kinds of systems can be studied with the
paradigm proposed in the previous paragraphs, in the following
applications, we concentrate on flow systems: first on a theoretical
flow, then on the transport patterns of two different oceanic
regions and finally on the relationships between ocean circulation
and plankton diversity.

Testing Lagrangian betweenness in a theoretical model. In this
section, we calculate the Lagrangian betweenness in a two-
dimensional, theoretical flow system, called double-gyre29; a well-
known benchmark for study mixing and transport in fluid

dynamics (“Methods”). The flow is composed of two gyres side by
side that rotate in opposite directions while the vertical boundary
between them oscillates periodically in time generating complex
trajectories and patterns (Fig. 3).

In Fig. 4, we show that the BL field evaluated numerically from
Eq. (20): high values of Lagrangian betweenness are found close
to the boundaries of the system and in a narrow semicircular
pattern splitting the domain vertically. Intermediate values are
mainly found in a rectangular band centered on the midline of
the domain. Its width matches the region spanned by the
boundary separating the two gyres in the flow.

While high values of BL at the borders are clearly due to
boundary effects, the semicircular line in the middle of the domain
needs further analysis to be properly understood. To this aim, in
Fig. 5, we plot snapshots of the difference between the exponents of
the two factors inside the integral of Eq. (5), i.e., λ(xi, t, τ− t)− λ(xi,
t,− t), for t= 5, 6, 7, 8, 9, 10 and keeping τ= 15. Hence, red and
blue regions present high values of forward and backward FTLE,
respectively, and can be ultimately related to stable and unstable
manifolds of the system. Consequently, the crossing point of
backward- and forward-in-time FTLE ridges identifies the
instantaneous position of a moving hyperbolic point (like the one
of Fig. 2). Strikingly, the trajectory of such point matches perfectly
the ridge of high BL confirming that hyperbolic regions are
associated with high values of betweenness.

Furthermore, we explicitly prove such relationship comparing
the BL field with the betweenness centrality obtained using the
standard network definition. First, we build a set of networks, the
so-called LFNs34, describing fluid transport in the double-gyre
system using the same parameters setup (“Methods”). Then, we
calculate betweenness for each network node matching the time
scales used for the Lagrangian betweenness calculation. Note that, a
direct comparison with Fig. 4 is not possible due to the intrinsic

Fig. 2 Schematic representations of a hyperbolic point and a heteroclinic
connection together with associated circulation patterns. Lines with
converging/diverging arrows denote stable/unstable manifolds of the
hyperbolic points (represented as black dots), respectively. Note that in (b)
the manifold that realizes the connection is unstable for the left-hand side
hyperbolic point and stable for the right-hand side one. Due to time-
dependence, which is weak but present in geophysical flows, patterns like a
or b are weakly perturbed and transformed in so-called moving hyperbolic
points and connections. In particular, c and d sketch two examples of
circulation patterns that can be often found in the ocean, respectively,
associated to a hyperbolic point and to a heteroclinic connection. They
exemplify two gyres sharing a common point or segment of their
boundaries that can be associated to the elementary sketches (a) and (b)
and are therefore expected to display high Lagrangian betweenness values.
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Fig. 3 Streamlines of the double-gyre flow. Plots of streamlines for t= 2.5 (a) and t= 7.5 (b), thicker lines are associated to higher velocities. The
circulation is dominated by two gyres rotating in opposite directions separated by a vertical boundary that oscillate periodically along the horizontal
direction. This time-dependence generates chaotic trajectories that induce complex mixing patterns across the entire flow domain.

Fig. 4 Plot of Lagrangian betweenness for the double-gyre flow with a normalized logarithmic color map. Here, we performed a fine numerical
integration (with N= 300) to converge to the analytical expression for Lagrangian betweenness of Eq. (5). Higher values of Lagrangian betweenness are
found at the boundaries and across the narrow semicircular line splitting the domain vertically. The region spanned by the moving line separating both
gyres is clearly highlighted by intermediate values of betweenness.
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discrete nature of the standard network betweenness, and we can
thus only test on few temporal steps. Moreover, since the network
betweenness calculation is much more numerically demanding, we
compare the patterns of the two measures on a coarser resolution
grid. As results, we obtain a strong resemblance of the spatial
patterns between the two measures confirmed by large Spearman
correlation coefficients (“Methods,” Supplementary Fig. 1).

Example applications to fluid transport in the ocean. To apply
our framework in a realistic geophysical setting, we exploit velocity
fields of the ocean as modeled by a high-resolution hydrodynamic
model and as measured by satellite altimetry (“Methods”). We focus
on the month of December as representative of the the typical
winter/summer conditions in the northern/southern hemisphere
while we select randomly two different years.

Our first application focus on the Adriatic Sea that is a relatively
closed sub-basin of the Mediterranean Sea whose surface circulation
is dominated by two large wind-driven gyres32,40. On top of this
basic structure, a strong sub/mesoscale variability superimposes its
dynamical signatures. This complex surface circulation as well as

the intense human and biological activity in this region have
stimulated strong research interests in the last years41.

We plot in Fig. 6 (top) the BL field computed from the high-
resolution-simulated velocity fields in the Adriatic Sea, for the 1st of
December 2013 and with an integration time τ of 15 days. It
identifies a small circular area with very large values of BL (almost
one order of magnitude greater than the surrounding) located south-
east of the Pelagosa Islands. Computing the average sea-surface
height (SSH) on the same period (Supplementary Fig. 2), we note
that the region is characterized by two cyclonic gyres that present a
contact point in the same approximate location of the “Pelagosa
peak” of BL, reminiscent of the hyperbolic geometry of Fig. 2c.

In order to quantify explicitly the influence of the Pelagosa BL

peak on the surrounding circulation, we fill the interior of the two
gyres with tagged Lagrangian particles and we simulate their
trajectories in between the 1st and the 15th of December. To draw
the boundary between the gyres interior and the exterior, we set a
SSH threshold of −20 cm and we seed particles only for SSH values
smaller than the threshold, associated thus to the core of both gyres
(see Supplementary Fig. 2). In Fig. 6 (bottom, four panels), we also

Fig. 5 Finite-time Lyapunov exponents (FTLEs) fields in the doube-gyre. a–f Superimposition (by difference) of forward (red) and backward (blue) FTLEs
fields for the double-gyre flow at different intermediate times (t= 5, 6, 7, 8, 9, 10) and matching the time interval [0, 15]. The dashed black line is the BL

ridge of Fig. 4. We clearly see the moving location of a hyperbolic trajectory, detected by the intersection of both main ridges in backward and forward
FTLE, changing its position for different intermediate times. Such hyperbolic trajectory matches perfectly the BL ridge.
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show the evolution of the aforementioned particle patches at
different intermediate times (Supplementary Video 1). The patch
evolution confirms that the Pelagosa peak is associated to the
presence of a surprisingly stable and steady hyperbolic point,
crossed by a stable manifold in the east/west direction and by a
unstable one in the north-west/south-east direction.

Moreover, looking at the water origins in the interior of the
Pelagosa peak, we find that such area corresponds to the only

place in the basin where it is possible to encounter southern water
advected toward the northern gyre and, at the same time,
northern water transported to the southern gyre. This means that,
similarly to the yellow circle of Fig. 1b, the Pelagosa peak
correctly exemplifies what an oceanic bottleneck represents: a
very small portion of the ocean surface that permits the exchange
and subsequent mixing of two water masses, which occupied two,
otherwise disconnected, larger oceanic regions.

Fig. 6 Lagrangian betwenness in the Adriatic Sea. On the top: BL field calculated for the 1st of December 2013 and with an integration time τ of 15 days
from model data of the Adriatic Sea. The gray arrows sketch the circulation pattern: two regional cyclonic gyres sharing a contact point exactly where the
“Pelagosa peak” of BL is located. On the bottom, a–d evolution of particle patches seeded in the interior of the gyres for different intermediate times (1st,
5th, 10th, and 15th of December) from model data. The white patch occupies initially the Middle Adriatic Gyre and the red one the South Adriatic Gyre
while the contour of the BL peak is denoted by a solid gray line. Note that exchanged water between the two gyres always flows in a small region around the
BL peak (see also the Supplementary Video 1 for the full animation).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25155-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4935 | https://doi.org/10.1038/s41467-021-25155-9 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


To prove the robustness of this structure to velocity fields of
different origin and resolutions, we repeat the BL calculation
varying the integration time τ and using also an altimetry-derived
dataset (“Methods”). We find a remarkable regularity in the
position of the peak and a consistent increase of its absolute value
with τ, both for model and satellite observations (Supplementary
Fig. 3). We also perform a temporal average of the BL field from
the regional altimetry-derived velocity field across the years
2002–2013 (Supplementary Fig. 4). Again, the Pelagosa peak is
clearly distinguishable confirming a striking regularity of this
pattern also from simulations based on satellite observations and
across several years.

Finally, we have checked that the modulus of the velocity field
does not present any persistent stagnation point in the same
region, neither in December 2013 nor when averaged across
different years. This suggests that despite the absence of an
Eulerian saddle point, high-betweenness hotspots emerge driven
by a purely Lagrangian dynamics.

Our second application is on the Kerguelen region that is
located in the Indian sector of the Southern Ocean and it is
characterized by the interaction of the energetic Antarctic
Circumpolar Current with a complex topography33. It constitutes
also one of the ten largest marine protected areas in the world and
understanding its circulation patterns is significant for regional
ecology and marine biology42.

Using observed altimetry fields to compute trajectories, we
show in Fig. 7 (top) the BL field in the region north-east of the
Kerguelen Islands for the 1st of December 2007 with integration
time τ= 20. We can clearly identify an elongated high-
betweenness strip centered around 47.7S 75.0E with an
approximate length of 200 km and a width of 25 km, we delineate
it as the locations having BL > 100. Its location likely coincides
with the place where the Polar Front meets the fast eastward
flowing Antarctic Circumpolar Current delimited by the
Subantarctic Front33.

In Fig. 7 (bottom, four panels), we also plot the evolution of
two tagged patches of water with different origins that flow across
the high-betweenness strip at different intermediate times
between the 1st and the 20th of December 2007 (Supplementary
Video 2). The two patches together represent all the surface water
particles that, in the time window considered, touch a point with
a betweenness value equal or greater than the threshold used to
delimit the strip.

To distinguish to which patch each Lagrangian particle is
belonging to, we apply a threshold on the backward-in-time drift
distances for each of them computed for the 7 previous days
(Supplementary Fig. 5). We assign the particles with larger drift to
the Circumpolar Current patch and the ones with short drift to
the Polar Front patch. This choice is supported by the fact that, in
the Kerguelen region, the flow in the Polar Front is weaker and
more meandering than the Circumpolar Current and this is also
reflected in the strong bimodality of the drift distribution.

The “hourglass” shape formed by these two Lagrangian patches
(Fig. 7) indicates an underlying mean circulation resembling the
one sketched in Fig. 2b, d, suggesting thus the presence of a
heteroclinic-like structure. Consistently with this interpretation,
three fundamental features characterize the particle’s evolution
close to the high BL area: (i) a strong convergence toward the strip
of the particles initialized in the west, equivalent to a backward-
in-time dispersion for particles entering in the strip from the
northwestern edge, (ii) a similarly strong forward-in-time
dispersion for particle exiting from the southeastern edge, and
(iii) a rapid and coherent southeasterly flow along the entire strip.

Consequently, the tracer separation distance in the transversal
direction of the main eastward flow is of the order of 250 km
prior and after being funneled into a mere 25 km wide strip.

Similar to the Adriatic Sea example, the high-betweenness strip
represents thus a tiny oceanic region that sees different water
masses converging together and then rapidly spreading away after
being partially mixed. Such dense congestion of trajectories
illustrates perfectly the concept of bottleneck sketched in Fig. 1: a
narrow passage in the ocean surface that sees water particles
coming from disparate origins and going to many different
destinations.

Finally, similarly to the Adriatic case, we confirm the
robustness of the pattern detecting the high BL area in the same
location also in maps calculated with different values of τ
(Supplementary Fig. 6).

Plankton diversity and Lagrangian betweenness in the Kur-
oshio Front. Lagrangian betweenness can also provide a frame-
work for interpreting microbial community structure in fluid
environments. We hypothesize that regions of high Lagrangian
betweenness promote biodiversity by the confluence of upstream
heterogeneous populations. Locally, fine-scale dispersal processes
intermingle them and subsequent divergence spreads the newly
mixed population widely, seeding downstream environments.

Here, we focus on the Kuroshio Extension Front, a highly
dynamical region where the confluence of energetic currents with
different proprieties has a strong influence on planktonic
community composition20. We examine the relationship of
betweenness and diversity patterns in two independent datasets
collected during a cruise in October 2009; microscopy-based
abundances of plankton types and phylogenetically derived
abundances of Ostreococcus clades43,44. To locally quantify
plankton diversity, we calculate the species evenness45 at each
sampling site in both datasets (“Methods”). At the same time, we
use velocities from a global, high-resolution ocean reanalysis
product to compute Lagrangian betweenness fields during the
sampling period (“Methods”).

In Figure 8 (top panel), we show the cruise track and the
betweenness field on 20 October 2009 with τ= 7 days. Two high-
betweenness strips are apparent and reflect the dominant
eastward flow associated within the Kuroshio Extension Front.
To allow a direct comparison with the estimated plankton
diversity, we associate to each sampling location a value of
betweenness equal to the average of the field in a circle of 0.2° of
radius around the site (approximately twice the spacing between
samples), calculated on the exact sampling time. We find a
remarkable, positive and significant correlation of evenness with
betweenness in both datasets, as illustrated in Fig. 8 (bottom
panels), which show the results from both the microscopy
abundances (left) and from Ostreococcus clades abundances
(right) for each sampling site. While being just a single, limited
and opportunistic analysis, this suggests that further investigation
of ecological bottlenecks, as revealed by betweenness, will be
valuable.

Discussion
Dynamical systems theory and network theory have been suc-
cessfully used to characterize the structure and the dynamics of a
variety of natural and human complex systems. However, only
few theoretical connections between them exists1,14. Here, we
contribute to bridge this gap by introducing the concept of
Lagrangian betweenness. On the one hand, this allows indeed the
quantitative identification of bottlenecks of trajectories in dyna-
mical systems and reveals their function in terms of transport,
mixing, and connectivity. On the other hand, from the network
side, Eq. (5) provides a interpretation of betweenness linking it to
hyperbolic and heteroclinic dynamics14,15.
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Our definition of betweenness accounts for all the paths
crossing a given node, not just a subset of them (e.g., most
probable, fastest, shortest ones)7–10. Indeed, such approach seems
to be the most natural when there is no possibility for the
transported quantity to actively choose the most convenient
pathways7,8. This is the case of any system where trajectories are
driven by external forces not involved in the routing process,
including, of course, fluid flows.

Moreover, the continuous-in-time definition that we propose
allows us to obtain a betweenness measure directly from degrees
without passing through the definition of paths. Notably, also in
networks where the link duration is fixed, there is still the pos-
sibility of using a formulation similar to Eq. (3) in which the
degrees are replaced by k-neighbor degrees (see “Methods”). This
poses the question if betweenness centrality is an intrinsic
property of a network or a spandrel that is implicitly determined

by the degree distribution, similarly, for instance, to the recently
demonstrated case of nestedness46.

The possibility of obtaining a betweenness measure directly
from trajectories without passing through the process of network
construction and analysis constitutes an important advantage.
Indeed, particularly for temporal networks, this provides a mas-
sive decrease of computational time as well as prevent possible
sensitivity issue related to, for instance, time discretization and
weights thresholding10,47.

We also stress that the applications presented here are restricted
to two-dimensional systems while, in principle, our approach can
be applied to higher-dimensional cases. However, such kind of
extensions could present significant challenges due to the presence
of multiple directions of maximal expansion and compression.
Future studies should address whether high-betweenness patterns
are still present and relevant in such dynamical conditions.

Fig. 7 Lagrangian betwenness in the Kerguelen region. On the top: BL field from altimetry data in the region north-east of the Kerguelen Islands for the 1st
of December 2007 with integration time τ= 20. A marked high-betweenness strip is located in the area where the Polar Front meets the Antarctic
Circumpolar Current. On the bottom, a–d Evolution of the Circumpolar Current patch (red) and the Polar Front patch (white) flowing across the high-
betweenness strip (delimited by the solid gray contour) at different intermediate times (1st, 7th, 14th, and 20th of December) from altimetry data. Waters
from different current systems are funneled through the 20 km wide strip being partially mixed; they separate and disperse shortly after leaving this high-
betweeness strip (see also the Supplementary Video 2 for the full animation).
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All in all, if betweenness has proved to be a fundamental measure
to assess locally the vulnerability of complex networks, these
properties can also be linked now with the concepts of predictability
and chaos associated to the underlying system dynamics. Indeed,
several studies associated high-betweenness nodes to the more
vulnerable parts of a network to local disturbances or attacks48

while, on the other hand, large values of Lyapunov exponents
highlight the most chaotic and less predictable regions in a

dynamical system14. Thus, the connection of this network concept
with well-characterized behaviors in dynamical systems, such as
divergence of trajectories or controllability49, could open promising
avenues of research.

Even though a wide variety of structures, including some
resembling those revealed by Lagrangian betweenness, have been
already detected in laboratory and in geophysical flows19,39,40,50,
they have not been explicitly associated with transport

Fig. 8 Lagrangian betweenness and plankton diversity. On the top: BL field calculated for the 20th of Octuber 2009 with an integration time τ of 7 days
from model data of the Kuroshio Front. The black solid line is the cruise track while the dots correspond to different sampling sites. The color of the dots
represents the data availability at the sampling location, black when both microscopy and Otreococcus clades data are collected and gray when only
microscopy is available. On the bottom: scatter plot of BL versus species evenness calculated from microscopy (left panel) and clades (right panel). Each
dot is associated with a sampling site. Evenness is calculated as a normalized Shannon entropy from relative abundances. To each site, a betweenness
value equal to the average of the field in a circle of 0.2° of radius around the site is assigned, calculated on the exact sampling time. Spearman correlation
coefficients (R) and p values (p) are shown in the top-left inset of each scatter plot indicating a significant and positive correlation of evenness with
betweenness.
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bottlenecks. Here we show that high BL areas identify fluid masses
coming from several origins and going to many other destina-
tions, with the difference that, for hyperbolic points (Adriatic
Sea), the fluid velocities are typically modest, while for hetero-
clinic connections (Kerguelen), are larger.

Surprisingly, in our first two oceanic examples, we also find that
such points or connections are much more stable and persistent
than expected, despite the time variability of realistic flows that,
evidently, is not sufficiently strong to completely disrupt them31,39.
The robustness of such structures is confirmed by a series of con-
siderations: (i) they are detectable both from high-resolution models
and from SSH measurements, (ii) they result to be robust for dif-
ferent τ’s and different resolutions of the initialization grid, (iii) they
can be found across several years close to the same position, pos-
sibly constrained by the bathymetry. Moreover, since both LFNs
diagnostics and Lyapunov exponents were proven to be robust to
various input parameters and flow fields51,52, we expect that
Lagrangian betweenness will also share the same reliability across a
wide range of oceanographic applications.

Since high Lagrangian betweenness regions represent the
optimal compromise between the number of water origins and
destinations of potentially different hydrodynamical and bio-
geochemical properties, we tested the hypothesis that they could
play a role in shaping diversity patterns of marine
ecosystems19,22,53,54. In our Kuroshio Front application, despite
the use of a reanalysis product not adapted to the region for the
trajectory calculation, we find promising statistical correlations
between Lagrangian betweenness fields and local plankton
diversity measured from two independent observational datasets.
However, the large-scale influence of high-betweenness hotspots
on ecosystem functioning should be further investigated in detail.
Indeed, following a water parcel converging toward a high-
betweenness area, the ecological community associated to it
would initially experience an increase of diversity due to the
exchanges with other parcels coming from different biogeo-
graphical regions55. But afterwards, different ecological condi-
tions could either favor neutrality or competitive exclusion, thus
maintaining or reducing such initial high diversity. In both cases,
the effect of such changes will be rapidly dispersed across large
oceanic regions22,56.

From a more applied perspective, the effectiveness of
betweenness in assessing systems sensitivity could also contribute
to the design of optimized observing and monitoring systems on
targeted areas of the ocean57,58. High-betweenness hotspots could
indeed provide early-warning signals to anticipate when and
where the marine environment would be affected by multiple
stressors such as pollutants, pathogens, invasive species, or
climatic-induced threats.

Beyond the oceanic focus, Lagrangian betweenness could be
readily used in other contexts. It could detect, for instance, dis-
persal hubs for propagules, pollutants, or pathogens in atmo-
spheric and urban flows59–61, help in the study of the
predictability of the climate systems62,63 and provide insights on
turbulent transport in astrophysical fluids64.

Methods
k-neighbor degrees and the time-independent case. For the case of time-
independent networks, we lose the temporal dimension and the degrees will not
depend on time, but we still have the information of the number of steps needed to
build a given path across the network. In this sense, long-range connections will be
realized across a larger number of steps than the shorter ones. We denote the
weighted, time-independent adjacency matrix of a given time-independent network
as A. We also define the correspondent unweighted, time-independent adjacency
matrix as:

Uij ¼
1 if Aji > 0

0 otherwise

�
ð6Þ

We introduce the time-independent k-neighbor out- and in-degrees as:

KOðkÞ
i ¼ ∑

j1 ;j2 ;:::;jk
Uij1

Uj1 j2
::: Ujk�1 jk

;

KIðkÞ
i ¼ ∑

j1 ;j2 ;:::;jk
Uj1 i

Uj2 j1
::: Ujk jk�1

;
ð7Þ

where we set KOð0Þ
i ¼ KIð0Þ

i ¼ 1. Following the approach presented in “Results” and
using Eq. (7), we finally find an analogous expression to Eq. (3) for the time-
independent case

1
k
∑
k

l¼0
KIðlÞ

i KOðk�lÞ
i : ð8Þ

FTLEs and stretching factors. In dynamical system theory, a quantity to char-
acterize locally dispersion and mixing is the FTLE14. The FTLE, computed during a
duration T for a trajectory that started at time t at initial location x0, is defined as:

λðx0; t;TÞ ¼
1

2jTj log jΛmaxj; ð9Þ

with Λmax the largest eigenvalue of the right Cauchy–Green deformation tensor
Cðx; t;TÞ defined as28,29,62:

Cðx; t;TÞ ¼ dϕtþT
t ðxÞ
dx

�
dϕtþT

t ðxÞ
dx

ð10Þ

where ϕtþT
t ðxÞ is the so-called flow map that gives the position of the trajectory

started at x after a time T. The matrix dϕtþT
t ðxÞ
dx is the Jacobian (derivatives with

respect to the initial condition) of the flow map and dϕtþT
t ðxÞ
dx

�
is its adjoint. Equation

(9) can be expressed also as:

λðx0; t;TÞ ¼
1
jTj log

jjδx0ðt;TÞjjmax

jjδ �x0ðtÞjj

� �
; ð11Þ

where jjδ �x0ðtÞjj is the initial separation between infinitesimally close initial con-
ditions located around x0 at time t and aligned with the eigenvector of Λmax; while
∣∣δx0(t, T)∣∣ is the final separation of those particles at time t+ T, being the max-
imum possible separation resulting from all the directions of particle separation
δx0(t). Note that, from Eq. (10), we have that the square root of the eigenvalue Λmax

corresponds also to the singular value of the Jacobian matrix of the flow map from
which the Cauchy–Green tensor is built28,29,62. FTLEs characterize thus the
maximum logarithmic separation rate, over an interval of time T, around x0; for T
> 0 and T < 0, we obtain the forward- and backward-in-time FTLE, respectively.
Hence, an initial sphere or circle of diameter d located in x0 at time t would be
elongated at time t+ T by a stretching factor s(x0, t; T) defined as:

sðx0; t;TÞ ¼ eτλðx0 ;t;TÞ: ð12Þ
Practically, for a given system, FTLEs are obtained from Lagrangian trajectories of
a set of initial conditions during a fixed time interval. Such trajectories are usually
reconstructed using modeled or observed gridded velocity fields, or real trajectories
from Lagrangian tracers. Then, from the initial and final distances between dif-
ferent initial conditions, the local rate of separation is calculated.

LFNs: a network description of flow systems. We consider a class of networks in
which nodes represent discrete subregions of given domain while the geometry of
the links describes a transport process taking place on it during a precise interval of
time. Such networks, in the most general case, are thus directed, weighted, and
temporal, and each link weight quantifies the importance of a transport event
occurred between a pair of nodes starting from time t0 and for a duration of τ.
Local measures computed on single nodes of the network (e.g., degrees, strengths,
etc.) are thus expected to highlight transport patterns at different spatio-temporal
scales1,34 characterized by τ and by the spatial subregion’s size. LFNs construction
is based on the discretization of a metric space D in a fine partition in boxes,
fBi; i ¼ 1; 2; :::; Lg, characterized by a linear size χ. This set of boxes is identified
uniquely with the nodes of the network. Then, to each pair of nodes i and j, a
directed link with a weight Aðt0; τÞij is assigned and it corresponds to the amount
of volume m present in Bi at time t0 that is found in Bj after a time τ:

Aðt0; τÞij ¼ m Bi \Φ�τ
t0þτ ðBjÞ

� �
; ð13Þ

where Φτ
t0
is the time evolution operator from time t0 to t0+ τ. Numerical esti-

mations of A(t0, τ) can be done by seeding in Bi , a large number of initial con-
ditions, i.e., Lagrangian particles, following their trajectories for a time τ, and
counting how many ended into each Bj. We define the network out-degree and in-
degree of node i, respectively, as:

KO
i ðt0; τÞ ¼ ∑

j

1 if Aðt0; τÞij > 0

0 otherwise

�
;

KI
i ðt0; τÞ ¼ ∑

j

1 if Aðt0; τÞji > 0

0 otherwise

�
:

ð14Þ
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Similarly we also define the out-strength and in-strength of node i as:

SOi ðt0; τÞ ¼ ∑
j
Aðt0; τÞij;

SIi ðt0; τÞ ¼ ∑
j
Aðt0; τÞji:

ð15Þ

Using Eq. (15), two normalizations for the matrix Aðt0; τÞij can be defined

Pf ðt0; τÞij ¼
Aðt0; τÞij
SOi ðt0; τÞ

;

Pbðt0; τÞij ¼
Aðt0; τÞij
SIj ðt0; τÞ

:

ð16Þ

Since Aðt0; τÞij ≥ 0, Pf ðt0; τÞij is a row-stochastic matrix while Pbðt0; τÞij is column-

stochastic. Hence, Pf ðt0; τÞij can be interpreted as the probability for a Lagrangian
particle to reach the box Bj at time t0+ τ, under the condition that it started from a

uniformly random position within box Bi at time t0. Analogously, Pbðt0; τÞij cor-
responds to the probability for a particle of having started from Bi at time t0, under
the condition of being found in a random position within Bj at time t0+ τ. Thus,

Pf ðt0; τÞij is also the forward-in-time probability for a random walker to jump from

node i at t0 to j in a time τ while Pbðt0; τÞij is the backward-in-time probability to go
from j to i. A relationship between the degrees and the FTLEs defined above was
found in ref. 34. The degree of a node turns out to be given, to a good approx-
imation, to an average of the stretching factor (12) over the initial conditions
contained in the node

KO
i ðt0; τÞ �

1
mðBiÞ

Z
Bi

dx0e
τλðx0 ;t0 ;τÞ;

KI
i ðt0; τÞ �

1
mðBiÞ

Z
Bi

dx0e
τλðx0 ;t0þτ;�τÞ:

ð17Þ

These relationships are used, in the limit of sufficiently small nodes, to derive Eq.
(4).

Approximated analytical solutions. Even though in the rest of the paper, we
always use the formulation of Eq. (5), making some assumptions we can evaluate
the integral of Eq. (5) to obtain approximate expressions for BL. Indeed, if we
assume the stretching dynamics to be purely exponential with almost constant rates
cf, cb, we can write

jjδxiðt; τÞjjmax

jjδ �xiðtÞjj
’ ecf τ forT > 0

ecbτ forT < 0

�
;

and, consequently, we would have λ(xi, t, T) ≃ cf for T > 0 and λ(xi,t, T) ≃ cb for T <
0. Under this assumption, we can evaluate Eq. (5) as:

BL
i ð0; τÞ ’

ecbτ � ecf τ

τðcb � cf Þ
: ð18Þ

If cf= cb, as appropriate, for instance, for incompressible two-dimensional flows,
using the l’Hôpital rule in Eq. (18), we find:

BL
i ð0; τÞ ’ ecτ ; ð19Þ

where we defined c= cf= cb. This shows that, under the stated conditions, the
Lagrangian betweenness BL

i ð0; τÞ increases with the transport time τ and with the
intensity of stretching occurring in node i.

Numerical evaluation of Lagrangian betweenness. In order to numerically
evaluate BL, a discretized version of Eq. (5) is necessary. It can be written as:

BL
i ð0; τÞ ¼

1
τ
∑
N

α¼0
etαλðxi ;tα ;�tαÞ eðτ�tαÞλðxi ;tα ;τ�tαÞ Δtα ; ð20Þ

where α is the discrete index labeling contiguous intermediates times tα and N is
the total number of time steps of durations Δtα used in the discretization of the
integrals.

Comparing Lagrangian betweenness and most probable paths (MPPs)
betweenness. We now compare Lagrangian betweenness with other betweenness
centrality definitions that have been introduced and used10,47 in the context of
LFNs. These last quantities are based on a multistep description of the dynamics.
Hence, we denote a generic path μ of M-steps between nodes i and j as a (M+ 1)-
uplet μ � i; k1; ::: ; kM�1; j

� �
providing a sequence of nodes crossed to reach j at

time tM from i at time t0. Assuming a Markovian dynamics, the forward-in-time
probability for a random walker to take the path μ under the condition of starting
at i is9,10,11,47

pfij
� �

μ
¼ Pf ð1Þ

ik1

YM�1

l¼2

P f ðlÞ
kl�1kl

" #
P f ðMÞ
kM�1 j

; ð21Þ

where Pf(l) corresponds to Pf(tl−1, Δt) with tl= (t0+ lΔt) and l= {1,...,M}
(“Methods”). Hence, Δt is the duration of a single step and is assumed to be
constant in the whole path. Consequently, the backward-in-time probability to take
the path μ under the condition of starting at j is

pbij

� �
μ
¼ Pbð1Þ

ik1

YM�1

l¼2

PbðlÞ
kl�1kl

" #
PbðMÞ
kM�1 j

; ð22Þ

where Pb(l) corresponds to Pb(tl−1, Δt) with tl= (t0+ lΔt) and l= {1,...,M}. Max-
imizing Eqs. (21) and (22) over the intermediate nodes, we are able to find the MPP
connecting each pair of nodes i, j forward and backward in time, respectively. With
the whole set of MPPs at hand, we can now provide a probability-based definition
of betweenness centrality. We define the forward- and backward-in-time MPP-
betweenness at M-steps as:

BfMPP
i ¼ ∑

l;m
giðl;mÞ; ð23Þ

BbMPP
i ¼ ∑

l;m
hiðl;mÞ; ð24Þ

where gi(l; m)= 1 or hi(l; m)= 1 when i is crossed by the forward or backward
MPP between l and m, respectively, and zero otherwise. Then, we can finally
introduce the symmetrized-in-time MPP-betweenness of Eq. (25) as an average of

B fMPP
i and BbMPP

i

�BMPP
i ¼ ∑

l;m
giðl;mÞ þ ∑

l;m
hiðl;mÞ : ð25Þ

We can now compare the Lagrangian betweenness calculated from Eq. (20) and the
betweenness explicitly calculated from MPPs in LFNs from Eq. (25). Note that any
network-based formulations of betweenness implies inherently a discrete descrip-
tion of the dynamics since network paths are discontinuously composed by dif-
ferent steps. As such, to perform properly the aforementioned comparison, it is
necessary to match the temporal discretization scales of BL and �BMPP by setting the
number of time steps N of Eq. (20) equal to the number of steps M used for the
calculation of �BMPP . Supplementary Fig. 1 illustrates, for the double-gyre flow, BL

and �BMPP
fields for N=M= 2, 3, 5 in the [0, 15] time interval: high-betweenness

regions are organized in narrow lines that, for a given N=M, create identical
spatial patterns both for BL and �BMPP . While the characteristic values of BL do not
depend on the number of steps, �BMPP values increase for larger M, becoming
noisier. Possibly, such discrepancy is related to two main factors: (i) �BMPP uses only
the MPPs while BL accounts for all paths, (ii) the added numerical diffusion due to
the discretization of space, which is less important in the two-step paths used for BL

because of the smaller number of steps. To quantitatively investigate the similarity
among BL and �BMPP patterns, since the spatial resolution of BL is higher than the
one of �BMPP , we averaged the values of BL inside each network node and we
compared such averages with the corresponding values of �BMPP . The resulting
Spearman correlation coefficients are: 0.90, 0.90, 0.86 for N=M= 2, 3, 5,
respectively, confirming the strong agreement between both quantities.

Theoretical and oceanic flow fields for numerical evaluations. The double
gyre29 is a two-dimensional time-periodic flow defined in the rectangular region of
the plane x= (x, y)∈ [0; 2] × [0; 1]. It is characterized by the stream function

ψðx; y; tÞ ¼ A sinðπf ðx; tÞÞ sinðπyÞ ; ð26Þ
with

f ðx; tÞ ¼ aðtÞx2 þ bðtÞx; ð27Þ

aðtÞ ¼ γ sinðωtÞ ; ð28Þ

bðtÞ ¼ 1� 2γ sinðωtÞ : ð29Þ
From these expressions, the two components of the velocity are

_x ¼ � ∂ψ

∂y
¼ �πA sinðπf ðx; tÞÞ cosðπyÞ; ð30Þ

_y ¼ ∂ψ

∂x
¼ πA cosðπf ðx; tÞÞ sinðπyÞ ∂f ðx; tÞ

∂x
: ð31Þ

Depending on the value taken by the parameter γ, this theoretical flow field dis-
plays different dynamical behaviors, yet sufficiently simple to carefully analyze the
underlying structures. For γ= 0, the flow is steady and fluid particles follow very
simple trajectories, rotating along closed streamlines, clockwise in the left half of
the rectangular domain, and counterclockwise in its right half. The central
streamline x= 1, a heteroclinic connection between the hyperbolic point at (1, 1)
and the one at (1, 0), acts as a separatrix between the two regions. However, when
γ > 0, more complex behavior, including chaotic trajectories, arises. The periodic
perturbation breaks the separatrix, so that some exchange of fluid is possible
between the left and the right sub-domains. As parameters, following ref. 29, we
chose A= 0.1, ω= 2π/10, γ= 0.25 and we focus our analysis on the time interval
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[0, 15] setting t0= 0 and τ= 15. For the calculation of BL, we fill the whole domain
with 78804 Lagrangian particles regularly spaced and we reconstruct each trajec-
tory using a Runge–Kutta 4th-order integration algorithm with temporal step of
0.05. For the calculation of �BMPP , we use instead 2001,000 particles uniformly
seeded in 20,000 square boxes representing network nodes and the same
Runge–Kutta 4th-order integration scheme.

For the Adriatic Sea application, we use the horizontal near-surface currents
simulated by a data-assimilative operational ocean product at (1/16)∘ of resolution
over the Mediterranean basin, provided by E.U. Copernicus Marine Environment
Service Information website (https://doi.org/10.25423/medsea_reanalysis_phys_
006_004). Further information on this model can be found in refs. 65. Among the
72 horizontal layers resolved by the model, we focus on surface ocean dynamics by
seeding Lagrangian particles on a regular grid of (1/20)∘ of resolution over the 15 m
depth layer and considering only the horizontal velocity. Particles were advected
with a 4th-order Runge–Kutta scheme with a time step of 3 h to generate
trajectories that were then used to compute the FTLEs and BL, which was
calculated according to Eq. (20), by considering Δtα= 1 day. Second, we exploit a
gridded velocity field at (1/8)∘ spatial resolution representing surface geostrophic
currents computed from remote-sensed SSH. Altimetric products (SSH, sea level
anomaly, and the 20-year mean geoid) come from the regional SSALTO/DUACS
gridded multi-mission altimeter product, processed by SSALTO/DUACS and
distributed by Aviso+ (https://www.aviso.altimetry.fr). This horizontal velocity
field was used to compute BL as explained before, while seeding particles over a
regular grid of resolution of (1/40)∘.

The horizontal velocity fields used for the Kerguelen region come from the
Kerguelen altimetry regional product. This product, specifically calibrated for the
region, was also processed by SSALTO/DUACS and distributed by Aviso+ (https://
www.aviso.altimetry.fr). The velocity field possesses a (1/8)∘ spatial resolution and
were used to compute BL with the same scheme illustrated for the Mediterranean
Sea, with a resolution of (1/40)∘.

The velocity field used in the north Pacific region is the GLORYS12V1 product
(GLOBAL_REANALYSIS_PHY_001_030) provided by E.U. Copernicus Marine
Environment Service Information website. This global reanalysis product combines
track altimeter data, satellite sea-surface temperature, sea ice concentration, in situ
temperature, and salinity vertical profiles. It has a spatial resolution of 1/12∘, a
temporal resolution of 1 day, and 50 vertical layers. Particles were seeded on a
regular grid of (1/20)∘ of resolution over the 15 m depth layer and advected with a
4th-order Runge–Kutta scheme with a time step of 3 h.

Plankton abundance data and evenness calculation. The plankton data pre-
sented here were collected during a cruise to the Kursohio Extension Front in
October 2009. The Kuroshio Extension is the eastward flowing extension of the
Kuroshio western boundary current that is deflected off the coast of Japan. The
Kuroshio Extension is characterized by strong zonal velocities and strong mesos-
cale and submesoscale and submesoscale dynamics. The goal of the cruise was to
undertake a high spatial resolution physical–chemical–biological survey of the
front to explore the connections between physical frontal processes and the
plankton community at fine scales. The sampling strategy for the chemical and
biological data collected during this cruise is fully described in ref. 43, but here we
briefly describe the data collection and samples used in this paper. Five ship
transects crossed the Kuroshio Extension Front, with 7–8 sampling stations spaced
roughly 9 km apart along each transect. At each sampling station, water was col-
lected from the surface using a clean bucket and from five additional depths using
Niskin bottles mounted to the CTD rosette. From each of these surface and depth
samples, 500 ml were collected and fixed with formaldehyde and then later used for
microscopic enumeration of phytoplankton. The microscopy data are openly
available from the Pangaea database66. From the surface samples, 1000 ml were
collected for subsequent qPCR analysis of the abundance of Ostreococcus clades
(method fully described in ref. 44).

We locally estimate plankton diversity at each sampling site by calculating
species evenness45. For the microscopy dataset, we focused only on surface samples
and we identify species with different plankton types while for the Otreococcus
dataset, we consider the two clades as two species. In both cases, we refer to the
relative abundance of the species i as pi. Thus, for the sampling location j, we
calculate the species evenness Ej as:

Ej ¼ �∑i pilog ðpiÞ
log ðSjÞ

ð32Þ

where Sj is the number of species in the location j. Note that very similar results are
obtained using instead the Shannon index (i.e., the non-normalized evenness).
However, we prefer evenness since it provides an absolute and normalized diversity
measure that facilitate the comparison between different datasets.

Data availability
The data-assimilation product used for the Adriatic Sea is available at https://doi.org/
10.25423/MEDSEA_REANALYSIS_PHYS_006_004. The altimetry product used for the
Adriatic Sea and Kerguelen region is available at https://www.aviso.altimetry.fr. The
velocity field used in the north Pacific region is the GLORYS12V1 product
(GLOBAL_REANALYSIS_PHY_001_030) provided by E.U. Copernicus Marine

Environment Service Information website. The microscopy data are available at https://
doi.org/10.1594/PANGAEA.819110. The sequences data used have been deposited in
GenBank (accession nos. KT012724 to KT013052). The codes used to compute
Lagrangian betweenness are available online at https://github.com/serjaaa/lagrangian-
betweenness.
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