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Abstract: The present study permutes edible palm oil (PO) into oleogel by incorporating carnauba
wax (CW) at two different concentrations (5 g/100 g and 10 g/100 g, w/w) and processing using ultra-
sonication. The prepared oleogels (OG1: PO-CW (5 g/100 g); OG2: PO-CW (10 g/100 g); and OGU1:
PO-CW (5 g/100 g) with ultrasonication, and OGU2: PO-CW (10 g/100 g) with ultrasonication) were
compared with PO (control) to deep fry salted duck egg white (SDEW) fortified instant noodles.
The impact of different frying mediums on the physicochemical properties of SDEW noodles was
investigated. SDEW instant noodles that were fried using OGU and OG samples had a higher L* and
b* but lower a* values than those that were fried in PO (p < 0.05). Among the oleogel-fried samples,
noodles that were fried in OGU2 and OG2 effectively lowered the oil uptake and showed better
cooking properties than OGU1- and OG1-fried noodles, respectively (p < 0.05). Textural attributes
such as higher hardness, firmness, chewiness, tensile strength and elasticity, and lower stickiness
were noticed in the samples that were fried in OGU, followed by OG and PO (p < 0.05). Scanning
electron microstructure revealed a uniform and smoother surface of noodles fried in OGU and OG,
whereas the PO-fried sample showed an uneven and rough surface with more bulges. Noodles were
tested for fatty acid compositions, and the results found that oleogel-fried noodles retained more
unsaturated fatty acids than the control (p < 0.05). During storage of the frying medium after frying
the noodles, OGU and OG had higher oxidative stability with lower TBARS, PV, p-AnV, and Totox
values than PO at room temperature for 12 days. Overall, using oleogel as frying media improved
the physicochemical and nutritional properties of SDEW noodles. This finding could be beneficial for
food industries to produce healthy fried food products for consumers.

Keywords: palm oil; oleogel; carnauba wax; ultrasonication; salted duck egg white; Chaiya; instant
noodles; physicochemical properties; microstructure; storage stability

1. Introduction

In food applications, edible oils are one of the most common frying mediums. How-
ever, these oils can have various adverse health effects depending on the amount of
saturated and unsaturated fatty acid compositions. The most prevalent of these effects are
chronic cardiovascular diseases [1]. Among various edible oils, palm oil is a predominant
and popular one that is used widely by almost all countries around the world and has
received much attention as a next-generation energy resource [2]. Thailand is the world’s
third-largest producer of palm oil and is also one of the leading edible oil producers and
exporters among the countries in Southeast Asia [3]. Most food companies use palm oil
as the primary cooking medium for all foods, especially fried foods [4]. Instant noodle is
an ultra-processed food that is very popular among many consumers because it is cheap,
versatile, easy to carry, and easy to prepare at any time. Instant noodles are fried foods
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that are prepared using a wide range of ingredients, which vary in the different the regions
where they are produced and consumed [5]. Thailand is also one of the key producers of
salted duck eggs. These are typically cured with salted mud clay, which covers the duck
eggs for 30 days [6]. Duck egg yolks are very popular in Chinese condiments and have a
high economic value. However, due to their extreme saltiness (>4%), the egg whites are
usually discarded due to lower or no economic value. Most recently, Lekjing and Venkat-
achalam [7] developed an innovative instant noodle product that utilized salted duck egg
white (SDEW) as a unique ingredient, which effectively replaced the water and salt in the
noodle composition and also increased the net protein content in the instant noodles.

Although instant noodles are very popular nowadays, the frying process impacts the
consumer’s health, as it undergoes various undesirable changes including oxidation, the
production of reactive oxygen species, and the deterioration of organoleptic and nutritional
contents [5]. Therefore, the modification of oil into various other forms with better cooking
properties is widely practiced, and recently the interest in oleogel usage has grown widely.
This is mainly due to its unique thermo-reversible property, as it can undergo a transition
from sol-gel at numerous times upon heating and cooling the system [2]. Oleogels are also
known as organogels or structured oils, in which the continuous lipid phase is composed of
edible oils which are generally condensed into a three-dimensional network by oleogelators.
They have similar physical and chemical properties to solid fats [1]. Despite the differences
in their structure and physical properties, oleogels are capable of replacing solid fats, which
contain a high concentration of saturated and trans fats [8]. However, the application
of oleogels in the food system is still not well tested due to the limitation in obtaining
food-grade and inexpensive gelators [9]. There are various inexpensive gelators that have
been tested with oil to produce oleogels. However, most of them were not used in food
applications [9,10]. Recently, carnauba wax has been widely used as a gelator with various
edible oils for food uses, and it is being regulated and certified as generally recognized
as safe (GRAS) by the United States of America Food and Drug Administration and the
Food and Agriculture Organization of the United Nations [4]. Carnauba wax is a vegetable
wax that is mainly extracted from the leaves of carnauba palm trees. It is the hardest inert
and stable wax with low solubility and a high melting point. It consists of esters (mainly
cinnamic acid), aliphatic acids, hydrocarbons, terpenes, alcohols, and hydroxycarboxylic-
free acids [5].

Carnauba wax is used in food applications as a food additive—specifically, as a gelator,
encapsulation or emulsifying agent, glazing agent, acid regulator, and anticaking agent [11].
Among its various food applications, producing oleogel with carnauba wax is the most
effective one, and it is normally made by mixing edible oil and carnauba wax at a certain
high temperature (80–100 ◦C) [1]. Several studies reported that oleogel prepared with
carnauba wax showed higher enthalpy of crystallization and strong stability against higher
temperatures and oxidation as compared to beeswax [5,12,13]. Furthermore, a recent
observation found that oleogel has been used as a fat replacer in many fried food products
to reduce the oil uptake and saturated fats [9]. Although the traditionally processed
oleogels have numerous benefits, a drawback persists regarding molecular rearrangement
during ambient storage, releasing oil from the gel. On the other hand, ultrasonication
(US) is one the most promising and multipurpose food processing techniques to be widely
used for many decades. It is a safer and high-quality method that is mechanical and
non-contaminant [14]. US is widely used in fat-rich ingredients to tailor the mechanical
and functional properties. The US (≥20 kHz) process could help the dispersibility of the
food composites, orient the molecules in the composite, and levitate and nanowire the
microparticles across the full system of food without damage [10]. This research developed
the palm oil oleogel using carnauba wax, processed it with ultrasonication, tested it as
a fat replacement medium for SDEW instant fried noodles, and examined the various
physicochemical properties of the instant noodles. It also examined the stability test of the
tailored oleogels during storage at ambient temperature.
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2. Results and Discussion
2.1. Color Characteristics

The color characteristics of SDEW instant noodles that are fried in different oleogel
frying mediums are shown in Figure 1A–D. Generally, in fried food products, the color
characteristics play an important sensory role in the overall acceptability [9]. In general,
the OGU-fried samples had the highest L*, b*, and lowest a* values, whereas the PO-fried
samples showed the lowest L*, b*, and highest a* values (p < 0.05). A similar result was
reported by Adrah et al. [1], in which the food product that was treated with canola oil–
carnauba wax oleogel had an increased L* and decreased color intensity (a* and b*) when
compared with canola oil-fried samples. The L* was found to be higher in OGU, followed
by OG, when compared with PO (p < 0.05). This could be due to the different distribution
and light reflectance of fat crystals in the oleogels that were used for frying [15]. Among
the oleogel-fried noodles, the samples that were fried in oleogels (OG2 and OGU2) with
a higher concentration of carnauba wax (10 g/100 g) showed a higher L* in comparison
with the samples that were fried in oleogels (OG1 and OGU1) made with lower wax levels
(5 g/100 g) (p < 0.05). This could be due to the increased concentration of carnauba wax in
the oleogel, progressively increasing the number of fat crystals in the frying medium [16].
Thus, absorbed fat in the fried product enhances the light reflectance, which results in a
higher L* value. Sonic waves from the ultrasonication application could have broken down
the chemical bonds in the oleogel and facilitated the formation and uniform distribution
of smaller fat crystals via the thermal, mechanical, mixing, and cavitation effects of sound
waves [10]. This leads to the formation of more organized crystalline networks in oleogel.
On the other hand, the PO-fried sample showed a dominant a*, whereas OGU2 had
the lowest a* value (p < 0.05). It has been reported that the type of frying medium, the
temperature, and the duration of frying greatly influence the overall appearance of the fried
product [4]. Moreover, the a* decreased with augmenting the concentration of wax in the
oleogel in both the OG and OGU samples (p < 0.05). A decreased level of the a* values was
found in the SDEW instant noodles, particularly the ones that were fried using oleogels.
This could be due to the lower occurrence of non-enzymatic browning reaction (Maillard
reaction) during frying, as the noodles could be interfered or masked by the oleogels from
the interaction between carbohydrate (source of carbonyl group) and proteins (source of
the amino group) at a higher temperature [7]. In contrast, this phenomenon was not found
in the samples that were fried using PO. In general, the higher redness of fried products is
considered an undesirable quality characteristic that reduces consumer acceptability [4].
The b* value indicates yellowness, which is attributed due to the presence of flavonoids in
the wheat flour [17]. The samples that were fried in PO had the lowest b* in comparison
with those that were fried in oleogel (p < 0.05). Moreover, b* showed a similar trend
with L* in all samples. OGU2 and OG2 had a higher b* than OGU1 and OG1 (p < 0.05).
Carnauba wax was obtained from leaves of the Copernicia prunifera, widely available in
the form of bright yellow flakes; thus, the addition of carnauba wax might have turned the
oleogel towards a bright yellowish color, positively attributed to the color of noodles [11].
Natarajan and Ponnysamy [12] reported that ultrasonication-treated food products retained
a high level of yellowness as compared with redness. Overall, noodles that were fried
in ultrasound-assisted oleogel showed better color attributes, which increased overall
consumer acceptance. The total color (∆E*) value in the SDEW instant noodle samples was
calculated using L*, a*, and b* values (Figure 1D), and the results showed that noodles
fried using oleogels had slightly higher ∆E* than those fried with PO. Among the OG and
OGU, the OGU samples retained more color values, and this increased with the increased
carnauba wax concentration in the oleogel.

2.2. Cooking Properties

Oil uptake is one of the critical parameters for determining the quality of instant
noodles, and it is usually considered that lower levels of oil uptake in instant noodles
results in the best quality [5]. The oil uptake of the SDEW instant noodles that are fried
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using different frying mediums is shown in Figure 2A. The present study explored whether
SDEW instant noodles cooked with different frying mediums significantly influenced the oil
uptake level in the noodle samples (p < 0.05). Oleogels considerably lowered the oil uptake
in the noodle, as compared with PO, which held high-level oil in the noodles amongst all the
samples. On the other hand, among the oleogels, the samples that were fried in OGU2 had
the lowest oil uptake, followed by OGU1, OG2, and OG1, respectively (p < 0.05). Several
studies have found that using oleogel as a frying medium could control the fried product’s
oil uptake. The lower oil uptake of oleogel-fried samples is due to the higher viscosity
of the oleogel [1]. It has been reported that the viscosity of the frying medium greatly
influences the mass transfer of the food product that is subjected to frying [8]. Furthermore,
the result indicated that oil uptake in the oleogel-fried instant noodle samples decreased
when the concentrations of carnauba wax increased from 5 g/100 g to 10 g/100 g, w/w
in the oleogel frying medium. This could be due to the self-aggregation of carnauba wax
into a macro molecule through a non-covalent interaction, and forming a complex network
that leads to the formation of a high viscous medium [18]. In addition, the ultrasonication
treatment could increase the exposed hydrophobic groups in the oleogel, thus, controlling
oil affinity towards the fried product and reducing the oil adsorption in fried products [10].
Sadiq et al. [19] reported that protein-rich food acts as a shield to cover its food surface, and
this could also possibly control the affinity of hydrophobic elements between oil and food.
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Figure 1. Color characteristics (L* (A), a* (B), b* (C) and ∆E* (D)) of palm oil, palm oil–carnauba wax
oleogel and palm oil–carnauba wax oleogel with ultrasonication treatments. Note: PO represents
palm oil; OG1 represents palm oil–carnauba wax (5 g/100 g); OG2 represents palm oil–carnauba wax
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and OGU2 represents palm oil–carnauba wax (10 g/100 g) homogenized with ultrasonication. The
different alphabets (a–e) in the figures indicate significant differences.
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indicate significant differences.

Cooking yield is the measurement that is taken for the sample after weight loss that
occurs during cooking [20]. The cooking yield of SDEW instant noodles fried in different
frying mediums is shown in Figure 2B. The cooking yield was found to be lower in oleogel-
fried samples (OG and OGU) when compared to palm oil-fried (PO) samples (p < 0.05).
This could be due to absorbed oleogel in fried products that might act as a barrier against
moisture loss [8]. Moreover, the fried product’s cooking yield increased significantly with
the concentration of oleogel in the frying medium. OG2 and OGU2 had a higher cooking
yield than OG1 and OGU1, respectively (p > 0.05). The possible explanation is that moisture
leaches out from the product while cooking [21]. After moisture loss, the void space
remaining in the fried product is filled by fat. Therefore, cooking yield can be related to the
fat adsorption of fried products [22]. A higher cooking yield generally represents lower
oil adsorption of the finished product. In this study, the oleogel-fried sample recorded
a higher cooking yield, and the results align with lower oil adsorption (see Figure 2A).
The optimum cooking time for instant noodles in different frying mediums is given in
Figure 2C. Overall, the optimum cooking time was found to be lower in all the samples due
to the addition of SDEW. It has been reported that incorporating SDEW in instant noodles
reduces the optimum cooking time and increases the cooking yield [7]. In addition, the
lower gelatinization temperature could also decrease the optimum cooking time of the
product [23]. The oleogel could further reduce the gelatinization effect of wheat flour, thus,
decreasing the optimum processing time of the product [24]. The thermal conductivity is
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directly related to the optimum cooking time. Higher thermal conductivity of the sample
leads to reduced optimal cooking time [21]. In this study, the optimum cooking time of
OG and OGU samples was lower than that of the PO sample (p < 0.05), indicating that
OG and OGU had the highest thermal conductivity. Among oleogel-fried samples, OGU2
had the lowest cooking time, followed by OGU1, OG2, and OG1, respectively (p < 0.05).
Therefore, the higher optimum cooking time of PO-fried samples might cause a higher
oil uptake, which insulates the noodles and creates a barrier against thermal conductivity
and water affinity.

2.3. Textural Profile

The texture profiles of cooked SDEW instant noodles that are fried using different
oleogel frying mediums are shown in Figure 3. Overall, this study showed a significant
difference in the textural profiles of all the noodles samples that were fried using different
frying mediums. Among the various frying mediums, the OG- and OGU-fried instant
noodles showed a positive trend on the textural profile. A higher level of carnauba wax
(10 g/100 g) and utilization of the ultrasonication process in the oleogel preparation (OGU)
effectively influenced the noodle’s textural profile compared with the control (PO). Tradi-
tionally, the textural profile of SDEW instant noodles is mainly impacted by the influence
of various ingredients used in the noodle compositions [7]. Sozer and Kaya [25] reported
that noodles’ textural profile is one of the common indicators for estimating their degree
of cooking. Hardness is typically the applied force required to compress the noodles [26].
This study showed that the frying medium significantly influenced the hardness of the
SDEW instant noodles. Among the different frying mediums, a higher level of hardness
was noticed in the samples that were fried in OGU than the OG- and PO-fried samples
(p < 0.05). Furthermore, the addition of increased wax in the OG composition also pos-
itively affected the noodles’ hardness. Protein and starch contents are the predominant
contributing factors to the product’s hardness [27]. During the cooking process, instant
noodles could have gelatinized the starch content and generated a strong network with
protein by interacting with SDEW proteins and wheat proteins [28]. The tensile strength
of the SDEW instant noodles that were fried using OG and OGU also increased to a high
level, as compared with PO. On the other hand, the tensile strength was found to be high
in the samples that were fried in OGU, followed by OG and PO, respectively (p < 0.05).
Among all the samples, the PO-fried sample registered the lowest level of tensile strength.
The chewiness and elasticity were also found to be high in noodles using OG and OGU
as frying mediums when compared to the PO. A higher concentration of carnauba wax
in the oleogels and the ultrasonication process significantly increased the chewiness and
elasticity of the samples. Chewiness and elasticity are primarily altered by noodles’ pro-
tein content, particularly wheat gluten [29]. Jung et al. [30] studied the incorporation of
oleogels in bread compositions, and their results found that oleogels interfere with the
gluten content and significantly increase the chewiness and hardness. Stickiness is the
force required to remove the adhered sample from the probe [31]. This study observed a
significant decrement in the firmness and stickiness of the samples that were fried in OG
and OGU (p < 0.05). At the same time, the sample that was fried in PO had a higher level
of stickiness and firmness. Oh and Lee [21] also observed a similar finding that adding
oleogels in the noodles significantly decreased the firmness level compared to the samples
without any oleogel treatments. Jang et al. [32] reported that thermal conductivity plays an
essential role in altering the textural properties of noodles, and it increases significantly
when cooked for a prolonged period under an increased moisture level. Overall, the SDEW
instant noodles that were prepared in oleogel and ultrasonication-assisted oleogel were
found to be harder, non-sticky, elastic, and more chewable than the samples that were fried
in palm oil.
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Figure 3. Textural profile (hardness (A), firmness (B), chewiness (C), stickiness (D), tensile strength
(E) and elasticity (F)) of palm oil, palm oil–carnauba wax oleogel and palm oil–carnauba wax oleogel
with ultrasonication treatments. Note: PO represents palm oil; OG1 represents palm oil–carnauba wax
(5 g/100 g); OG2 represents palm oil–carnauba wax (10 g/100 g); OGU1 represents palm oil–carnauba
wax (5 g/100 g) homogenized with ultrasonication; and OGU2 represents palm oil–carnauba wax
(10 g/100 g) homogenized with ultrasonication. The different alphabets (a–e, ab) in the figures
indicate significant differences.

2.4. Microstructural Observation

The microstructural observation of SDEW instant noodles that are fried in different
oleogel frying mediums is shown in Figure 4. Regardless of the frying medium used, the
microstructural observation of the noodle sample’s surface section demonstrated significant
morphological changes, particularly a rough and smooth surface. Overall, the SDEW
instant noodles that were fried in oleogels (OG and OGU) had smoother surfaces with
fewer bulges as compared to the palm oil-fried noodles with numerous rough, coarse, and
bulged surfaces. It is generally believed that instant noodles are subjected to changes in
morphological appearance, partly due to the ingredients and the frying medium in which
they were cooked. The PO-fried samples had a denser and more complex rough surface,
which might be due to the induced complex interaction between the protein content
and gelatinized starch. This is in accordance with the study of Khatkar and Kaur [33].
Furthermore, the surface morphological differences of the noodle samples could also be
associated with water vaporization during frying, which affects the structure of the product
when the product’s water vaporization is increased and produces a coarse outer structure,
thereby reducing the cooking yield [5]. In addition, a rough noodle surface (Figure 4) leads
to increased oil absorption of the product [34], which can be seen in that the PO-fried
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noodles had a greater oil uptake and lowered the cooking yield as compared with the
OG- and OGU-fried noodles (see Figure 2A,B). The gelling effect of oleogel could also be
attributed to the uniform and smooth surface of the instant noodles, as they can rapidly
solidify at ambient temperature as compared to PO, which is liquid and free flowable [9].
Xiao et al. [35] reported that, normally, plant lipids are flowable and easily exudate from the
surface of the food products, causing an unfavorable morphological appearance on the food,
whereas the oleogel has strong crystallization, which leads to minimal structural changes
in the food products. The gelling effect of OG and OGU increased with the augmenting
concentration of carnauba wax in the frying medium. The higher concentration of wax
that was used in oleogel (OG2 and OGU2) had better morphological effects on the noodle
samples as compared with OG1 and OGU1, respectively. When compared among the
oleogel-fried products, the noodle samples that were fried with OGU had smoother surfaces
as compared to the OG. This could be due to the gelation effect of the oleogels, which might
be significantly better in the OGU samples. da Silva and Danthine [36] reported that the
application of the sonication process in oleogel making could induce a faster gelling effect
by facilitating rapid crystallization with smaller crystals and a more organized network.
Li et al. [10] found that the ultrasonication increased the crystal clusters in the oleogel by
generating more nucleation sites by acoustic cavitation effect.
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Figure 4. Microstructural observation of the surface of SDEW instant noodles that are fried us-
ing palm oil, palm oil–carnauba wax oleogel and palm oil–carnauba wax oleogel with ultra-
sonication treatments. Note: PO represents palm oil; OG1 represents palm oil–carnauba wax
(5 g/100 g); OG2 represents palm oil–carnauba wax (10 g/100 g); OGU1 represents palm oil–carnauba
wax (5 g/100 g) homogenized with ultrasonication; and OGU2 represents palm oil–carnauba wax
(10 g/100 g) homogenized with ultrasonication.
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2.5. Fatty Acid Profile

The fatty acid profiles of the SDEW instant noodles that are fried in different frying
mediums are depicted in Figure 5. In total, nine fatty acids were observed in all the samples,
which included saturated fatty acid (SFA) (palmitic acid; 16:0, lauric acid; C12:0, myristic
acid; C140, arachidic acid; C20:0, stearic acid; C18:0); monounsaturated fatty acid (MUFA)
(palmitoleic acid; C16:1, oleic acid; C18:1); and polyunsaturated fatty acid (PUFA) (cis-9,12-
linolenic acid; C18:2, cis 6,9, 12 gamma-linolenic acids; C18:3), respectively. In general,
unsaturated fatty acids (UFA) including MUFA and PUFA were noticed at a higher level
than the SFA in all the fried SDEW noodle samples. The UFA to SFA content is of great
importance in the nutrition of humans [37]. Mahmud et al. [38] documented that the higher
content of UFA over SFA improved the overall nutritional quality of noodles that were
incorporated with fish protein concentrate. In this study, the fortification of SDEW as a
moisture and protein source in dough preparation might contribute to the high content of
UFA in instant noodles. The salting process greatly alters the nutritional profile of duck
eggs by reducing the triglycerides level and increasing the content of essential lipids [39].
On the other hand, cereal grains are a rich source of UFA, particularly linoleic and linolenic
acid, which cannot be synthesized by humans due to the lack of desaturase enzymes [38].
Wheat flour in noodle formulation increases the UFA content of fried instant noodles [40].
Further, the addition of salted eggs reduces phospholipid and cholesterol levels in the
food products, which are beneficial for human health [41]. Oleic acid (MUFA) was the
most predominant fatty acid present in all samples, followed by palmitic acid (p < 0.05).
Kaewmanee et al. [42] documented that oleic, palmitic, and linolenic acids are the most
abundant fatty acids in salted duck eggs. The noodles that were fried in OG and OGU had
a high content of SFA as compared to the PO-fried samples. Moreover, the SFA content of
the noodle samples increased with the augmenting concentration of carnauba wax in the
oleogels in both the OG and OGU samples, respectively (p < 0.05). Carnauba wax contains
palmitic acid and stearic acid predominantly [43]. Therefore, the addition of carnauba wax
in the oleogel preparations (OG and OGU) increased the SFA content of the noodles that
were fried in oleogels. Among all the samples, the PUFA content was noticed to be higher
in the samples that were fried in OGU, followed by OG, as compared to PO (Figure 6).
PUFA, particularly linoleic acid, is the key component for the proper functioning of the
nervous system [40]. In addition, the OGU-fried samples had high essential fatty acids as
compared to the OG-fried samples in both concentrations. Ultrasonication greatly improves
the functional properties of the oleogels, which has a positive effect on oleogel processed
products [10]. The result revealed that noodles fried in oleogel and prepared using an
ultrasonication process retained a high amount of fatty acid in the food products. Hence, the
usage of oleogels processed with ultrasonication as the frying medium efficiently improved
the nutritional quality of the SDEW instant noodles. Further, SDEW can be used as a
nutritive-rich alternative egg product for the preparation of healthy foods for consumers.

2.6. Lipid Oxidation

The stability of oleogels and palm oil, which were used for frying the SDEW instant
noodles, were tested for lipid oxidations (TBARS, peroxide value, p-anisidine value, and
Totox value) under ambient storage for 12 days, and the results are depicted in Figure 7.
Overall, the lipid oxidation results exhibited an increasing trend in all the samples (p < 0.05).
Particularly, the PO sample was less stable and exhibited higher lipid oxidation as com-
pared to the OG and OGU. Pérez-Álvarez et al. [44] observed that edible oil with higher
or equal amounts of saturated and unsaturated fatty acid compositions is highly suscep-
tible to lipid auto-oxidation. The TBARS results indicate a continuous accumulation of
malondialdehyde (MDA) in all the tested samples during storage. Among all the sam-
ples, PO showed higher MDA, followed by the OG and OGU samples (Figure 7A). OGU
exhibited better control against lipid oxidation as compared to OG, and different levels
of carnauba wax incorporation to oleogels showed a significant control against the MDA.
Park et al. [45] reported that TBARS has a high potential to react with a wide range of
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substances, particularly proteins. Thus, SDEW instant noodles are rich in proteins [7],
and that might adversely affect the stability of the frying mediums after usage. Similarly,
the peroxide value in the PO, OG, and OGU samples were significantly increased with
augmenting storage time (p < 0.05). The OGU samples showed the least peroxide value as
compared with the OG and PO samples (Figure 7B). A rapid increase in PV was noticed
during the end of the storage period in all the samples. However, at the end of the storage
period, PV was noticed to be lower in the oleogel than the palm oil due to the presence of a
polymer structure in the oleogel [46]. An increase in the PV level in the samples indicates
progressive lipid oxidation, which leads to the formation of hydroperoxides, a primary
oxidation product [47]. The polymer structure in the oleogel provides a better network that
resists the direct contact of oil with air [48]. The result was in agreement with Lim et al. [49],
in which canola oil oleogel had lower oxidative products than canola oil during 60 days of
storage. Moreover, it has been reported that polymeric oleogel has a tendency to extend
oxidative stability due to its barrier properties against transition metals, free radicals, and
pro-oxidants [50]. Therefore, the entrapment of oil in the carnauba wax provides oxidative
stability to the palm oil over a prolonged storage time. Similarly, the p-AnV value increased
gradually in all the samples during the storage period (Figure 7C). The OG and OGU
samples had a lower accumulation of p-AnV during storage, whereas PO showed high
p-AnV, and it steadily increased throughout the storage. Carnauba wax inclusion in the
OG and OGU samples significantly controlled the accumulation of p-AnV. Furthermore,
the controlling effect of carnauba wax against p-AnV increased with the increased wax
concentrations. The p-anisidine indicates the accumulation of secondary lipid oxidative
products, including aldehydes and ketones, in the samples during storage [51]. Lastly, the
Totox value of PO, OG and OGU is shown in Figure 7D. According to the Totox value,
prolonged storage significantly influenced the oxidation and reduction properties of the
samples [52]. This is in accordance with Zaharan et al. [53]. Among the samples, PO
was more susceptible to oxidoreduction reactions as compared with OG and OGU. The
increased wax concentration in the oleogel and sonication process effectively reduced the
increase in lipid oxidative products as compared with the other samples. Pan et al. [54]
reported that the oleogels are a highly stable frying medium, as they significantly lowered
the TBARS, PV, and p-AnV by entrapping the oil into a three-dimensional gel structure that
retarded the oxidation caused by the air. Yu et al., 2022 [55] reported that the application
of the sonication technique on the oleogel could induce a three-dimensional gel structure
by promoting the enhanced hydrophobic interactions and hydrogen bonding between the
edible oil and gelators, thus, improving various functionalities in the oleogel.
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Figure 5. Fatty acid profile (A–I) of the surface of SDEW instant noodles that are fried using palm oil,
palm oil–carnauba wax oleogel and palm oil–carnauba wax oleogel with ultrasonication treatments.
Note: PO represents palm oil; OG1 represents palm oil–carnauba wax (5 g/100 g); OG2 represents
palm oil–carnauba wax (10 g/100 g); OGU1 represents palm oil–carnauba wax (5 g/100 g) homoge-
nized with ultrasonication; and OGU2 represents palm oil–carnauba wax (10 g/100 g) homogenized
with ultrasonication. The different alphabets (a–e, ab, cd) in the figures indicate significant differences.
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Figure 6. Cumulative level of saturated and polyunsaturated fatty acid content in the surface of SDEW
instant noodles that are fried using palm oil, palm oil–carnauba wax oleogel and palm oil–carnauba
wax oleogel with ultrasonication treatments. Note: PO represents palm oil; OG1 represents palm
oil–carnauba wax (5 g/100 g); OG2 represents palm oil–carnauba wax (10 g/100 g); OGU1 represents
palm oil–carnauba wax (5 g/100 g) homogenized with ultrasonication; and OGU2 represents palm
oil–carnauba wax (10 g/100 g) homogenized with ultrasonication. The different alphabets (a–c, bc) in
the figures indicate significant differences.
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(D)) during storage at ambient temperature in the different frying mediums that fried SDEW instant
noodles. Note: PO represents palm oil; OG1 represents palm oil–carnauba wax (5 g/100 g); OG2 rep-
resents palm oil–carnauba wax (10 g/100 g); OGU1 represents palm oil–carnauba wax (5 g/100 g) ho-
mogenized with ultrasonication; and OGU2 represents palm oil–carnauba wax (10 g/100 g) homoge-
nized with ultrasonication. The different alphabets (a–e) in the figures indicate significant differences.

3. Conclusions

The present study explored the possibility of producing oleogels using palm oil,
carnauba wax, and an ultrasonication process, and tested their efficiency and stability
as an alternative frying medium against the conventional frying method using salted
duck egg white fortified instant noodles. A significant improvement was observed in the
physicochemical properties of oleogel-fried noodles when used with a higher concentration
of carnauba wax and ultrasonication process. The noodle color, cooking yield, and optimum
cooking time was significantly improved by frying in oleogels. Oil uptake was found to
be higher in the noodles that were fried in palm oil, whereas a significant reduction in
oil uptake was observed in oleogel-fried samples, especially the samples that were fried
using oleogels assisted with the ultrasonication. Similarly, the textural profile of the instant
noodles was also vastly improved by using oleogels as the frying medium. Noodles
that were fried in oleogels and oleogels assisted with the ultrasonication process had a
higher hardness, firmness, chewiness, tensile strength, and elasticity. A microstructural
observation of the noodle samples that were fried in ultrasonication-assisted oleogels
resulted in a uniform and smooth surface as compared with the conventional medium,
which showed rough and bulgy surfaces. Further, noodles that were fried in oleogels
exhibited superior nutritional quality in terms of the retention of fatty acids. The oxidative
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and storage stability of the oleogels was found to be very high as compared with the palm
oil frying medium. The result showed that noodles fried in oleogels significantly controlled
the oil uptake with improved textural attributes and better nutrient retention. Therefore,
this study concludes that the application of oleogel (as well as ultrasonication-assisted
oleogels) is an excellent frying medium for SDEW instant noodles and a good alternative
to conventional frying medium.

4. Materials and Methods
4.1. Raw Material, Chemicals, and Reagents

The salted duck eggs (which have 4% salt) were purchased on the 20th day of the
salting period from the commercial store in Chaiya district, Surat Thani Province, Thailand.
After receiving them, the eggs were thoroughly cleaned using tap water and cracked
open, and the egg whites were collected (SDEW) to use in the noodle compositions (see
Section 2.3). Commercial grade refined palm oil and all other ingredients for the noodle com-
positions were purchased from the local supermarket in Surat Thani province. Carnauba
wax flakes were purchased from DCMC corporation Co., Ltd., Bangkok, Thailand. All the
solvents used in this study were acquired from ACI-Lab-Scan (Bangkok, Thailand), and all
the chemicals were analytical grade and purchased from Sigma (St. Louis, MO, USA).

4.2. Oleogel Preparation

The oleogel as a frying medium was prepared using palm oil (base) and carnauba
wax (gelator) with an ultrasonication process. Three different frying mediums were used,
namely PO (commercial grade palm oil without any processing); OG (palm oil converted
into oleogel using carnauba wax); and OGU (palm oil converted into oleogel using carnauba
wax and further processed using ultrasonication). For OG, the carnauba wax at different
concentrations (5% (OG1) and 10% (OG2)) was separately added into palm oil and mixed
well using a temperature-controlled hot plate set at 90 ◦C and assisted with a magnetic
stirrer for complete solubilization (wax melted less than a min, and the total oleogel process
lasts for 5 min), followed by cooling at ambient temperature. For OGU, the carnauba wax at
different concentrations (5% (OGU1) and 10% (OGU2)) were separately added into palm oil
and mixed well using a temperature-controlled hot plate at 90 ◦C, which assisted with the
ultrasonication process using a portable ultrasonic processor (Hielscher UP200Ht, Hielscher
Ultrasound Technology, Teltow, Germany) that was equipped with a probe tip (40 mm)
and processed at a constant 25 kHz for 10 min, followed by cooling at ambient temperature.
All the prepared oleogels were stored in amber bottles at ambient temperature and used
for frying the SDEW instant noodles within five days of their preparation. An infographic
reference for producing oleogel is shown in Figure 8.

4.3. Preparation of SDEW Instant Noodle

SDEW instant noodle was prepared as tailored by Lekjing and Venkatachalam [7]
with slight modifications. Firstly, the dough was prepared by mixing solid items including
refined wheat flour (100%), SDEW (44%), sodium bicarbonate (0.26%), and ascorbic acid
(0.40%) to the bowl of an electronic mixer (Cuzimate, RBSFOODMIXERPRO, Thailand).
After mixing the solids, the SDEW (44%) was gradually added to the bowl and mixed to
obtain the dough using the electronic mixer at a speed of 2000 rpm for 3 min at ambient
temperature. After forming the dough, it was hand-kneaded for 5 min and placed in the
refrigerator for 15 min, and then cut into small pieces and placed in a pasta roller to form
noodle strands (1.5 mm width). Finally, the obtained strands were steamed at 90 ◦C for
2 min and then deep-fried using different frying mediums (from Section 4.2) at 150 ◦C for
~45 s. Then, the noodles were placed in the wired rack to cool down and allowed to drip
off any excess oil. They were then packed in a sterile, airtight container and subjected to
further analyses, as shown in Section 4.4.
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4.4. Quality Analysis
4.4.1. Color Characteristics

Color characteristics, including lightness (L*), redness (a*), and yellowness (b*), were
recorded at random points on the fried SDEW instant noodle with the aid of the Hunter
LAB colorimeter (Hunter Associates Laboratory, Inc., Reston, VA, USA). The total color
characteristics of the noodles were calculated using the L*, a*, and b* values by following
the equation proposed by Tiga et al. [56].

∆E∗ =

√
∆L∗2 + ∆a∗2 + ∆b∗2

where ∆L*, ∆a*, and ∆b* represents the lightness, redness, and yellowness of the color
characteristics of the SDEW instant noodles, respectively. ∆E* is the total color value.

4.4.2. Cooking Properties

The oil uptake of the fried noodles was determined by following the method of
AOAC [57]. Oil was extracted from the noodles via the solvent-extraction method using
diethyl ether. Finally, the oil content was calculated from the percentage weight ratio of
extracted oil to noodles. The cooking yield and optimum cooking time were determined
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as described by AACC [58]. For cooking yield, 5 g of instant noodles was boiled in 75 g
of distilled water for 10 min with constant agitation. After draining the water from the
noodles, the weight was taken before and immediately after cooking, whereas the optimum
cooking time was determined by monitoring the core of the noodles during cooking; the
final results were expressed in terms of a percentage.

4.4.3. Texture Analysis

The texture profiles of cooked noodles were analyzed using a texture analyzer, as
described by Lekjing and Venkatachalam [7]. The noodles were placed in a compression
rig fitted with a 5 kg load cell. The textural attributes such as hardness, chewiness, and
stickiness were measured from the obtained texture profile curve. The maximum peak at
the first compression represents hardness, chewiness related to hardness, cohesiveness,
and springiness, and stickiness is the negative area under the second peak. Firmness was
expressed from the peak of the force–time graph. Further, the tensile strength and elasticity
were recorded using force in tension mode and calculated using the following equation:

Tensile Strength (kPa) =
F
A

where F is the force (N) of firmness, A is the cross-sectional area of the noodle (m2).

Elasticity (kPa) =
F
T
× L

A
× 1

v

where F/t represents the initial slope of the force–time curve (N/S); L is the length of
the noodle (0.015 m); A = the cross-section area of the noodle (m2); and v indicates the
movement of the upper arm (0.003 m/s).

4.4.4. Microstructure

Microstructural changes on the surface of the fried instant noodles were observed by
using the method of Ahmad and Abozed [59] under scanning electron microscopy (SEM)
using a JXA-840A, JOEL (Tokyo, Japan). The noodle was cut into small pieces and the
surface section was fixed on an aluminum stub using double-sided adhesive tape. Then,
the samples were sputter-coated with gold-palladium and followed by observing the image
under SEM at 50× magnification.

4.4.5. Fatty Acid Analysis

The fatty acid compositions of the fried noodles were analyzed using gas chromatog-
raphy (Hewlett-Packard 6890, Agilent Technologies, Palo Alto, CA, USA) coupled with
a flame ionization detector, as detailed by Lim et al. [5]. Triundecanoin, C11:0 (inter-
nal standard) in isooctane (1000 µg/mL) mixed with a lipid sample of the noodles and
fatty acid methyl esters (FAME) was derivatized using boron trifluoride (14 g)/methanol
(BF3-MeOH). Then, FAME was injected into the SP-2560 column (100 m × 0.25 mm ID,
0.20 mm film) (Supelco Bellefonte, PA, USA). The oven temperature was set at 100 ◦C for
4 min and then increased to 225 ◦C at a rate of 3 K/min and set for 20 min. The inlet and
detector temperatures were maintained at 225 ◦C and 285 ◦C, respectively. The sample was
injected in a 1:200 split ratio, and helium carrier gas with a flow rate of 0.75 mL/min was
used. Peaks were identified by comparison with the authentic standard (Supelco FAME
mix, Bellefonte, PA, USA), and the fatty acid content was expressed as g/100 g of oil.

4.4.6. Oxidation Stability of Oleogels

The frying mediums, including PO, OG, and OGU after frying the SDEW instant
noodles, were stored at room temperature for the oxidation stability analyses. The samples
were taken randomly, and lipid oxidation was analyzed at an interval of 3 days throughout
12 days of storage.
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Thiobarbituric Acid Reactive Substance (TBARS)

TBARS was analyzed as detailed by Rajasekaran et al. [47]. The oil (0.1 g) was mixed
with 2.5 mL of TBA reagent. Then, the mixture was heated for 10 min at 95 ◦C, and
absorbance was measured at 532 nm using a spectrophotometer (UV-160, Shimadzu,
Kyoto, Japan). TBARS was determined using a standard curve of MDA (0–5 µm), and the
result was expressed in mg MDA/kg oil sample.

Peroxide Value (PV)

The titration method was used to analyze PV [60]. The oil (0.1 g) was mixed with
25 mL of acetic acid/chloroform mixture at a 3:2 ratio. Then, 1 mL of saturated potassium
iodide and 75 mL of distilled waste was added, and the mixture was kept in the dark for
5 min. Thereafter, the mixture was titrated with 0.01 N of sodium thiosulfate (Na2S2O3)
after the addition of starch solution (1%) as an indicator. The endpoint of the titration is
dark blue faded to a pink color.

PV (meq O2/kg oil sample) =
V × M × 1000

W

where V is the volume of Na2S2O3 (mL); M refers to the concentration of Na2S2O3 (N); and
W is the weight of the sample (g).

p-Anisidine Value (p-AnV)

The oil (0.5 g) was dissolved in 1 mL of 0.5% of the p-anisidine solution. The ab-
sorbance was measured at 350 nm after 10 min using a spectrophotometer. p-AnV was
computed as guided by Okpala [61].

p-AnV =
[25 × (1.2A2 − A1)]

M

where A1 and A2 are the absorbances before and after the addition of p-anisidine solution,
respectively, and M refers to the weight of the sample (g).

Totox Value

The Totox value represents the total oxidation, which can be calculated using PV and
p-AnV by following the equation that was proposed by Sun and Waterhouse et al. [62].

Totox value = 2PV + p − AnV

4.5. Statistics

All the analyses in this study were performed in triplicates, except for the textu-
ral analysis, which was carried out in ten replications, and the data are presented as
mean ± standard deviation. The results were tested for significant differences by using a
one-way analysis of variance (ANOVA) and Duncan’s multiple ranges as a post-hoc test
with p < 0.05 as a standard level of significance. All the statistical analyses were performed
using the Statistical Package for the Social Sciences (SPSS, SPSS Inc, Chicago, IL, USA).
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48. Öğütcü, M.; Arifoğlu, N.; Yılmaz, E. Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. Int. J.
Food Sci. Technol. 2015, 50, 404–412. [CrossRef]

49. Lim, J.; Hwang, H.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and
oxidative properties. Appl. Biol. Chem. 2017, 60, 17–22. [CrossRef]

50. Wei, F.; Miao, J.; Tan, H.; Feng, R.; Zheng, Q.; Cao, Y.; Lan, Y. Oleogel-structured emulsion for enhanced oxidative stability of
perilla oil: Influence of crystal morphology and cooling temperature. LWT 2021, 139, 110560. [CrossRef]

51. Hu, Y.; Zhao, G.; Yin, F.; Liu, Z.; Wang, J.; Qin, L.; Zhou, D.; Shahidi, F.; Zhu, B. Effects of roasting temperature and time on
aldehyde formation derived from lipid oxidation in scallop (Patinopecten yessoensis) and the deterrent effect by antioxidants of
bamboo leaves. Food Chem. 2022, 369, 130969. [CrossRef]

http://doi.org/10.1016/j.jfoodeng.2006.11.026
http://doi.org/10.1590/fst.82421
http://doi.org/10.3390/app11199070
http://doi.org/10.3389/fnut.2022.823432
http://doi.org/10.1080/10942912.2012.675611
http://doi.org/10.1016/j.lwt.2020.109194
http://doi.org/10.1081/JFP-100002186
http://doi.org/10.1016/j.lwt.2016.07.015
http://doi.org/10.1007/s11694-018-9838-9
http://doi.org/10.1002/jsfa.2300
http://doi.org/10.1111/1750-3841.14621
http://doi.org/10.1111/1750-3841.15589
http://doi.org/10.1016/j.lwt.2012.05.006
http://doi.org/10.1007/s11694-020-00484-3
http://doi.org/10.38212/2224-6614.2551
http://doi.org/10.5851/kosfa.2014.34.1.1
http://doi.org/10.1016/j.foodchem.2008.06.011
http://doi.org/10.1002/aocs.12095
http://doi.org/10.1016/j.foodchem.2020.127446
http://www.ncbi.nlm.nih.gov/pubmed/32688303
http://doi.org/10.1016/j.foodcont.2022.108899
http://doi.org/10.1111/ijfs.12612
http://doi.org/10.1007/s13765-016-0243-y
http://doi.org/10.1016/j.lwt.2020.110560
http://doi.org/10.1016/j.foodchem.2021.130936


Gels 2022, 8, 487 19 of 19

52. Nagarajan, M.; Rajasekaran, B.; Benjakul, S.; Venkatachalam, K. Influence of chitosan-gelatin edible coating incorporated with
longkong pericarp extract on refrigerated black tiger shrimp (penaeus monodon). Curr. Res. Food Sci. 2021, 4, 345–353. [CrossRef]
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