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Cardiac resynchronisation therapy (CRT) has been a cornerstone 

in the treatment of select advanced heart failure cases since its 

introduction to our armamentarium in the early 2000s.1 Indeed, 30–60% 

of advanced heart failure patients exhibit evidence of dyssynchrony, 

when defined electrocardiographically or mechanically.2–4 The latter 

is a consequence of the former. CRT has several unique features, 

summarised in Table 1.

Although the main mechanisms through which CRT is thought to act 

are improvements in chamber mechanics, a more subtle effect has 

been recognised, linking resynchronisation to cellular metabolism and 

energy efficiency. 

Full comprehension of this connection could help us to interpret non-

response and lead to more sophisticated criteria for CRT use, help 

detect concealed responders – patients who do not have increases in 

mechanical output but do have improvements in bioenergetics and may 

have improved functional reserve – and alter CRT programming approach.

This article will present cellular bioenergetics in myocardial cells and 

subsequent alterations in heart failure. Cellular and molecular aspects 

of CRT effects on bioenergetics will be discussed, along with their 

potential implications for clinical practice. 

Cardiomyocyte Metabolism in Health 
and Heart Failure
Normal Conditions
The human heart has been called a metabolic omnivore because 

of its ability to use all common oxidative substrates. Under normal 

conditions, 60–90% of adenosine triphosphate (ATP) produced is a 

product of fatty acid oxidation with the rest attributed to glucose 

oxidation.5 Notably, these metabolic pathways are mutually inhibitory 

(the Randle cycle) and the relative flow is determined by the fed or 

fasted state of the cell; fed leading to preferential use of glucose 

and fasted to fatty acid oxidation.6 Given the much higher efficiency 

of aerobic oxidation compared with anaerobic metabolism, the 

heart predictably uses the former (it accounts for 90% of energy 

production).7,8 Oxidative metabolism begins in the sarcoplasm but 

continues in the mitochondria, which occupy 30% of cardiomyocyte 

volume, strategically placed near myofibrils and sarcoplasmic reticulum 

(SR) to minimise the diffusion distance of the high-energy bond-

containing molecules from production to consumption sites.8 This 

highlights the crucial dependency of cellular function on mitochondrial 

integrity, placement and output.

The burden of cardiac work is such that there is no energy production 

reserve. At maximal exercise the heart is operating at >90% of 
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maximum oxidative capacity and recycles an amount of ATP (6 kg) 

more than 20 times its weight.6,9 

As such, establishing effective coupling between energy producing and 

consuming organelles is crucial. Calcium ions are a strong candidate 

for this role inasmuch as they participate in both actin-myosin crosstalk 

regulation and in activation of major mitochondrial complexes (Table 2) 

and ATP synthase.10–12

One of the key aspects of cellular bioenergetics lies in the recognition 

that the sarcoplasm is not a homogeneous solution of molecules; 

rather, local concentrations of metabolites are essential in determining 

metabolic efficiency, as dictated by the laws of thermodynamics.7 More 

specifically, the energy yield from ATP dissociation is determined by 

the equation:

×
G = G + RT ln

[ADP] [P]
[ATP]0

i

Where ΔG denotes change in Gibbs free energy, a measure of the 

energy yield and so of the spontaneous nature of a reaction, combining 

both enthalpy (thermal output) and entropy (measure of randomness) 

through the equation:

G ≡ H − TS

With H denoting enthalpy, T absolute temperature and S entropy. 

ΔG0 is the standard free energy change at a temperature of 25°C 

(298 K), R is the universal gas constant in J mol-1 K-1, ln(X) is the natural 

logarithm of X and [Y] denotes the local concentration – allowed to 

freely diffuse in the vicinity without barriers such as membranes –  

of substance Y.

Consequently, the free energy yield (ΔG) is critically dependent on 

local concentrations of products and reactants and fast regeneration 

of ATP, along with rapid removal of adenosine diphosphate (ADP) 

from the vicinity to ensure optimal energy output. Simply put, the 

same intracellular task may require more ATP as a result of lower 

energy from every ATP dissociation owing to the mismanagement of 

reactants. Reduced yield may cause reactivation of the foetal myosin 

isoform (beta-myosin), producing less shortening per power stroke, 

but requiring less energy to undergo conformational changes than the 

adult one (alpha-myosin).13

In addition to the electron transport chain/ATP synthase proximity 

in mitochondria, all the enzymes of glycolysis are organised in 

complexes attached to energy-consuming structures (SR/

myofibrils). Phosphocreatine (PCr) kinase also exhibits high 

concentrations near myosin head regions, SR calcium transport 

ATPase (SERCA) pumps and ADP/ATP mitochondrial antiporter, where 

it ensures rapid ATP regeneration and – in the latter case – rapid 

ATP shuttling to the sarcoplasm, maintaining optimal yield from  

ATP dissociation.14–17

Prerequisites for optimal and efficient cellular bioenergetics are listed 

in Table 3.

Alterations in Heart Failure
In heart failure, the heart switches from an omnivore to preferentially 

using glucose oxidation for energy production, initially by increasing 

glucose consumption and ultimately by decreasing fatty acid 

oxidation.18–20 In the short term, glucose and fatty acids compete 

with each other for use as substrates for energy production 

(the Randle cycle).21 In the fasted state, beta-oxidation of the 

relatively abundant fatty acids – released by the liver – causes 

an increase in the mitochondrial ratios of acetyl-coenzyme A/

Table 1: Unique Features in Development, Effect and 
Implementation of Cardiac Resynchronisation Therapy

•	 �Historically, CRT has followed the opposite course to normal, i.e. it was 
first successfully tried clinically and then had its results and mechanism 
elucidated, with fewer than 0.5% of relevant studies focusing on basic 
mechanisms.145

•	 �CRT is unique among all heart failure therapeutic interventions because 
it simultaneously improves both heart contractility/output and survival, 
in contrast to beta-blockers and inotropes.81 It should be noted that beta-
blockade effects rely significantly on drug exposure and reduced resting 
heart rates.81,145,192,193

•	 �A sizeable portion (30–40%) of patients allocated a CRT device do not 
respond – even unfavourably – to the intervention, without any of the 
proposed criteria having been able to predict the outcome and improve 
patient selection.68,69,194–203

•	 �CRT is an example of personalised medicine, it has to be finely tailored to 
each recipient to exert its beneficial effects. Failure to adjust or optimise CRT 
could lead to loss of benefit or even harm.

CRT = cardiac resynchronisation therapy.

Table 2: Complexes of the Mitochondrial Respiratory 
(Electron Transport) Chain and Their Functions

•	 �Complex I (NADH dehydrogenase) removes two electrons from NADH and 
transfers them to ubiquinone, a soluble carrier, while pumping four protons 
across the inner mitochondrial membrane. Electron leakage to molecular 
oxygen is highly probable and so this is one of the main sites of superoxide 
production.204 

•	 �Complex II (succinate dehydrogenase) performs a triple role, acting as an 
intermediate carrier of electrons from complex I, inserting electrons from 
flavin adenine dinucleotide (in the hydrogenated form of FADH2) into the 
electron transport chain and as a catalyst for the conversion of succinate to 
fumarate, where FADH2 is formed from FAD before relinquishing its hydrogen 
atoms to the complex. Notably, no proton pumping occurs in this complex 
and so all electrons entering the transport chain at this level ultimately yield 
lower proton electrochemical gradient. Furthermore, although cytoplasmic 
NADH is converted into FADH2 in most tissues, because of an ineffective 
shuttling system to the mitochondria, this is optimised in cardiac tissue, 
yielding mitochondrial NADH entering the chain at the complex I level, so 
maintaining a higher overall efficiency of the oxidative process. 

•	 �Complex III (cytochrome bc1 complex) removes two electrons from the 
quinone pool, relinquishes them to the notorious cytochrome c (another 
lipid-soluble electron carrier) and pumps four protons across the inner 
mitochondrial membrane. When electron transfer is reduced – as in the 
case of reduced activity of complex IV, the downstream electron acceptor – 
electron leakage may occur, leading to superoxide formation.186,187 

•	 �Complex IV (cytochrome oxidase) transfers four electrons from the 
cytochrome c pool to molecular oxygen, while eight protons are removed 
from the mitochondrial matrix. Four protons are pumped across the 
membrane and four are combined with oxygen radicals to form water, 
contributing to the electrochemical gradient, albeit indirectly and to a lesser 
extent than complexes I and III. 

•	 �Complex V (ATP synthase) consists of two main units further divided into 
subunits. F0 constitutes an ion channel allowing for the backflow of protons 
to the matrix, while causing a rotation of the unit (one full rotation per eight 
protons channelled), leading to conformational changes that yield free 
energy, allowing the catalytic F1 unit to convert ADP to ATP and partially 
convert free energy into chemical energy. 

ADP = adenosine diphosphate; ATP = adenosine triphosphate; FAD = flavin adenine 
dinucleotide; FADH2 = reduced flavin adenine dinucleotide; NADH = reduced nicotinamide 
adenine dinucleotide.
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coenzyme A and reduced nicotinamide adenine dinucleotide (NADH)/

oxidised nicotinamide adenine dinucleotide (NAD+), which both 

inhibit pyruvate dehydrogenase activity.22 Conversely, in the fed state, 

malonyl-coenzyme A, a by-product of glucose oxidation, inhibits 

fatty acid oxidation and promotes lipogenesis by inhibiting carnitine 

palmitoyltransferase.23 It appears that in heart failure, stressors – in 

the form of oxidative stress or adrenergic signalling – continuously 

promote glucose use as a substrate for energy production, because 

of its effects beyond ATP production.24

In the long term, changes in enzyme levels or activity are involved 

in regulating substrate use. Indeed, enzymes involved in fatty acid 

oxidation are downregulated in heart failure; a return to the foetal 

pattern.25,26 More specifically, entry of glucose catabolism products 

into the Krebs cycle is facilitated through a reduction of pyruvate 

dehydrogenase kinase – which phosphorylates and inhibits pyruvate 

dehydrogenase, necessary for the conversion of pyruvate to acetyl-

coenzyme A – while transcript levels of carnitine palmitoyltransferase –  

necessary for acylcarnitine reconversion into acyl-coenzyme A and 

carnitine after entry into mitochondria – are downregulated.25,27 

Furthermore, beta-oxidation is itself inhibited by reduced levels of some 

acyl-coenzyme A dehydrogenases, both in foetal and failing hearts. 

Citrate synthase messenger RNA levels are also found to be reduced in 

the foetal gene-expression pattern, leading not merely to a metabolism 

based on glucose, but more specifically a glycolytic one. Increased 

glucose availability – at least prior to development of insulin resistance 

– may underlie the myosin isoform switch, through O-glycosylation 

of transcriptional factors.28 Furthermore, the foetal pattern promotes 

cell survival by means of innate antiapoptotic pathway activation, 

such as that mediated by the protein kinase B/mammalian target of 

rapamycin.29 The exact triggers for this switch are not well understood, 

but it is thought that exposure to a hypoxic milieu – caused, in heart 

failure, by vascular disease, fibrosis and increased workload – is 

reminiscent of the in utero environment and is the underlying cause of 

this change, leading to faster adaptation to changing stimuli mediated 

by a multitude of mechanisms acting on both the transcriptional and 

epigenetic level.28,30

The main activator of fatty acid oxidation is peroxisome proliferator-

activated receptor-alpha (PPAR-alpha), which increases expression 

of genes involved in the entry, transport to mitochondria and beta-

oxidation of fatty acids and downregulates expression of genes of 

proteins participating in glucose metabolism. Reduced PPAR-alpha 

expression has been described in heart failure and has been linked 

to fibrosis and mitochondrial fragmentation.31 This phenomenon may 

represent an adaptational attempt given that, stoichiometrically, the 

amount of oxygen consumed per ATP produced is higher for fatty 

acids than for glucose.32 Potential causes of lipotoxicity are detailed 

in Table 4.

In fact, increased glycolytic capacity has been related to increased 

survival in heart failure.33 Furthermore, localisation of glycolytic enzymes 

in the sarcoplasm and a preferentially glycolytic metabolism allows 

for ATP use in housekeeping processes – such as sodium–potassium 

ATPases and SERCAs – and provides substrates for the pentose 

phosphate pathway. The pentose phosphate pathway is critical for 

synthesis of antioxidants such as NADPH, allowing cellular survival – 

maintaining proper ionic concentrations and membrane potential – albeit 

at the cost of functionality.24,34 This is advantageous in the short term but 

detrimental in chronic conditions. Given the much higher amount of 

ATP produced per fatty acid molecule, many glucose molecules must 

be oxidated to match this yield. However, in advanced heart failure 

a reduced glucose oxidation capacity is found, primarily attributed 

to the insulin resistance of the failing heart because of an increased 

concentration of non-metabolised fatty acids and sympathetic system 

and renin-angiotensin-aldosterone axis activation.25,35–37 Downregulation 

of sarcoplasmic membrane glucose transporters has also been noted.38 

This is especially true for septal segments in dyssynchronous heart 

failure where decreased workload – contraction against relaxed lateral 

segments – allows for reduced glucose consumption.39,40 Moreover, 

beta-oxidation leads to the production of Krebs cycle intermediates 

(anaplerotic reactions).33 Obviously this deprives the heart of its fuel, 

leading to energy starvation.9

As such, myocardial substrate metabolism tuning crucially affects left 

ventricular energetics in vivo, to the extent that preservation of fatty 

acid metabolism preference has been found to be linked with lack of 

clinical response to CRT.41,42 A twofold explanation may be given; either 

the failing myocardium has not switched to glucose metabolism as 

a compensatory mechanism and so continues to use an ineffective 

fuel, or full metabolic compensation at the microscopic level has been 

achieved so normal preference to fatty acids is maintained and no 

potential for further improvement exists.43 The latter interpretation 

is more likely given that CRT has been found to increase fatty acid 

metabolism, in itself facilitating oxidative metabolism.

PCr kinase levels are decreased in heart failure.44,45 This leads to a 

lower ATP/ADP ratio which – aside from the obvious negative effects 

discussed previously – may serve an unexpected adaptive purpose. 

That is, ensuring – by the opening of ATP-gated potassium channels of 

Table 3: Features Necessary for Normal Effectiveness and 
Efficiency of Cardiac Metabolism

Features necessary for normal effectiveness and efficiency of cardiac 
metabolism include:
•	 sufficient oxygen and metabolic substrate flow to the mitochondria;
•	 normal mitochondrial oxidative capacity;
•	 normal concentrations of high-energy pyrophosphate bonds and, more 
specifically, normal phosphocreatinine:ATP ratio;
•	 efficient transport of these bonds from mitochondria to energy consuming 
complexes;
•	 efficient regulation of ATP:ADP ratio; and 
•	 efficient feedback systems for rapid adjustment of energy production to 
consumption.

ADP = adenosine diphosphate; ATP = adenosine triphosphate.

Table 4: Proposed Mechanisms of Lipotoxicity

Proposed mechanisms of lipotoxicity include:
•	 Fatty acid-caused activation of calcium channels at the sarcoplasmic 
membrane leading to increased energy expenditure to sequester calcium ions;
•	 Escape of fatty acids from the mitochondrial matrix through uncoupling 
protein-3, leading to energy consumption for their recovery;
•	 �Protonation at the outer layer of the membrane, flipping to the inner one 

and (because of the alkaline environment) deprotonation, reducing the 
electrochemical gradient that ensures ATP synthase function (protonophore-
like action); and

•	 Lipotoxicity caused by high fatty acid concentrations that lead to cellular 
apoptosis and contractile dysfunction.205–207 

ATP = adenosine triphosphate.
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the mitochondrial membrane, which hyperpolarise the organelle – that 

cytochrome c will not be released and apoptotic processes will not 

be triggered.46 Furthermore, the mitochondrial isoform of PCr kinase 

partakes in a feedback mechanism ensuring that energy production 

is matched to consumption; ADP from the sarcoplasm is pumped into 

the mitochondria by the adenosine nucleotide transporter, converted 

to ATP by the mitochondrial PCr kinase and shuttled back through the 

same path. Loss of PCr means that the mitochondria can no longer 

respond accordingly to increased sarcoplasmic ADP.47

A complementary ATP-replenishing system involves adenylate 

kinase, which converts two ADP molecules into ATP and adenosine 

monophosphate (AMP). In addition, increased AMP levels lead to 

AMP-dependent protein kinase (AMPK) activation, which constitutes a 

central element of adaptational mechanisms in low-fuel conditions.48 

Specifically, AMPK, when acutely activated, shuts down ATP-

consuming processes such as fatty acid and glucose synthesis, 

activates ATP-producing pathways such as fatty acid oxidation and 

glucose intake through glucose transporter type 4, and increases 

insulin sensitivity, ensuring cellular survival.17,48–50 However, chronic 

activation is detrimental because fatty acid metabolism is reduced 

through mitochondrial transport inhibition and apoptosis is activated.51

Heart failure is a state of severe energy wasting, i.e. energy consumption 

not leading to useful work but lost as heat.52 Increased uncoupling 

protein concentration has been observed, leading to proton leak back 

into the matrix.9,33 Altered calcium homeostasis may lead to the myosin 

head performing the power stroke while unbound to actin (troponin 

C dysfunction), so not leading to sarcomere shortening.53,54 Finally, 

abnormalities in proteins connecting sarcomeres to the extracellular 

matrix lead to decoupling and prevent sarcomere shortening translating 

into cardiomyocyte contraction.55

Mitochondrial dysfunction in heart failure merits further consideration. 

Increased reactive oxygen species (ROS) concentrations in heart 

failure lead to electron transport chain dysfunction and damage 

mitochondrial proteins and genome.34,46 However, a burst of ROS 

may actually prove beneficial inasmuch as it triggers activation 

of the master regulator of mitochondrial biogenesis and oxidative 

capacity; peroxisome proliferator-activated receptor-gamma 

coactivator-1 (PGC-1). This protein allows for increased expression 

of nucleus-encoded mitochondrial transcription factor 1, increasing 

mitochondrial biogenesis, oxidative capacity and fatty acid use.8,56 

Furthermore, PGC-1 increases synthesis of antioxidant enzymes 

(catalase, superoxide dismutase and glutathione peroxidase) in 

response to redox signalling.57 

Chronically elevated catecholamine and angiotensin levels and 

increased TNF-alpha and endothelin-1 lead to protein kinase B 

activation, which, in turn, downregulates PGC-1, causing mitochondrial 

fragmentation (inability to replicate) and decreased concentrations of 

electron transport chain complexes and ATP synthase.5,7,9,10,33 Although 

CRT does increase protein kinase B phosphorylation/activity, this 

should be viewed in light of global prosurvival effects of this kinase, 

rather than its adverse actions on cellular bioenergetics, which 

are mitigated through different pathways by resynchronisation.58,59 

Finally, and especially pertaining to dyssynchronous heart failure, 

with abnormal stretching of non-activated cells, an intimate crosstalk 

exists between cardiomyocyte stretch and apoptosis. This appears 

to be mediated by mitochondria, as evidenced by proapoptotic 

molecule (p53 and Bax) increases, leading to mitochondrial membrane 

depolarisation and release of cytochrome c and other complexes 

triggering apoptosis upon cellular stretching.60

In short, teleologically, heart failure initially redirects cardiomyocyte 

metabolism towards glucose use, which ensures cellular survival at 

the cost of function. However, insulin resistance in advanced stages 

of heart failure prevents use of glucose as efficiently.61 Studies have 

suggested that the failing heart may attempt to switch to ketone 

bodies oxidation in an effort to sustain its metabolism and increase 

its efficiency (conversion into usable substrate not requiring much 

energy).27,62,63 Ketone bodies oxidation is a rapidly usable and relatively 

dense – requiring two steps to enter the Krebs cycle as acetyl-

coenzyme A and each yielding two acetyl-coenzyme A molecules – 

source of energy, supplemented by the liver. 

Branched chain amino acid catabolic pathways have been found to 

be downregulated in a murine heart failure model – with reduced 

expression of key enzymes such as the branched-chain alpha-keto 

acid dehydrogenase complex – presumably because of oversupply 

of ketone bodies by the liver (two out of three proteinogenic 

branched chain amino acids are ketogenic).64 However, this leads to an 

accumulation of branched-chain keto acids, which induces inhibition 

of mitochondrial respiration.65 Moreover, factors promoting fatty acid 

oxidation (PPAR-alpha and PGC-1) are also regulators of cellular 

oxidative capacity in general.34 As such, their downregulation leads 

not only to preferential glucose use but also to reduced oxidative 

potential of the cell. Several of the previously mentioned disturbances 

are (partially) reversed by effective resynchronisation, as discussed in 

the following sections.

Chamber Mechanics and Energy Consumption in 
Dyssynchronous Heart Failure
It should be noted that most studies attempting to clarify effects of 

resynchronisation on chamber mechanics, substrate metabolism and 

energy efficiency have been conducted in dilated cardiomyopathy 

models with concomitant left bundle branch block because of the 

perceived homogeneous myocardial involvement that leads to more 

predictable behaviour, i.e. excitation sequence, after CRT initiation. 

Conversely, ischaemic cardiomyopathy of such severity (ejection 

fraction ≤35%) usually involves the presence of extensive dense 

scar regions, which critically modify electrophysiological properties 

(the stimulus may need to bypass a fixed line of block and, in the 

process, depolarise different myocardial segments). This is reflected 

by ischaemic aetiology being considered a negative prognosticator for 

response to CRT.66–74 The patients expected to gain the greatest benefits 

from chamber resynchronisation are those with the most pronounced 

basal dyssynchrony, exhibiting the widest QRS complexes.75–77

Modern views on dyssynchronous heart failure include the notion of 

adverse mechanoenergetics, leading to reduced energy efficiency, 

evidenced by a reduced ratio between energy consumed (in the form 

of oxygen) and external work performed (stroke work).78–80 Several 

explanations can be offered (Table 5).

Compared with inotropes, CRT has been found to acutely improve 

systolic function (increased
dP

dtmax
) while reducing oxygen consumption 

assessed by arterial/coronary sinus oxygen difference and minute 

oxygen consumption).81 Chamber segments resynchronisation offers 

a plausible interpretation – by negating increased interior work – for 
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improved energetics upon CRT introduction. An additional beneficial 

effect of CRT could lie in the reversal of the shortening of diastolic 

period and diastolic dysfunction, both present in dyssynchronous 

heart failure in general and particularly so in the left bundle branch 

block variety.82–84 More specifically, divergence in the timing of systole 

between myocardial segments in left bundle branch block dilated 

cardiomyopathy has been shown to worsen microvascular function 

of the left anterior descending artery territory (perfusion occurring 

during diastole) and consequently flow reserve, raising the potential 

for therapeutic interventions.85 In the mechanoenergetics context, 

although not improving efficiency, CRT could improve overall available 

energy by increasing oxygen and substrate delivery to myocardium.

The most robust method of assessing substrate metabolism relies 

on the use of glucose and fatty acid radioactive isotopes and their 

in vivo turnover rates.43,86–89 Substrate metabolism, but not perfusion, 

is also altered in dyssynchronous heart failure. The septal wall 

uses less glucose than lateral segments, potentially owing to the 

preferential conversion of mechanical work to stretching of inactive 

myocardium, as opposed to blood expulsion through the aortic valve, 

mediated molecularly by reduced glucose transporter expression.38,90,91 

Conversely, upon contraction, the lateral wall consumes higher 

amounts of glucose-derived energy because of its pre-stretched 

condition (exceeding Frank-Starling law limits). Furthermore, this is in 

accordance with preferential glucose use in advanced heart failure, as 

the lateral wall could be considered to be at a more locally advanced 

heart failure stage. 

Consequently, glucose uptake by 13-fluorodeoxyglucose – measured 

by PET – may represent increases in glycolysis rather than oxidative 

phosphorylation and prioritisation of survival over function. As such, 

this pendulum-like internal energy transfer accounts for significant 

macroscopic causes of reduced mechanical efficiency. When oxidative 

metabolism is specifically assessed by means of acetate clearance 

– a precursor to acetyl-coenzyme A that enters the Krebs cycle – an 

increase in septal and a decrease in lateral oxidative metabolism 

upon CRT was noted, leading to global homogenisation without 

increases in metabolic demand, despite increases in mechanical 

work output.92 This appears to contradict previous interpretations of 

CRT effects on substrate metabolism, yet it can be hypothesised that 

the increased septal work reactivated oxidative phosphorylation to 

increase energy output, whereas the lateral wall operates at less-than-

maximal oxidative capacity and can reduce oxidative metabolism, also 

reducing ROS burden in the process.

Predictably, CRT has been found to rectify and homogenise glucose 

use throughout the myocardium without affecting perfusion to the 

same degree; septal:lateral glucose use ratio increased from 0.62 

to 0.91 after CRT, p<0.001.39,93,94 Regarding the septum in particular, 

a slower – anticipated by the fact the lateral segments are also 

simultaneously actively contracting – yet more effective contraction 

has been reported.95 The importance of myocyte length has been 

further demonstrated by the dependence of generated pressure 

and oxygen consumption (both increasing, the former more than the 

latter, leading to improved efficiency) on atrioventricular delay during 

CRT, with extremely short delays completely negating haemodynamic 

effects of resynchronisation.96 Moreover, CRT appeared to confer 

a benefit with regard to the metabolic reserve and mechanical 

efficiency (response to beta-stimulation) of the failing heart, even after 

long-term application.72 The same increases in output were noted 

upon dobutamine administration compared with dyssynchronous 

hearts, yet were accompanied by increased efficiency and acetate 

extraction (operation at less-than-maximal oxidative capacity at 

rest).93 This long-term trend – present even 13 months after CRT 

initiation – alludes to intrinsic metabolism alterations after prolonged 

CRT application, consistent with the notion of detrimental effects of 

dyssynchrony itself on energy efficiency.72,97 Additionally, a trend for 

beneficial effects of CRT on fluid dynamics, leading to increased direct 

conversion of inflow to outflow kinetic energy, has been reported. 

This complements previous reports on the effects of dyssynchrony 

on rheodynamics and potentially offers a novel marker for predicting 

response to CRT.98–101 

Although similar metabolism alterations have been reported in 

ischaemic cardiomyopathy and analogous CRT effects are indeed 

observed in the majority of dyssynchronous cases, a sizeable minority 

(32%) do not exhibit septal reverse mismatch (lower glucose use 

relative to perfusion).102 This is attributable to perfusion deficits of the 

lateral wall – present in 91% of the subgroup discussed – precluding 

higher glucose use there and, in effect, leaving the septum responsible 

for cardiac output.

An important inherent limitation of this approach for metabolism 

assessment lies in the assumption of intracellular homogeneity that 

ignores the high degree of compartmentalisation and sequestration in 

the sarcoplasm.9,103 That is, intracellular presence of a metabolite does 

not account for the site and mode of its breakdown, its vicinity to the 

energy-consuming areas of the cell and ultimately its energy yield, 

alterations of which may crucially affect efficiency.

A novel pacing modality, multisite pacing – constituting an advanced 

form of CRT – has started to yield interesting results regarding the 

previously mentioned parameters. It entails administration of two, 

rather than one, left ventricular pacing pulses, followed by a stimulus 

to the right ventricle. As such, it allows for sculpting of the activation 

sequence of the myocardium, potentially bypassing limitations posed 

by dense scar presence and allowing for further optimisation.104 

Interesting results have been obtained regarding haemodynamics and 

stroke work improvement, and clinical studies attempting to correlate 

Table 5: Possible Mechanisms Underlying Reduced Energy 
Efficiency in the Failing Cardiomyocyte

•	 �High-energy bonds procured from metabolism yield diminished energy upon 
hydrolysis (supported by the reduced ratio of PCr:ATP in dyssynchronous 
cardiomyocytes, as assessed by 31P magnetic resonance spectroscopy, 
leading to a reduction in free energy yield).208,209

•	 �Energy is wasted or reallocated in the cardiomyocyte; consumed oxygen 
forms ROS instead of forming water, glycolysis increases and energy is 
redirected towards cellular survival.

•	 �Energy is increasingly allocated to internal work, that is, stretching of the 
initially relaxed late-activated segments of myocardium by the actively 
and timely contracting ones and vice versa. Furthermore, the latter begin 
contraction against higher wall stresses inasmuch as the early-activated 
myocardium is at peak systolic stiffening.40,210,211 Finally, mechanical 
dyssynchrony adversely affects flow energetics and leads to a decreased 
amount of blood inflow kinetic energy being directly converted to outflow 
energy (the shape of the chamber performing the role of merely redirecting 
flow).98 On the contrary, a turbulent pattern with work-consuming vortices 
formation emerges in dyssynchronous hearts, requiring energy expenditure 
to accelerate blood towards the aorta. 

ATP = adenosine triphosphate; ROS = reactive oxygen species; PCr = phosphocreatine.
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multisite pacing optimisation with energy efficiency improvement 

at the cardiovascular system level, through use of ventriculoarterial 

coupling, are underway.105,106 

Dyssynchronous heart failure, specifically in the form of left bundle 

branch block presence, leads to mechanical dispersion and altered 

stretching of the different myocardial segments, affecting calcium ion 

homeostasis – potentially via mechanosensitive ion channels – leading 

to proarrhythmia, theoretically reversible by CRT.107,108 However, CRT 

can, itself, under certain conditions, exhibit proarrhythmic effects as 

a result of:109

•	 increased transmural dispersion of repolarisation (pulse delivered 

at left ventricular epicardium);

•	 wave break at the collision area of the two pulses (left and right 

ventricular) and potential re-entry; and

•	 in-scar pacing, amenable to time-dependent alteration, potentially 

underlying electrical storm events.110,111

As as result of the first pulse being delivered with increased width, 

multisite pacing may not be involved in re-entry occurring because of 

localised in-scar pacing.104

This implies that CRT, besides its acute haemodynamic effects – stroke 

volume increases were noted in the previously mentioned studies – has 

profound effects on myocardial energy management.72,93 This raises the 

intriguing possibility that, depending on currently undetermined 

individual parameters, response to CRT may not manifest as an overt 

improvement in ejection fraction, chamber volumes and pressures, 

but in covert alterations in metabolism, increasing efficiency and 

reserve, rendering the heart more able to respond to abrupt increases 

in output demand.112 Such effects have been reported even when 

classical adverse prognosticators – QRS widening upon biventricular 

pacing – are observed, suggesting a degree of independence between 

effects on mechanics and bioenergetics, owing to differing underlying 

molecular pathways.113 The inhomogeneous myocardial involvement 

in ischaemic cardiomyopathy, leading to divergent and unpredictable 

effects of dyssynchrony on metabolism, may also affect these covert 

responders, at least at the macroscopic (chamber) level.102

CRT Effects on Bioenergetics at the 
Ultramicroscopic Level
Mitochondria are one of the key sites of CRT effects at the 

ultramicroscopic level. Proteomic analysis in a canine model has 

revealed levels of 31 mitochondrial proteins to be altered after CRT 

application, with almost half constituting subunits of the respiratory 

chain.114 A concerted effect is observed whereby CRT increases activity 

of key enzymes in anaplerotic pathways, providing more intermediates 

of the Krebs cycle, which can otherwise be consumed to biosynthetic 

processes such as amino acid synthesis, increasing its activity, 

facilitating acetyl-coenzyme A entry into the cycle and consequently 

NADH/flavin adenine dinucleotide (FADH2) formation and funnelling of 

electrons into their transport chain to complete aerobic oxidation.115 

Moreover, all complexes of the respiratory (electron transport) chain, 

with the exception of cytochrome c oxidase (complex IV), have 

critical subunits upregulated. This includes complex II (succinate 

dehydrogenase), which links the Krebs cycle with electron transport 

chain; it catalyses succinate to fumarate conversion along with FADH2 

formation, immediately introduces FADH2-derived electrons into the 

chain and allows for the flow of NADH-derived electrons that enter 

the chain further upstream – complex I – as a result of higher energy 

levels towards complex III/cytochrome bc1 complex.116 Finally, ATP 

synthase (complex V) subunit degradation is inhibited and, following 

phosphorylation, complex formation and ATP yield per proton flowing 

is improved (2.5 ADP molecules phosphorylated per oxygen atom 

consumed with CRT versus 1.4 in dyssynchronous heart failure – due 

to electron entry now more often occurring at complex I). Complex 

V activity increases 20% during CRT compared with dyssynchronous 

heart failure. As such, ultimately, electrons exiting the chain and 

protons flowing down their electrochemical gradient through complex 

V are paired with molecular oxygen, forming water.

Several complementary effects have been noted, such as upregulation 

of fatty acid binding protein that allows their entry into mitochondrial 

matrix and subsequent beta-oxidation and downregulation of  

uncoupling proteins.117 The latter may be a defence mechanism, reducing 

energy production and – through substrate alteration – reducing 

contraction of the myocyte to prevent the occurrence of extreme 

stretches, especially during contraction against already shortened 

segments (lateral wall). Cytochrome c has, unexpectedly, been reported 

to be downregulated following biventricular pacing, owing to either 

methodological issues (post-translational modifications that alter its pI 

and so its localisation following protein electrophoresis) or in the context 

of preventing apoptotic cell death, promoted by several pathways in 

dyssynchronous heart failure, as previously discussed.114

Although electron and proton coupling with molecular oxygen is 

tightly controlled by complex IV, there is always the possibility of 

ROS formation through release of intermediates from complex IV or 

electron interaction with molecules other than oxygen. These can 

induce post-translational modifications to a multitude of mitochondrial 

energy production-related proteins and membrane lipids, severely 

impairing their functionality and even leading to cell death.118–122 Most 

importantly, endothelial nitric oxide synthase, under oxidative stress, 

becomes uncoupled from tetrahydrobiopterin (itself oxidated) and 

yields significant amounts of ROS.121 

To negate this potentially detrimental side-effect of increased function 

and efficiency of oxidative metabolism, an increase in ROS-scavenging 

protein levels is necessary and sufficient. Indeed, CRT has been found 

to be linked to a significant rise in thioredoxin-dependent peroxide 

reductase, critical for the formation of reduced disulphide bonds that 

either constitute the reversal of oxidative events or may be coupled 

– as in the case of glutathione – to the reduction of a variety of 

oxidised molecules.114,123 Interestingly, post-translational modification of 

regulatory ATP synthase subunits (alpha subunits) has been reported 

(S-glutathionylation and S-nitrosation), along with novel disulphide 

bond formation. S-glutathionylation reversal by CRT was linked to a 

twofold increase in enzyme activity, providing a further mechanism 

for its effects on complex V.124 Despite this, downregulation of ATP 

synthase activity may be part of a feedback loop, where increases 

in oxidative stress, such as those caused by heart failure, prevent 

aerobic oxidation and ultimately limit ROS production.125–130 The ensuing 

increase in oxidative stress is alleviated by the aforementioned 

increases in ROS-scavenging proteins.

These changes in protein levels are coupled with increased expression 

of proteins that translocate into mitochondria – synthesis of most 

energy production-related proteins has been relinquished to the 
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nucleus – chief among which is prohibitin 2. Prohibitins are assembled 

into a ring-like structure in the inner mitochondrial membrane 

and their presumed roles involve being chaperones for respiration 

chain proteins (ensuring proper protein folding) or acting as general 

structuring scaffolds required for optimal mitochondrial morphology 

and function.131,132 Mitochondrial protein proteases have conversely 

been found to be downregulated post-CRT.133

Of note, according to transcriptomic analyses, gene level-related 

effects of dyssynchrony were sixfold more pronounced at the anterior 

than the lateral wall.134 Appropriately, CRT leads to pronounced local 

but not global changes in gene expression.26 Chronically increased 

stresses such as those observed upon dyssynchrony lead to profound 

alterations in key elements of the contractile apparatus, namely the 

transverse tubules (T-tubules), causing their disruption. This is mediated 

by downregulation of structural proteins such as junctophilin, and 

consequently impairs calcium handling (T-tubules bring into proximity 

the sarcolemmal and SR membranes).135,136 This indirectly affects 

energy use as much larger (potentially proarrhythmic) calcium spikes 

are necessary to cause calcium release from the SR and accomplish 

the excitation-contraction coupling; a disturbance that CRT can rectify. 

A potential master regulator of protein activity affected by CRT has 

been recognised in the form of CK2 (formerly casein kinase II), a 

serine-threonine protein kinase, using both ATP and guanosine-5’-

triphosphate as substrates and indispensable to cell survival and 

growth by preventing caspase access to cleavage sites of proteins, 

promoting DNA repair and suppressing p53 activity.137–139 In a canine 

model of tachypacing- and left bundle branch-related dyssynchronous 

heart failure, phosphoproteomics analysis identified CK2 as the 

most likely kinase whose downregulation is involved in protein 

phosphorylation alterations observed in dyssynchronous heart failure, 

a pattern reversed by the introduction of CRT. Although an intriguing 

finding, it cannot be inferred whether CRT effects are mediated by 

upregulation of CK2 or whether improved energetics and triphosphate 

nucleotide availability (used by CK2 as a phosphate donor during 

phosphorylation) account for increased kinase activity, promoting cell 

survival and function in a virtuous cycle. Finally, similar effects leading 

to increases in oxidative potential have been noted in peripheral 

muscles as well, potentially resulting in further improvement of 

patients’ functional status and exercise tolerance.140

Increased adrenergic signalling is usually thought of as deleterious 

in heart failure; evidenced by the benefits of its blockade with beta-

blockers. Accordingly, there is intrinsically reduced responsiveness 

of the myocardium to adrenergic stimuli as a defence mechanism  

involving increased activation of inhibitory G-alpha subunits 

(deactivating rather than activating protein kinase A; PKA) and 

internalisation/degradation of receptors through phosphorylation by 

G-protein receptor kinase 2.141–144 However, the response of the 

myocardium to a transient increase in adrenergic signalling may 

be crucial in maintaining exercise capacity. CRT has been found to 

restore this parameter by upregulating regulator proteins of G-protein 

signalling (RGS) that inhibit inhibitory alpha-subunits of G-proteins 

(Gais).145 As such, SR-bound PKA may activate calcium-handling 

proteins, increasing calcium ion transient flux during depolarisation 

and its subsequent sequestration, ultimately enhancing the associated 

myocyte shortening, reversing the severely blunted calcium spikes 

of dyssynchronous heart failure.146–148 This post-translational effect on 

calcium-handling proteins is supported by the observation that their 

encoding genes are not upregulated by CRT.149 Consequently, exercise 

tolerance may be further improved. 

ADP = adenosine diphosphate; ATP = adenosine triphosphate; CO2 = carbon dioxide;  
FADH2 = flavin adenine dinucleotide; GLUT = glucose transporter proteins; NADH = nicotinamide 
adenine dinucleotide.

Figure 1A: Depiction of Cardiomyocyte Metabolism Under 
Physiological Conditions
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It should be stressed that dyssynchronous heart failure induces the opposite changes 
and, consequently, CRT effects represent a return towards normality. The possibility of 
the feedback response actually overshooting the initial derangement underlies the notion 
of inducing dyssynchrony in heart failure patients without any evidence of exhibiting the 
phenomenon, e.g. through right ventricular pacing, priming cardiomyocytes’ sensitivity to its 
correction and then applying CRT to evoke these effects. ATP = adenosine triphosphate;  
CRT = cardiac resynchronisation therapy.

Figure 1B: Alterations Induced Under Cardiac 
Resynchronisation Therapy
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The most intriguing observation stemming from a canine model 

study by Chakir et al. lies in the triggering of increased response to 

beta-adrenergic signalling following dyssynchrony introduction into 

synchronous heart failure.145 This allowed for radical hypotheses claiming 

that a CRT holiday (analogous to diuretic holiday) may enhance CRT 

effects – particularly in non-responders – and that purposeful transient 

dyssynchrony introduction in heart failure patients without an indication 

for CRT or a pacemaker may trigger the same beneficial results. Animal 

studies in the tachypacing-induced cardiomyopathy setting have since 

confirmed this assumption, reporting improved cardiac response to 

beta-adrenergic stimuli and suppression of heart failure in terms 

of chamber dilatation and cellular dysfunction, even in the context 

of synchronous heart failure.150 An obvious noted issue stems from 

potential intersubject differences in the required holiday period.

A further path linking substrate preference to contractile function 

has been reported to be affected by CRT, namely phosphorylation of 

Z-disk and M-band proteins by the upregulated glycogen synthase 

kinase.151 Activation of this kinase leads to inactivation of glycogen 

synthase, potentially in the context of restoring the omnivorous nature 

of the cardiomyocyte. Target sarcomeric proteins (troponins I and T, 

myosin-binding protein C and myosin light chain isoforms) are involved 

in calcium sensing and consequently their activation sensitises 

the contractile apparatus to calcium ions’ presence and facilitates 

contraction. 

Moreover, CRT has been shown to increase messenger RNA levels 

of the alpha-myosin isoform and its relative ratio to those of beta-

myosin in advanced dyssynchronous heart failure patients, possibly 

because of improvements in energy metabolism that allow for a more 

ATP-consuming yet more efficient isoform to be chosen, restoring 

functionality.152 Interestingly, another subset of glycogen synthase 

kinase target sarcomeric proteins are involved in mechanosensing 

and may actually partake in the core mechanisms through which CRT 

exerts its effects. Figure 1 summarises the most important effects of 

CRT application to metabolism in dyssynchronous heart failure at the 

ultramicroscopic level.

Linking Mechanics to Metabolomics
A fundamental issue regarding all the described effects of CRT on 

cellular bioenergetics is raised concerning mechanisms and signal 

transduction pathways underlying the translation of mechanical 

alterations to metabolic effects. A strong candidate is the cytoskeleton, 

linking sarcomeres – the contractile units of cardiomyocytes – with 

the extracellular matrix and ensuring that cellular contraction causes 

tissue shortening. As a result of changes in myocardial lamellae 

orientation and chamber architecture, mechanical deformation of 

the failing heart is significantly altered.153,154 The aforementioned 

changes in calcium concentration, owing to alterations in proteins 

such as SERCA, decrease peak contractile force at the same time as 

modified extracellular matrix synthesis (different collagen isoforms) 

and sarcomere architecture (reduced levels of titin, a spring-like 

protein conferring elasticity) render myocardial tissue stiff.155,156 

Concomitantly, changes in gap junction proteins – connexin-43 

is redistributed laterally rather than longitudinally – reduce both 

conduction velocity and synchronisation between adjacent 

cardiomyocytes.157,158 Protein kinase B, which is upregulated by CRT, has 

been found to phosphorylate connexin-43 and facilitate incorporation 

into gap junctions, allowing for initiation and coordination of the 

ischaemic injury response.21,159 Consequently, mitogen-activated 

protein kinase further phosphorylates connexin-43 leading to gap 

junction closure and severing communication between adjacent 

cells’ sarcoplasms, potentially preventing apoptosis spreading.159 As 

such, stiff cardiomyocytes exhibiting reduced functionality attempt to 

contract over a stiffer matrix, not amenable to deformation, leading to 

abnormally high tension to the cytoskeletal structures connecting them 

(focal adhesions and integrins).160 This condition is further aggravated 

by local (between adjacent cells) and regional (in dyssynchronous 

heart failure) lack of coordination.156,161 

Focal adhesions are so intricately linked with sarcomeres – to 

ensure anchoring to sarcolemma/extracellular matrix and bidirectional 

mechanotransduction – that a specialised structure emerges called 

a costamere.162–164 Costameres are sub-sarcolemmal multiprotein 

complexes initially found to localise over Z-disks, perpendicularly 

to the cardiomyocyte axis, but subsequently shown to extend over 

M-lines and along the myocyte length.163,165,166 They can be thought 

of as a specialised striated and cardiac muscle version of focal 

adhesions. Two main constituent protein complexes have been 

identified; the dystrophin/glycoprotein complex that provides a link 

between laminin – an extracellular matrix protein – and filamentous 

actin-based cytoskeleton, and the integrin/talin/vinculin complex, 

which is potentially more involved in signal transduction given its 

association with integrin-linked and focal adhesion kinases.167–170 

The importance of these protein complexes in the biomechanical 

stability of the heart, especially under mechanical stress, can be 

inferred by the fact that mice with cardiac-specific vinculin deletion 

display a dilated cardiomyopathy phenotype.171 Moreover, another 

integrin-associated protein, melusin – a chaperone, assisting in proper 

protein folding and assembly – performs a highly specialised role in 

cardiomyocyte response to stress stimuli by promoting cellular survival 

and hypertrophy through both mitogen-activated protein kinase family 

pathways and protein kinase B (also affecting energy metabolism and, 

as mentioned previously, upregulated by CRT).58,59,172–174 Indeed, in aortic 

stenosis patients, melusin levels have been found to correlate with 

systolic function preservation.175 As such, it could be theorised that 

persistent supraphysiological stress (stretch) levels, such as those 

in dyssynchronous heart failure, render melusin levels insufficient to 

induce and maintain proper cellular responses, leading to apoptosis 

and myocardial wall thinning.

Similar findings have been reported in the case of integrins.176 Changes 

in integrin isoform gene expression profile have been noted during 

reverse remodelling of chambers upon left ventricular assist device 

therapy.176 CRT has been shown to lead to alterations in levels or activity 

of several sarcomeric and focal adhesions-related proteins involved in 

mechanosensing, such as cap-Z (reduced expression), muscle LIM 

protein (acetylation-activation), tensin, desmin and filamin-C.151,177–180 

Spatial distribution of alpha-actinin – a microfilament protein necessary 

for the attachment of actin filaments to the Z-lines in skeletal muscle 

cells, coordinating sarcomeric contraction and providing links to focal 

adhesions and stress actin fibres – has been found to be disrupted 

in dyssynchronous heart failure, losing its periodicity and forming 

depositions, with CRT partially rectifying its pattern.181–183

Mitochondria, being linked to the cytoskeleton – both actin and 

microtubules – for reasons of localisation and transport, also sense the 

increased tension of dyssynchronous heart failure.55,184,185 This leads to 

increased expression of proapoptotic Bcl-2 family proteins, including 
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Bax and Bad, which mediate cytochrome c release and apoptosis 

triggering, and to reduced complex IV activity (reduced by 21%) leading 

to reduced ATP formation and ROS accumulation because electrons 

are unable to combine with molecular oxygen and protons.60,186,187 In 

fact, the type of stretch caused by dyssynchrony (monotonous stretch) 

further accentuates these changes and directly reduces ATP synthase 

activity and mitochondrial biogenesis by reducing PGC-1alpha.188 In this 

framework, shutting down oxidative metabolism – with all its detrimental 

consequences – may again constitute a defensive mechanism of the cell 

to prevent apoptosis, in part caused by increased mechanical stretch. As 

such, not only is metabolism affected by anomalous stretch, but also its 

ability to adapt in response to such stressors is impaired.189

As such, an overarching hypothesis could be that alleviation by 

resynchronisation of the increased strain imposed on cardiomyocytes 

by dyssynchrony, which led to compensatory alterations/remodelling 

of sarcomeres and triggered changes in bioenergetics, now leads to 

altered input from specialised mechanosensors that is transduced to 

the cell, triggering the beneficial effects.53,190 A depiction of our current 

partial understanding of this link is attempted in Figure 2.

Conclusion
CRT can be thought of as constituting a metabolic therapy, acting on 

two levels. Firstly, at the chamber level, it rehomogenises substrate 

use and improving mechanical output and energy efficiency by 

reducing energy spent on internal work. Secondly, at the cellular level, 

it increases oxidative cell capacity by acting at virtually all stages of 

oxidative metabolism. The latter effect may not be inseparable from the 

former, creating the potential for the existence of covert responders. 

Whether this is true for cases that do not have an indication for CRT or 

can be achieved through more advanced resynchronisation modalities, 

such as multisite pacing, or even by allowing (in dyssynchronous 

heart failure) or introducing (in synchronous heart failure) intermittent 

dyssynchrony, requires further study. It is possible that advanced 

computational models will be needed to determine the optimal site 

of leads and timing parameters to achieve conventional CRT/multisite 

pacing optimisation. Certain models can already integrate projected 

changes in bioenergetics, in the form of ATP use homogenisation 

assessed concomitantly with stroke work maximisation, to propose 

adequate lead implantation sites.156,191 Although challenging, especially 

to the clinician, comprehending these principles will probably prove 

necessary to promote our insight into the effects of resynchronisation 

beyond chamber mechanics, improving care for our patients. 

Actin stress fibres (not to scale) transmit mechanical stimuli to mitochondria and lead, in 
cases of increased stretch, to PGC-1 decreases, reduced complex IV activity, increased ROSs 
production and increased release of proapoptotic molecules. Moreover, microtubules (not 
to scale) are also affected by increases stretch and this may interfere with mitochondrial 
biogenesis, if only in mechanical terms (separation of mitochondria).212 Crosstalk between 
focal adhesions and sarcomeres, through the protein mesh of costameres, leads to 
decreased efficacy of contraction, in part mediated by alpha-actinin, capZ and vinculin. 
PGC-1 = peroxisome proliferator-activated receptor-gamma coactivator-1; ROS = reactive 
oxygen species.

Figure 2: Linking Mechanical Stretch/Stress and Cellular 
Metabolism
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