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A recent publication indicated that the patient anatomical feature (PAF) model was 
capable of predicting optimal objectives based on past experience. In this study, 
the benefits of IMRT optimization using PAF-predicted objectives as guidance for 
prostate were evaluated. Three different optimization methods were compared.  
1) Expert Plan: Ten prostate cases (16 plans) were planned by an expert planner 
using conventional trial-and-error approach started with institutional modified 
OAR and PTV constraints. Optimization was stopped at 150 iterations and that 
plan was saved as Expert Plan. 2) Clinical Plan: The planner would keep working 
on the Expert Plan till he was satisfied with the dosimetric quality and the final 
plan was referred to as Clinical Plan. 3) PAF Plan: A third sets of plans for the 
same ten patients were generated fully automatically using predicted DVHs as 
guidance. The optimization was based on PAF-based predicted objectives, and 
was continued to 150 iterations without human interaction. DMAX and D98% for 
PTV, DMAX for femoral heads, DMAX, D10cc, D25%/D17%, and D40% for bladder/
rectum were compared. Clinical Plans are further optimized with more iterations 
and adjustments, but in general provided limited dosimetric benefits over Expert 
Plans. PTV D98% agreed within 2.31% among Expert, Clinical, and PAF plans. 
Between Clinical and PAF Plans, differences for DMAX of PTV, bladder, and rectum 
were within 2.65%, 2.46%, and 2.20%, respectively. Bladder D10cc was higher for 
PAF but < 1.54% in general. Bladder D25% and D40% were lower for PAF, by up 
to 7.71% and 6.81%, respectively. Rectum D10cc, D17%, and D40% were 2.11%, 
2.72%, and 0.27% lower for PAF, respectively. DMAX for femoral heads were 
comparable (< 35 Gy on average). Compared to Clinical Plan (Primary + Boost), 
the average optimization time for PAF plan was reduced by 5.2 min on average, 
with a maximum reduction of 7.1 min. Total numbers of MUs per plan for PAF 
Plans were lower than Clinical Plans, indicating better delivery efficiency. The PAF-
guided planning process is capable of generating clinical-quality prostate IMRT 
plans with no human intervention. Compared to manual optimization, this auto-
matic optimization increases planning and delivery efficiency, while maintaining  
plan quality.

PACS numbers: 87.55.D-, 87.55.de, 87.53.Jw
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I. INTRODUCTION

Intensity-modulated radiation therapy (IMRT) has been widely used to treat early stage prostate 
cancer and yields good clinic results. IMRT is well known for its ability of providing conformal 
coverage to the planning target volume (PTV), while sparing organs at risk (OARs) such as 
rectum, bladder, and femoral heads, in the case of prostate planning. In current clinical prac-
tice, IMRT planning for a specific patient is achieved by iteratively reducing dose to OARs in 
a trial-and-error fashion until the dose distribution is believed to be optimal for that patient. 
Lack of achievable patient-specific OAR sparing information makes this manual approach 
time-consuming.

From another perspective, with IMRT being implemented clinically for nearly two decades, 
experience and knowledge have been built and accumulated. Such expert knowledge has been 
implicitly built into each clinical approved plan created by expert radiation oncologists and 
planners. Learning from prior plans to predict patient-specific optimal dose sparing is an inno-
vative use of expert’s knowledge.

Learning from prior plans has been reported previously by several research groups. Early 
attempts at predicting achievable dose sparing from prior plans have been more theoretical 
than practical.(1) A number of recent methods have used prior plans to establish dose vol-
ume effects (i.e., predicting clinical outcomes based on delivered dose and other patient  
conditions.)(2-5) Other methods have employed prior plans for quality control,(6-9) and demon-
strated that prior plan can serve as an important reference for improving and homogenizing the 
quality of new plans.(10) More recently, predicting achievable dose-volume histograms (DVHs) 
using prior knowledge has been reported.(9,11,12) At our institution, Yuan et al.(12) developed the 
patient anatomical features (PAF) based knowledge model, which estimates the OAR DVHs 
from prior plans by a stepwise multiple regression method. The PAF model was designed to 
predict the optimal achievable patient specific OAR DVHs. Such OAR DVHs can be further 
used to guide the IMRT planning/optimization process so that the trial-and-error process can 
be practically eliminated.

In this study we conducted a planning study with anonymized clinical cases. Each case is 
planned both manually by an experienced planner, and automatically under the guidance from 
the predicted DVHs. This study 1) evaluates the performance of the automatic prostate IMRT 
planning based on PAF model compared to human expert planning, and 2) quantifies the efforts 
required by human planner to achieve the optimal patient-specific, organ-sparing objectives.

 
II. MATERIALS AND METHODS

Ten prostate cases were randomly selected and investigated in this study, including four low-risk 
cases and six intermediate-risk cases. IMRT plans were generated in Eclipse treatment planning 
system (v10.0, Varian Medical Systems, Palo Alto, CA). The clinical target volume (CTV) and 
OARs were contoured by attending physicians. The CTV included prostate alone for low-risk 
prostate cancer and prostate plus seminal vesicles (SV) for intermediate-risk prostate cancer. 
The planning target volume (PTV) was expanded from CTV with a 5 mm margin. Typical 
prescription dose at our institution was 2 Gy × 38 fractions for low-risk plans and 2 Gy × 27 
fractions (Primary, prostate + SV) + 2 Gy × 11 fractions (boost, prostate only) for intermediate-
risk plans. Sixteen plans were created for the four low-risk cases and six intermediate-risk 
cases in total. Seven coplanar 15 MV beams were used for primary plans with beam angle of 
25°, 70°, 130°, 180°, 230°, 290°, and 335°, and five beams at 40°, 110°, 180°, 250°, and 320° 
for boost plans. All plans were normalized so that 100% prescription dose covers 95% of the 
PTV. Table 1 summarized the PTV, rectum, and bladder volume information for the ten cases 
studied, and also the overlaps between PTV and OARs, which is commonly considered as the 
limiting factor for OAR sparing in the high-dose region.
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Each case in this study was planned using two different scenarios (human expert manual 
planning and DVH prediction-guided automatic planning) and three types of plans were created 
(Expert Plan, Clinical Plan, and PAF Plan). The study design and planning flow are shown in 
Fig. 1. The patient CT images and structures such as body, PTVs, and OARs are used to predict 
the DVHs.(12) The Expert Plan, Clinical Plan, and PAF Plan are then created with the beam angles 
mentioned above. The entire planning process was recorded by the screen capture software BB 
FlashBack (Blueberry Software, Birmingham, UK) for subsequent comparison and analysis.

Table 1. Patient anatomical information including volumes for PTV and ORAs and overlaps between PTV and OARs, 
which is commonly considered as the limiting factor for OAR sparing in the high-dose region. Overlap is expressed 
in percentage of the OAR volume.

   PTV Rectum Overlap Bladder Overlap
   (cc) (cc) PTV & Rectum (cc) PTV & Bladder

 Pt1 1PRI 113.8 69.3 11.0% 284.3 2.7%
   2BST 65.0 69.3 3.4% 284.3 0.8%

 Pt2 1PRI 196.7 79.7 7.5% 273.4 6.6%
   2BST 129.5 79.7 4.1% 273.4 3.9%
 Pt3 1PRI 155.8 48.8 2.5% 462.5 5.1%
 Pt4 1PRI 83.8 92.5 3.0% 443.5 1.0%

 Pt5 1PRI 118.9 63.0 8.6% 267.8 6.8%
   2BST 67.9 63.0 3.8% 267.8 2.4%

 Pt6 1PRI 171.0 65.7 10.2% 345.2 5.1%
   2BST 90.4 65.7 6.6% 345.2 1.6%

 Pt7 1PRI 183.0 47.8 5.4% 295.7 5.0%
   2BST 83.7 47.8 5.2% 295.7 1.6%
 Pt8 1PRI 90.9 69.0 4.7% 145.3 2.9%

 Pt9 1PRI 104.2 69.3 9.7% 123.8 7.2%
   2BST 54.3 69.3 4.6% 123.8 4.2%
 Pt10 1PRI 94.6 85.1 1.7% 102.8 6.3%

Fig. 1. Study design showing the Expert Plan which involves 150 iterations with user adjustments. The planner decides 
whether to continue optimization after 150 iterations (Clinical Plan). PAF Plan uses DVHs predicted from PAF model 
and does not involve any user activities.
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A.  Expert Plan and Clinical Plan
Expert Plan started with the conventional trial-and-error approach with an institutional OAR 
objective template modified from Radiation Therapy Oncology Group (RTOG) guidelines.(13) 
The institutional dose-volume constraints used in this study are: D25% < 65 Gy, D40% < 40 Gy 
for bladder, and D17% < 65 Gy, D40% < 40 Gy for rectum, and DMAX < 50 Gy for femoral heads. 
The maximum PTV dose must not exceed 110% of prescription dose, with < 105% preferred. 
To promote PTV dose homogeneity, maximum dose of 102% and minimum dose of 98% of 
the prescription were used as starting PTV objectives during optimization.

The institutional constraints were used as a starting point for the Expert Plan. The planner 
made on-the-fly adjustments to the starting objectives. This trial-and-error process continued 
until 150 iterations were reached. This plan with 150 interactions is referred to as Expert Plan. 
After 150 iterations, the planner made a decision whether to continue adjusting OAR objectives 
based on personal knowledge and experience. This process would continue until the planner is 
satisfied of the dosimetry. This final plan is referred as the Clinical Plan.

The Expert Plan and Clinical plans are referred as the two types of manual plans. While there 
is a 150 iteration limitation for the Expert Plan, there is no time limitation for the Clinical plan, 
which better represents the clinical IMRT planning practice. The entire planning process was 
recorded using BB FlashBack software to analyze optimization time and planning efficiency.

B.  Automatic Plan (PAF Plan)
The automatic plan, subsequently referred to as the PAF Plan, uses fixed patient-specific objec-
tive settings, as opposed to adjustable objectives used in Expert/Clinical Plans. This set of fixed 
patient-specific objectives was predetermined from the PAF model, which was derived from 
more than 100 previous clinically approved prostate IMRT plans.(12) The PAF-predicted DVH 
objectives were based on past clinically approved plans and reflected the best available clinical 
planning experience. To obtain an objective set for a particular patient, the patient’s anatomi-
cal information was firstly exported into an in-house MATLAB (MathWorks, Natick, MA) 
program. The dose volume objectives were generated using the PAF model for PTV, bladder, 
rectum, and femoral heads. These PAF objectives were then imported to the treatment planning 
system, replacing the institutional objective template at the beginning of the optimization. Since 
there is no additional adjustment to these objectives throughout the optimization, the process is 
considered fully automatic. To be comparable with the expert planning, the maximum iteration 
was also set to 150 for the PAF plan. The entire planning process was also recorded using BB 
FlashBack software.

C.  Plan evaluation
The quality of Expert, Clinical, and PAF Plans was evaluated by comparing DVH parameters. 
The DMAX and D98% for PTV, DMAX, D10cc, D25%, and D40% for bladder, DMAX, D10cc, D17%, 
and D40% for rectum, and DMAX for femoral heads were selected as key parameters for detailed 
analysis. All dosimetric parameters were compared in percentage of prescription dose.

In addition to dosimetric quality, the number of objective adjustments made by the planner 
during optimization was compared to evaluate planning effort and efficiency. For PAF Plans, 
the optimization finished at 150 iterations with no user adjustment. For Expert and Clinical 
Plans, the amount of adjustments reflected the efforts and efficiencies from the planner. The 
more efforts required, the less efficient is the optimization process. 
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III. RESULTS 

A.  Planning quality comparison
All the Expert, Clinical, and PAF Plans satisfied the basic clinical standard as they all met the 
institutional objectives for bladder, rectum, and femoral heads. With the same normalization 
that ensures prescription dose covers at least 95% of the PTV, the PTV DMAX was < 110% for 
all plans. The D98% of PTV for PAF Plans was 0.82% higher than Expert and Clinical Plans, 
on average, with a maximum of 2.31% and 1.96% higher, respectively.

A box plot of the dosimetric parameters for all three groups of plans is shown in Fig. 2. 
Even though the planner decided further optimization and extra adjustments of objectives 
would improve the dosimetric quality, the Clinical Plans only offered very limited benefits in 
low/mid-dose regions of OARs and were in general slightly worse in high-dose regions, when 
compared to Expert Plans. The differences for DMAX of PTV, bladder, and rectum between 
Expert and Clinical plans were < 0.51%, on average, with 2.07% maximum higher for Clinical 
Plans. Bladder D10cc, D25%, and D40% were in general lower for Clinical Plans, but < 0.49% 
on average. Rectum D10cc, D17%, and D40% for Clinical Plans were also 1.43%, 1.35%, and 
1.02% lower, on average, than Expert Plans, with maximum differences of 11.65%, 10.18%, 
and 11.21%, respectively. DMAX for femoral heads were comparable (< 35 Gy on average) for 
both Expert and Clinical Plans. 

The dosimetric parameters of PAF Plans were also compared to those of Clinical Plans. As 
shown in Fig. 2, in general, the differences between PAF Plans and Clinical Plans were small 
across all dosimetric parameters. Relative to prescription doses, the DMAX of PTV and rectum 
were 0.06% (-1.74% to 2.65%) and 0.14% (-1.56% to 2.20%) lower, while DMAX of bladder 
was 0.46% (-1.63% to 2.46%) higher, on average, for PAF plans. Bladder D10cc for PAF Plans 
was in general higher than Clinical Plans, but < 1.54%. Bladder D25% and D40% for PAF Plans 
were lower than Clinical Plans, by on average 0.69% (-7.71% to 4.57%) and 0.81% (-6.81% 
to 4.04%), respectively. Rectum D10cc, D17%, and D40% for PAF Plans were also 2.11%, 2.72%, 
and 0.27% lower, on average, than Clinical Plans, and up to 10.10%, 10.07%, and 8.69%, 
respectively. DMAX for femoral heads were comparable for both PAF Plans and Clinical Plans 
(< 35 Gy on average).

Fig. 2. Box plot for dosimetric comparisons between Expert, Clinical, and PAF Plans. The key parameters include DMAX 
for PTV, DMAX, D10cc, D25%, and D40% for bladder, DMAX, D10cc, D17%, and D40% for rectum, and DMAX for femoral heads. 
Wilcoxon signed-rank test indicates that, for all DVH parameters, there is no significant difference between three groups 
of plans.
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Wilcoxon signed-rank test(14) on Expert–Clinical and PAF–Clinical Plan pairs showed no 
statistical difference for all dosimetric parameters, except bladder D40% for Expert–Clinical Plan 
pair, but the absolute dose difference was only -0.4% ± 0.9% across all patients. Examples of 
dose distributions and DVHs for Expert, Clinical, and PAF Plans are shown in Figs. 3 and 4.

B.  Effort and efficiency comparison
The optimization for PAF, Expert, and Clinical Plans was finished within 3.2 (2.1 to 4.5), 4.0 
(3.3 to 4.9), and 5.9 (3.3 to 9.1) min, on average, for primary plans and 2.0 (1.4 to 2.3), 3.6 
(2.9 to 4.4), and 4.9 (3.1 to 7.2) min for boost plans, respectively, on an workstation with a 
6-core Xeon processor and 24 GB memory. Compared to Clinical Plan (Primary + Boost), the 
average optimization time for PAF Plan was reduced by 5.2 min on average, with a maximum 
time reduction of 7.1 min. In terms of delivery efficiency, the PAF Plans required 130 and 107 
fewer monitor units (MU), on average, compared to the Clinical Plans for the primary (794 to 

Fig. 3. Example dose distributions for Expert, Clinical, and PAF Plans. The three groups of plans are comparable, while 
the Clinical Plans can provide slightly better rectum sparing in the lower/medium dose region.

Fig. 4. Example DVH comparisons for Clinical and PAF Plans showing that the Clinical and PAF Plans were comparable. 
They are almost the same for PTV, bladder, and femoral heads. High-dose region is also similar for rectum, while Clinical 
Plans may provide slightly better sparing in the low/medium-dose region.
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1154 MUs) and boost (574 to 738 MUs) plans, respectively. The likely reason for this efficiency 
gain is that the PAF-predicted DVH represented a good balancing between PTV coverage and 
OARs sparing, and thus were able to produce smoother fluence than the manual optimization. 
While during the manual optimization process, the multiple back-and-forth adjustments of 
objectives could cause fluence over-modulation, and therefore required more MUs to deliver 
the same dose.

In addition to total optimization time comparison, the amounts of user adjustments were 
also compared among different planning methods. To achieve the Clinical Plans, the human 
planner had to adjust dose volume objectives on average by 4 to 14, 11 to 33, and 2 to 6 times 
for bladder, rectum, and femoral heads, respectively. Among all the OARs, the objectives for 
bladder and rectum were mostly adjusted by the planner. During the adjustments, dose and 
volume objectives were lowered by up to 75% and 37% from initial values set at the begin-
ning of the optimization, based on institutional template. In addition to DVH objectives, the 
objective priorities were adjusted multiple times for bladder and rectum by up to 20%. The 
PTV objective priority was also adjusted for every case and by ~ 10%.

 
IV. DISCUSSION

In this study, a PAF model-driven automatic IMRT plan optimization process was compared to 
two manual optimizing scenarios: under time constraint and with unlimited optimization time. 
The results showed highly comparable dosimetry quality with substantial benefits in planning 
efficiency. To achieve similar levels of target coverage and OAR sparing, the PAF Plan did not 
involve any user adjustment, compared to the Expert and Clinical Plans. The PAF plan also 
provided better delivery efficiency; average total MU in PAF Plans were ~ 100 fewer than those 
in Expert and Clinical Plans.

Although the saving of planning time by 5 min may not be clinically significant for a single 
prostate IMRT plan in a light workload environment, it is unsupervised and can be executed 
without human intervention. For batch plan generation, trade-off evaluation, or heavy load clin-
ics, such saving of planning resources could be valuable. We are in the process of evaluation 
the efficiency gain on head and neck planning tasks, which is much more complicated and is 
expected to benefit more from this PAF-based automated planning workflow.

It is important to note that the purpose of this study is to evaluate the performance of the 
PAF-based automatic planning system developed at our institution by comparing the plan qual-
ity to Expert and Clinical Plans. Evaluation studies of the similar nature have been conducted 
by other groups,(10,15) but for their particular knowledge-based planning implementation only, 
which is different from what was used in this study. 

Currently, the Expert and Clinical Plans were performed by one single planner. The clinical 
planning efforts could vary substantially among planners, as a result of planners’ experiences 
with IMRT planning, and also due to different optimization packages.(16) Another factor to 
note is that both the expert and clinical planning were video-recorded (see Appendix A: IMRT 
Planning Demo Video, uploaded separately to the website) and the planner tended to adjust as 
quickly as possible, even though that was not the intention. So in reality, the Clinical Plans may 
need more adjustments than shown in this study. It should also be noted that the efforts and 
efficiencies compared in this study are for optimization only and should not be confused with 
the total planning reported in other studies.(16) In clinical treatment planning, the optimization 
is only one of the many steps needed to produce a clinically deliverable plan, besides contour-
ing, chart preparation, and QA.

From our observation, only three out of ten primary and two out of six boost Expert Plans 
were considered “optimal” by the planner at 150 iterations. All the other Expert Plans were 
further adjusted based on the judgment of the planner, under the expectation that a better OAR 
sparing and/or target coverage could be achieved. However, quantitative comparison between 
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Expert Plans (without additional adjustment) and Clinical Plans (with additional adjustments) 
shows that the actual benefits of further adjustments after 150 iterations were very limited — 
< 1% difference on average. This indicates that, due to lack of knowledge of achievable DVH 
for a particular anatomy, the planner does not exactly know when to adjust, where to adjust, and 
even when to stop optimization. In other words, even an experienced planner does not know 
whether an optimal plan has been achieved without clear knowledge on the correlation between 
anatomy features and achievable DVH. A planner has to rely on the additional adjustments till 
no further improvement can be achieved, which is considered inefficient. On the other hand, 
the PAF-based automatic planning has learned this anatomy-DVH correlation during model 
training process based on a large number of high-quality clinical plan samples, and can there-
fore more accurately predict the achievable DVH for a particular anatomy under institutional 
plan quality consensus with less variation than individual planner’s judgment. Therefore the 
objectives acquired through PAF modeling can offer more accurate and efficient guidance for 
the optimizer to achieve a clinical-quality plan.

In addition to improvement in optimization efficiency and quality consistency, PAF-based 
DVH objectives helped achieve better OAR dose reduction for some cases. For one case 
among the ten randomly selected patients as shown in Fig. 5, the PAF plan achieves reduction 
in rectum D10cc, D17%, and D40% by 7.7 Gy, 7.7 Gy, and 4.6 Gy, when compared to the Clinical 
Plan. Detailed evaluation shows that the Clinical Plan was already far below the institutional 
objectives constraints, and was considered clinically acceptable. In cases like this, even for an 
experienced planner, it was still difficult to precisely estimate whether the optimal sparing has 
been achieved. Since the planner did not know the achievable DVH for this specific patient at 
the time of planning, further reduction in OAR dose was not pursued. PAF-based objectives, 
on the other hand, were able to observe such favorable anatomical feature, and predict a lower 
DVH based on patient anatomy before the optimization, guiding the optimizer towards more 
— but still reasonable — OAR sparing improvement. 

During the planning process, all PAF-modeled DVH objectives were met within the opti-
mizer. However, the final DVHs after volume dose calculation show some deviations from the 
corresponding PAF objectives for some cases. This is due to the difference between dose cal-
culation algorithms used by the optimizer and the volume dose calculation. The multiresolution 
dose calculation (MRDC)(17) algorithm used in the optimizer sacrifices the calculation accuracy 
for speed with less accurate source modeling and no heterogeneity correction for secondary 
radiations. On the other hand, the volume dose calculation performed after optimization uses 
analytic anisotropic algorithm (AAA),(17) which has more accurate primary photon, secondary 
photon, and electron contamination modeling, as well as heterogeneity correction. Therefore 
the DVH shown in the optimizer could be different from final plan DVH calculated by the more 
accurate algorithm, even though they are calculated based on the same set of fluence maps. This 

Fig. 5. An example when PAF-based objectives helped to achieve better OAR sparing. In this case, the PAF Plan further 
reduced rectum dose by 7.7 Gy for both D10cc and D17% compared to the Clinical Plan.
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difference is more pronounced in cases with more heterogeneity (such as large volume of rectal 
gas) and interferes with the PAF’s guidance to the optimizer. Even if all PAF objectives are met 
during the optimization, the final DVH might still not fully match the predicted DVH. This issue 
is not a limitation of the PAF modeling, but of the current treatment planning system that we 
are using, and could be potentially alleviated or resolved by the intermediate dose calculation 
feature introduced in the newer version of treatment planning system.

In addition to dose calculation, large heterogeneity could also result in reduced prediction 
accuracy. The PAF models were built based on modeling the anatomy and dose relationship 
of clinical cases that mostly had empty rectum,(12) which is in accordance with our clinical 
practice guidelines. The PAF model does not differentiate rectal gas from tissue. For a case 
with large rectal gas, the PAF model predicted the objectives based on the outer contour of 
an empty rectum without considering the air cavity inside, whereas in reality the presence of 
large air cavity would change the dose distribution in the volume dose calculation. Therefore in 
cases like this, the objectives generated from PAF model were somewhat inaccurate, and could 
lead to suboptimal plans. We are currently investigating solutions to overcome this limitation.

The PAF model does not predict the optimal number of beams or optimal beam angle. In 
this study, a universal beam arrangement of 25°, 70°, 130°, 180°, 230°, 290°, and 335° and 40°, 
110°, 180°, 250°, and 320° was employed for the primary and boost treatments, respectively. 
Since our institution uses a beam set of template for prostate IMRT plans, the fixed beams angle 
selection is consistent with our clinical practice. 

 
V. CONCLUSIONS

In this study, the knowledge-guided automatic IMRT optimization was compared to manual 
optimization based on both dosimetry and efficiency for prostate cancer. The results show that 
the plans generated automatically based on the PAF knowledge model easily met the institu-
tional or RTOG objectives for OARs, and are comparable to the manual plans in key DVH 
parameters of PTV and OARs. In addition, the PAF process substantially reduces optimization 
efforts, and is independent of planner’s knowledge and experience. Therefore, the PAF-based 
automatic IMRT treatment planning may bring positive clinical impact if implemented in the 
clinical treatment planning system, and might enable automatic IMRT planning without or with 
minimum human intervention.
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APPENDIX A:  IMRT Planning Demo Video  

(see file uploaded separately to the website)
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