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Abstract: The inoculation of beneficial microorganisms to improve plant growth and soil properties
is a promising strategy in the soil amendment. However, the effects of co-inoculation with
phosphate-solubilizing bacteria (PSB) and N2-fixing bacteria (NFB) on the soil properties of typical
C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined
the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens), NFB (C: Azotobacter
chroococcum and B: Azospirillum brasilence), and combined PSB and NFB treatments on C, N, P
availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus
seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N
and available P contents were detected after bacteria additions. Three patterns were observed for
different additions according to the dynamic bacterial growth. Synergistic effects between NFB and
PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However,
decreases in soil available P and N were observed on the 60th day, which was induced by the decreases
in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in
greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage,
combined PSB and NFB treatments are more appropriate for practical fertilization at intervals
of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions
during culture and application, which may help with understanding the possible mechanism of soil
amendment driven by microorganisms under C deficiency, thereby providing an alternative option
for amending such soil.
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1. Introduction

In Southern China, plantation areas are mostly assigned to poor sites with yellowish-brown clay
soil in the subtropical mountainous areas, as part of the Grain for Green Project (GTGP). These regions
are perceived to be infertile due to low levels of organic C and nutrients [1,2]. To improve the poor
status of such soils, many studies are emphasizing efficient soil amendment strategies [1,3]. However,
the most common strategy, chemical fertilization, has produced harmful effects in the soil and the
environment [4]. Due to leaching and immobilization [5], few nutrients, such as N and P, in the soil are
available for plant uptake even after long-term chemical fertilizer treatment [6–8]. These problems
are now compelling researchers to find more sustainable and advanced techniques to remediate the
soil [9,10]. Of the recommended strategies, the use of bio-fertilizer has proven to be an efficient and
eco-friendly management practice in improving soil fertility and crop growth [11].
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A bio-fertilizer is a substance containing living beneficial microorganisms that can colonize the
rhizosphere and stimulate plant growth by increasing the supply of available nutrients to plants when
applied to the soil [12]. Soil N and P are known to be two of the most essential nutrients for plant growth
and development worldwide. As tested soils in South China are seriously lacking in available N and P,
the fixation of N and solubilization of P driven by N2-fixing bacteria (NFB) and phosphate-solubilizing
bacteria (PSB) are of central importance. NFB have the ability to convert inert N2 into ammonium
and thereby protect nitrogen from being lost through volatilization and leaching [13]. PSB can convert
insoluble phosphates into a bio-available form through solubilization and mineralization [14].

Soil C plays a crucial role in the application of bio-fertilizer, which is one of three soil components
crucial for its physical and biochemical properties, and the degradation of organic matter is closely
related to soil microbial activity [15,16]. Several studies have reported different findings regarding
the effects of bio-fertilization on soil C content [17]. In turn, soil microbial populations and enzyme
activities are related to organic C input (straw, compost, and manure), which could reduce the
negative effects of the severe environment on microorganisms [18]. Many reports have highlighted
the effects of microorganisms input on soil nutrient content, plant growth, and disease resistance,
as well as the importance of soil C when applying microorganisms to the soil [9,16,19]. However, most
approaches were conducted using a single bacteria strain, which may partially account for the recorded
inconsistencies in the field [20,21]. Hence, less is known about the effects of co-inoculation with PSB
and NFB on soil properties. The soil amending mechanism and interactions between NFB and PSB
under C-deficiency remain to be determined.

The effects of bio-fertilizer evaluated in other areas are often limited by different factors, such
as incubation time, inoculation types, limited C resources and survival of microbes [22]. On the
other side, soil native microbes could influence the effects of bio-fertilizer on plant growth. Therefore,
the characteristics of the typical soil in subtropical mountainous plantation areas, the time-effectiveness
of inoculants, and the selection of the appropriate beneficial microorganism combination for fertilization
should be investigated. The aims of this study were to determine the adaptive bacterial isolates or
combinations of NFB and PSB, and to investigate the soil amendment mechanism and interaction
between NFB and PSB under C-deficiency. Basically, a lab experiment was conducted to investigate,
(1) whether these microorganisms could survive and multiplicate under limited C resources, (2) their
efficiency in improving the main soil nutrient contents (N and P) in yellowish-brown clay soil under
sterilized conditions. As supplementary, a pot experiment was conducted under non-sterilized soil
conditions, to verify the effects of these strains accompanied by the native microbes, on plant growth
and biomass accumulation. These results could interpret the mechanism of action and interaction
between bacteria strains and soil with different incubation time under C-deficient conditions, as well
as provide supports for the application of bio-bacterial fertilizer in such soils.

2. Materials and Methods

2.1. Soil Properties and Pretreatment

Natural soil was sampled from the topsoil (0–20 cm) at a Cyclocarya Paliurus plantation (a typical
medicinal plant in subtropical regions in China) in July 2016, which was located in Baima Nanjing
(31◦35′ N, 119◦10′ E), China. Samples were collected from five plots (1 × 1 m) in an “S” pattern in
4-year-old C. Paliurus plantation fields (about 120 × 40 m, at a planting density of 2 × 2 m) and were
mixed thoroughly to form a composite sample. After removing the plant material, stones, and other
debris, the collected soil was divided into two parts, one was sieved (2 mm) and kept at 4 °C prior to
use in the lab experiment, the other one was used for pot experiment.

The above soil is the representative soil type in subtropical regions in China, which was classified
as yellowish-brown clay soil with a heavy texture, pH of 6.5, bulk density of 1.6 g·cm–3, total C of
4.1 g·kg–1, total N of 0.79 g·kg–1, total P of 0.30 g·kg–1, total of K 0.10 g·kg–1, NH4

+–N of 10.94 mg·kg–1,
NO3

––N of 2.68 mg·kg–1, and available P of 1.03 mg·kg–1.
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2.2. Microorganisms

In this study, we used four microorganisms, including phosphate solubilizing bacteria (PSB,
viz., M: Bacillus megaterium and F: Pseudomonas fluorescens) and nitrogen-fixing bacteria (NFB, viz.,
C: Azotobacter chroococcum and B: Azospirillum brasilence). The above bacteria have been documented as
having the ability to improve soil nutrients, such as N and P [23–27]. Prior to use, the inocula were
prepared by incubating bacteria strains in a lysogeny-broth medium (LB medium, pH: 7.0, comprised
of 10 g tryptone, 5 g yeast extract, and 10 g NaCl per liter). At the mid-exponential growth phase,
the strains were diluted using sterile distilled water to a final concentration of 1 × 108 colony forming
units (CFU)·mL–1. None of these strains have shown antagonistic effects against one another [19,28,29].

2.3. Experimental Design

In the lab experiment, the soils were incubated with 12 additions (treatments) of the 4 bacteria,
containing 4 treatments with a single bacteria addition (SBA), 7 treatments with a mixed bacteria
addition (MBA), and 1 control with no bacteria addition (Table 1). Each treatment was replicated
4 times, and the bacteria were added to the soil, which was autoclaved enough times to eliminate other
microbes. Thereafter, 300 g of sterilized soil supplemented with bacteria was placed into a cylindrical
tissue-culture box (diameter (D) × height (H): 8.5 × 8.4 cm, breathable and waterproof), and the box was
incubated in a bio-clean incubator at 28 ◦C under darkness conditions for 60 days. During incubation,
the soil moisture was held at 60% of the water holding capacity with sterile water.

Table 1. Soil with 12 additions with different bacteria combinations (mL).

Inoculants
Type

Treatment
Code

M: Bacillus
megaterium

F: Pseudomonas
fluorescens

C: Azotobacter
chroococcum

B: Azospirillum
brasilence

SBA

M 5 0 0 0
F 0 5 0 0
C 0 0 5 0
B 0 0 0 5

MBA

MF 2.5 2.5 0 0
MC 2.5 0 2.5 0
MB 2.5 0 0 2.5
FC 0 2.5 2.5 0
FB 0 2.5 0 2.5
CB 0 0 2.5 2.5

MFCB 1.25 1.25 1.25 1.25

Control Control 0 0 0 0

The pot experiment was conducted based on the lab experiment results, with three types of
bacteria combination (PSB: M, MF; NFB: C, CB; PSB+NFB: MFCB). An important medicinal species
(C. Paliurus, 2-year-old seedlings) native to China’s subtropical mountainous area, was grown in the
same soil as we used in this study without sterilization. From April, four times of bio-fertilizations
were conducted every 45 days according to bacterial growth results.

2.4. Sampling and Analytical Methods

The soils in the lab experiment were vertically sampled on the 5th, 10th, 15th, 20th, 30th, 45th,
and 60th days of incubation (Figure 1) to estimate the bacterial quantity (BQ) using the plate count
serial dilution method [30]. Similarly, soil samples from each box on the 0th, 30th, and 60th day of
incubation were collected and stored at 4 ◦C for measurement of the soil properties. Total C (TC)
and total N (TN) were evaluated using an elemental analyzer (vario MAX CN, Elementar, Hanau,
Germany), where the concentration of inorganic N (IN, including NH4

+–N and NO3
––N) was extracted

with a 2 M KCl solution, and then measured by colorimetry on an AutoAnalyser III (SEAL Analytical,
Berlin, Germany). Soil available P (SAP) was determined using the molybdenum-blue method [31].
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Acid phosphatases (AcPase) activity was assessed using the method described by Tabatabai and
Bremner [32]. Each experiment was conducted in three replicates for measurements of the BQ and
soil properties.

For the measurement of plant growth in the pot experiment, the whole plants were sampled in
late September to assess the biomass accumulations (including stem, root, and leaf). Seedling heights
were measured by the difference of initial (April) and final height (late September).
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Figure 1. Abridged general view of soil sampling. Five random vertical sampling holes (diameter:
8 mm; depth: 60 mm) were implemented for lessening the disturbance of sampling to microbes.

2.5. Statistical Analysis

The Shapiro–Wilk test and Levene’s test were used for testing the normal distribution of the data
and homogeneity of the variances, respectively. Mixed linear models were used to assess the effects of
the inoculant, incubation time, and their interactions (as fixed effects), as well as the block as a random
effect on the soil’s biochemical properties. Where there were significant effects (p < 0.05), the Duncan’s
multiple range test was applied to determine the differences between the individual treatment means.
Tamhane’s T2 was used to test for differences amongst treatments when variances of the tested data
were not equal. Data are expressed as means ± standard deviation (SD). All statistical analyses were
considered significantly at p < 0.05. The pairwise relationships of BQ and P-related indexes were
elucidated using linear regression based on Spearman’s correlation analysis. All statistical analyses
were performed using SPSS 19.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Dynamic Growth of Bacteria in Incubation Soil

Generally, the bacterial quantities (BQ) in all the treatments significantly increased with prolonged
incubation, whereas the maxima were obviously different between the mixed bacteria addition
(MBA) and the single bacteria addition (SBA). The maximum values of the BQ for MBA ranged
from 18.3 × 106 CFU·g–1 in MB to 43.3 × 106 CFU·g–1 in MFCB, whereas for SBA, they ranged from
8.3 CFU·g–1 in M to 17.3 × 106 CFU·g–1 in C (Table 2). Based on the dynamic changes in bacterial
growth, three patterns were observed for the different additions (Figure 2). The peaking of the BQ for
SBA occurred at different times from that in MBA; the quantity in SBA peaked at the 15–20th day and
the peaks in most of the MBA (MC, CB, MB, FC) occurred at the 30th day, whereas some (FB and MF)
presented bimodal peaks at the beginning and midterms of incubation (Figure 2).

Quantities of the two functional bacteria varied with incubation length. Quantities of the
phosphate-solubilizing bacteria (M and F) appeared to decline in the last 30 days, while N2-fixing
bacteria (C and B) increased (Table 2 and Figure 2a). On the 60th day, 17.3 × 106 and 12.7 × 106 CFU·g–1

in C and B, respectively, were significantly higher than the 1.9 × 106 and 3.6 106 CFU·g–1 in M and F,
respectively (p < 0.05).
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Overall, the single bacteria grew rapidly without competing pressure compared to other
combinations, reaching their peak quickly and with a low maximum quantity. Conversely, the
competition of mixed bacteria retarded the peaking time but increased the maximum.
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(a) pattern 1, a single peak observed at 10–20 d by single bacterium addition. (b) pattern 2, a single
peak observed at 30–40 d by mixed bacteria addition. (c) pattern 3, bimodal observed at different time
by mixed bacteria additions.
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Table 2. Changing patterns of bacterial quantities (×106 CFU·g–1 soil) for bacterium addition with different incubation duration (means ± standard deviation).

Treatment Code
Incubation Duration (d)

0 5 10 15 20 30 45 60

MFCB 0.167 ± 0 42.7 ± 5.3Aa 43.3 ± 4.7Aa 9.7 ± 1.5Dc 13.6 ± 3Cbc 20 ± 0.6Bd 7.3 ± 1DEbcde 3.7 ± 1Fefg
MF 0.167 ± 0 18C ± 0.3c 33.3 ± 1.9Bb 15.67 ± 1.3Da 10 ± 1.2Ecd 38 ± 1.2Aa 15.33 ± D1a 6.1 ± 1Fef
FC 0.167 ± 0 17 ± 6Bc 17 ± 5.5Bc 7.2 ± 1DEde 25.6 ± 3.8Aa 26.6 ± 3.2Ac 8.7 ± 2.8CDbc 10.5 ± 2Ccd
MB 0.167 ± 0 12.9 ± 2BCc 15 ± 1.6ABc 15.3 ± 2ABa 13.8 ± 1Bc 18.3 ± 2Af 12.8 ± 2.7BCab 14.3 ± 0.3Bc
FB 0.167 ± 0 33 ± 4.3Ab 10.3 ± 4.1Ccde 12 ± 2Cb 5.3 ± 1DEefg 26.3 ± 3.5Bc 10 ± 3.2Cabc 7.3 ± 2Dde
CB 0.167 ± 0 7.3 ± 2Dd 4.8 ± 2.3DEFde 5.9 ± 1.8DEde 11 ± 1Ccd 28.3 ± 5.7Ac 12.7 ± 5Cab 22 ± 5.3Ba
MC 0.167 ± 0 16.7 ± 5Bc 12.1 ± 0.2Ccd 7 ± 1DEde 4.8 ± 1.8EFfg 32 ± 2.6Ab 10 ± 3.5CDabc 3.3 ± 1FGefg

B 0.167 ± 0 5.3 ± 0.6Ed 4.3 ± 2.2EFe 8.0 ± 1Dde 17.2 ± 3.5Ab 16 ± 0.8ABe 15.3 ± 4ABCa 12.7 ± 3Cc
C 0.167 ± 0 5.3 ± 3.2DEFd 9.7 ± 1.5Ccde 14.0 ± 0.5Bc 9.3 ± 3Cde 6.0 ± 1DEf 7.7 ± 1CDbcd 17.3 ± 2Ab
F 0.167 ± 0 8.3 ± 1.5Ad 7.1 ± 2.5ABde 5.0 ± 0.4BCe 7.1 ± 3ABdefg 5.0 ± 0.8BCf 1.8 ± 0.8De 1.9 ± 0.7Dg
M 0.167 ± 0 5.6 ± 1.5BCd 4.2 ± 1.6CDEe 7.7 ± 1.5ABcd 8.3 ± 3Adef 5.0 ± 0.6CDf 4.5 ± 0CDEcde 3.6 ± 1DEefg

M, F, C, B: single inoculation with M (Bacillus megaterium) or F: (Pseudomonas fluorescens) or C (Azotobacter chroococcum) or B (Azospirillum brasilence). MC, CB, FB, MB, FC, MF: dual
inoculation with M and C, C and B, F and B, M and B, F and C, M and F. MFCB: mixed inoculation with four strains. Different capital letters denote significant differences among incubation
durations at p < 0.05, different lowercase letters denote significant differences among treatments at p < 0.05 on the same incubation duration.
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3.2. Inoculants, Incubation Time, and Their Interactions on Soil Characteristics

Based on the statistical analysis results, the effects of the inoculants, incubation duration, and their
interactions on soil TC, TN, IN, available P, and P-related enzyme activities are presented in Table 3.
Over a 60-day incubation, we found that TC and TN showed significant responses to incubation time,
whereas no significant effects of inoculant addition on TC and TN were detected (p = 0.07 and 0.06,
Table 3). IN (NH4

+–N + NO3
––N), available P, and P-related enzyme activities of the incubation soil

were significantly affected by inoculant additions and incubation duration (p < 0.01). Interactions of
the inoculants and incubation duration were significant for all measured parameters (p < 0.05, Table 3).

Given the significant effects of incubation time on these indexes, pairwise comparisons of the
indexes between 30 days and 60 days were analyzed for all additions (Table 4). Impacts of incubation
duration on SAP existed in each inoculant except CK. However, the effects of incubation duration on
other soil parameters varied with different inoculants.

Table 3. The linear mixed model for the effects of inoculants, incubation time, and their interactions on
soil characteristics.

Variables
Inoculants Incubation Duration Inoculants × Incubation Duration

F-test Sig. F-test Sig. F-test Sig.

TC 1.82 nd 54.48 ** 2.03 *
TN 1.86 nd 43.11 ** 2.93 **

NH4
+-N 10.90 ** 24.57 ** 3.11 **

NO3
--N 20.27 ** 48.50 ** 5.87 **

SAP 26.58 ** 2162.43 ** 21.40 **
AcPase 24.42 ** 67.18 ** 21.34 **

IN 19.18 ** 75.34 ** 7.65 **

TC: total carbon; TN: total nitrogen; SAP: soil available phosphorus; IN: inorganic nitrogen; Sig: significance, *
indicates p values < 0.05, ** indicates p values < 0.01, nd indicates significance not dectected.

Table 4. Pairwise comparisons’ results of soil indexes between 30d and 60d incubation for all additions.

Inoculants
TC TN NH4

+-N NO3
--N SAP AcPase IN

30d-60d 30d-60d 30d-60d 30d-60d 30d-60d 30d-60d 30d-60d

SBA

M ** ** ** ** nd **
F nd * * * ** * **
C * nd nd nd ** nd nd
B nd nd ** nd ** nd **

MBA

MF ** ** ** * ** ** **
MC ** * nd ** ** ** **
MB * * nd ** ** * nd
FC * ** nd ** ** ** nd
FB * ** * ** ** ** **
CB nd nd * nd ** * **

MFCB nd nd * nd ** ** **

Control CK nd nd nd nd nd nd nd

3.3. C and N Contents of the Incubation Soil

As shown in Table 5, the results show the significant effects of bacteria additions on TC and TN
after a 30-day incubation (p < 0.05). Prominent increases in TN content were found in MF, FB, and FC
at 30 days compared to the control (0.7 g·kg–1). However, variations in TC and TN contents among
different bacteria additions were not significant at 60 days, but obvious reductions occurred in both
SBA and MBA at 60 days compared to 30 days (Table 4; Table 5; p < 0.05). For instance, significant
decreases in TC in treatments M, C, and MC were detected at 60 days compared to 30 days (decreased
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by 12.1%, 7.4%, and 16.1%, respectively), whereas obvious reductions of N in MF, MC, MB, FC, and FB
were recorded (Table 5).

Differences in IN contents were observed after additions of various bacteria and two incubation
durations (Table 4; Table 5). A significant increase in soil IN content was detected in the first 30 days
after bacteria addition (Table 5, p < 0.05). However, in contrast to the 30 days, the IN contents of most
treatments at 60 days were lowered but were still significantly higher than in the control (Table 4,
p < 0.01). Statistically, no remarkable changes were detected under conditions of inoculation with NFB
alone (except B at 30 days) compared to the control.

Table 5. Incubation soil TC, TN and IN contents after beneficial bacteria addition.

Inoculants
TC (g·kg–1) TN (g·kg–1) IN (mg·kg–1)

30 d 60 d 30 d 60 d 30 d 60 d

SBA

M 4.6 ± 0.2a 4.0 ± 0.3a * 0.9 ± 0.1a 0.7 ± 0.1a * 34.8 ± 1.6b 19.6 ± 2.4cd *
F 4.1 ± 0.2a-d 3.9 ± 0.1a 0.9 ± 0.1ab 0.7 ± 0.1a * 34.3 ± 2.5bc 23.9 ± 6.6abc *
C 4.3 ± 0.2a-d 4.0 ± 0.2a * 0.7 ± 0.1c 0.7 ± 0.1a 10.7 ± 2.8f 9.7 ± 3.5f
B 4.1 ± 0.1cd 3.9 ± 0.1a 0.8 ± 0.1bc 0.7 ± 0.1a 30.4 ± 8.5cd 8.7 ± 1.2f *

MBA

MF 4.5 ± 0.3ab 4.0 ± 0.6a * 0.9 ± 0.0a 0.6 ± 0.1a * 43.1 ± 4.8a 28.6 ± 3.6ab *
MC 4.5 ± 0.4a 3.8 ± 0.1a * 0.8 ± 0.1abc 0.7 ± 0.1a * 23.7 ± 7.4de 17.5 ± 4.2cde *
MB 4.4 ± 0.1abc 3.9 ± 0.1a * 0.8 ± 0.1abc 0.7 ± 0.1a * 25.9 ± 5.5d 22.3 ± 2.2bc
FC 4.2 ± 0.2a-d 3.8 ± 0.1a * 0.9 ± 0.1ab 0.7 ± 0.1a * 22.4 ± 3.4de 18.4 ± 4.9cde
FB 4.2 ± 0.1bcd 3.8 ± 0.1a * 0.9 ± 0.1ab 0.7 ± 0.1a * 27.7 ± 1.3cd 18.9 ± 2.5cd *
CB 4.2 ± 0.1cd 4.2 ± 0.1a 0.7 ± 0.1c 0.7 ± 0.1a 21.2 ± 4.7bc 12.2 ± 0.9def *

MFCB 4.3 ± 0.1a-d 4.1 ± 0.1a 0.8 ± 0.1abc 0.7 ± 0.1a 20.2 ± 0.2e 30.8 ± 12.8a *

CK CK 4.0 ± 0.1d 4.0 ± 0.2a 0.7 ± 0.01c 0.7 ± 0.0a 10.9 ± 1.4f 10.8 ± 0.1ef

Different lowercase letters denote significant differences among treatments at p < 0.05 on the same sampling date. *
means significant differences between 30d and 60d.

3.4. AcPase Activity and SAP Concentrations

Soil available phosphorus (SAP) concentrations and AcPase activity in the soil after a 60-day
incubation are presented in Figure 3. The SAP levels of all treatments were very low, ranging from
about 1 mg·kg–1 in CK to 5 mg·kg–1 in FB at 30 days (Figure 3a). During the 60-day incubation, the
SAP concentrations of all treatments increased at 30 days in contrast to CK, but significantly declined
at 60 days (Table 4, p < 0.01). For example, the SAP in FB at 30 days was significantly higher than in
other treatments, but then declined by about 63% at 60 days, which was in accord with the change in
the corresponding AcPase activity (Figure 3b).

Significant variations in AcPase activity in different treatments were detected (p < 0.05) and the
impacts of incubation duration on AcPase activity in SBA were different from the effects in MBA
(Table 4). For instance, AcPase activity in treatment M (belonging to SBA) showed no significant
differences between 30 and 60 days, whereas AcPase activity in MFCB and FB (belonging to MBA) at
60 days showed lower values (Figure 4). AcPase activity and SAPs in single applications of NFB (C, B,
CB) were lower than in most of the other additions, although co-inoculation with both PSB and NFB
(MC, FC, FB, MFCB) significantly increased the concentrations of SAP and AcPase activity at 30 days
(p < 0.05, Figure 3). However, this effect was minimal at 60 days. Compared to 30 days, the AcPase
activity in FB at 60 days declined by 70%, which was accompanied by an obvious drop in the SAP
concentration (Table 4, Figure 3; p < 0.01).
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3.5. Seedling Height and Biomass Accumulation

As shown in Figure 4a, the total biomass accumulation of C. Paliurus was significantly increased
after bacterial additions. Plant biomass assessment was divided into four components, including
stem, leaf, thick root and fine root. Compared with seedlings grown in native soil (CK), significant
increments were detected in each component after bacteria addition. However, no positive effect of
PSB application (treatment M and MF) on plant biomass was found during the investigation. On the
contrary, the application of NFB (C and CB) significantly increased biomass accumulation of leaf and
root. It is noteworthy that the biomass of above ground (stem, leaf) and thick root in co-inoculation
with PSB and NFB (treatment MFCB) obtained about 47.8g and 20 g per plant respectively, which were
significantly higher than when these microorganisms were used alone.
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Compared with CK, the total increments of seedling height were improved after bacterial
additions (Figure 4b). Specifically, dual inoculation with PSB (MF) and co-inoculation with PSB
and NFB (treatment MFCB) resulted in greater influences on seedling height than other treatments,
including treatment only retained with native microbes.

4. Discussion

4.1. Changes of BQ Influenced by C Resources and Interactions of Bacteria

Shortages of available N and P in soils with poor C content are common in hilly and mountainous
regions in China’s subtropical area where plant growth is limited. Bio-fertilization is a better choice
compared to chemical fertilization for sustainably improving soil fertility [7,33]. Different from earlier
studies [15,16], we incubated the inoculants in soil that collected from poor natural fields with low-level
C. Soil biological properties, such as bacterial/fungal quantities and enzymes, are significantly correlated
with soil C level [34]. As a result, BQ in most of the treatments performed similarly, with increases first
then decreases during the 60-day incubation period (Figure 2). This indicates a coefficient restriction
between limited C resources and the resilience of bacteria [35].

Here, three growth patterns of the inoculants were observed during the incubation, suggesting
different responses of the BQ to inoculant isolates or in combination under C-deficient conditions
(Figure 2). The BQ in some treatments increased again after their first peak, such as the co-inoculations
(MF, FB, MFCB) in pattern 3 (Figure 2c). This was obviously different from previous publications in
which only one peak was observed [20,21,36]. We speculated that the occurrence of the second growth of
bacteria was mainly stimulated by co-inoculation with PSB and NFB, where synergistic effects activated
under the circumstances of limited available C and N resources in the microcosms [19,37]. Similar
studies reported that mixed microbial cultures allowed their components to interact with each other
synergistically via physical or biochemical activities, thereby simultaneously improving viability [38,39].
In this experiment, synergistic mechanisms were found in the MF, FB, and MFCB, but BQ finally
decreased under limited nutrients conditions. This result provides support when choosing the
inoculant type (PSB+NFB) and frequency (30–45d) of fertilization when applying bio-fertilizer in such
soils. Co-inoculation with PSB and NFB in soil results in more interactions of inoculants, such as the
production of enzymes and organic acid, although more energy and inorganic nutrients would be
consumed than when these organisms were used alone [19,40,41]. This was also supported by our
study, where limited energy resources restrained the population growth for MBA at 30–40 days. Hence,
the appropriate amount of C resource input during bio-fertilization is necessary when applying in
such soil with low C level.

4.2. Additions of Bacteria Improved Soil Nutrients with Different Patterns

The responses of BQ to different inoculants under C-deficient conditions provided a better
understanding of the relationship between the BQ, inoculant type, incubation duration, and available
nutrients. Soil available nutrients, such as available N and P, are indispensable in regulating plant
growth. However, soil available nutrients are often limited due to the changes in related enzyme and
microorganism activities. During culture, the available nutrient contents in soil increased at an early
stage (30 days) but declined at a later stage (60 days, Table 4; Table 5; Figure 3). This pattern was
consistent with the changing tendency of BQ (Table 2). Many studies have shown that the populations of
beneficial microbes in soil provided the foundations that positively affected soil characteristics [22,42,43].
Limited bacteria quantities in soil decreased available nutrients production, such as N and P, which may,
in turn, restrict the population of microbes and affect the rates of the C decomposition process [44,45].
Related reports have revealed that soil available C and N affect the pivotal process of microbial growth,
and N-assimilation that driven by soil microorganisms mostly occurs in the NH4

+–N of inorganic N
and alanine of organic N [46–48]. The microflora is positively correlated with soil C and available
nutrients, and soil nutrients are conducive to increasing the abundance of soil microorganisms [49,50].
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Thus, regular organic and bio-based fertilization of soils are favorable to the building of positive
structures and functioning of the soil microbial community [3,51,52].

Few effects of a single application of NFB on the availability of N were detected during culture
(Table 5). However, co-inoculations with NFB significantly increased soil available P concentrations
and the related enzyme activity (Figure 3a). Two assumptions to explain these synergistic effects
are presented here: (1) co-inoculants with NFB could synergistically stimulate population growth of
microbes based on the above discussion and (2) NFB could directly promote the activity of P-related
enzymes (AcPase). Liu et al. stated that certain species of NFB could increase P uptake under N
addition, which is related to soil P-related enzyme activity [53,54]. AcPase activity is significantly
affected by soil N, P conditions, and soil microorganism activities could result in an obvious change of
AcPase activity. However, the AcPase activities of soil culture with NFB (C, B, CB) were obviously
lower than the others (Figure 3b). This indicates the synergistic effect of specific NFB strains on SAP
and related enzyme activity could be explained by stimulating growth and phosphate-solubilizing
effects of PSB, rather than directly increasing the AcPase activity. This assumption could explain the
result of the FB treatment, where the BQ decreased by about 72% at 60 days compared to 30 days, being
accompanied by a drop in AcPase activity and SAP concentration.

The relationships between BQ and P-related indexes in SBA and MBA at 30d based on linear
regression are shown in Figure 5. The P-related indexes (SAP and AcPase) significantly increased in
both SBA and MBA with increases in the bacterial quantities (p < 0.05, Figure 5), while MBA resulted
in higher value. And the SAP concentrations were correlated with the AcPase activity (R2 = 0.5423,
p < 0.001). This suggests that changes in the SAP concentrations mainly resulted from changes in the
BQ and following altered P-related enzyme activities under bio-fertilization.
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4.3. Co-Inoculation with NFB and PSB Resulted in Higher Plant Biomass Accumulation

The pot experiment was used for evaluating the pragmatic effects of these bacteria by compared
to treatment with only native microbes (CK), while the lab experiment was conducted for verifying
whether these bacteria could survive and benefit the soil nutrients. Similar researches were found
in many published literature papers, in which sterilized or oven-dried soil was used for testing
the effects of beneficial microorganisms without disturbance of other microbes under controlled
conditions, and non-sterilized soil was used for investigating the pragmatic effects on plants under
natural conditions [55–58]. Plants accompanied by soil microorganisms in rhizosphere that could
assist plants with nutrient acquisition [59]. Therefore, additions of bio-fertilizer improve the available
nutrients supply for plant growth. Under natural conditions, compared with treatment with only
native microbes, soil nutrient contents, and plant N and P uptake were significantly improved after
bacteria addition, especially for treatment MFCB (co-inoculation with PSB and NFB). More importantly,
the relative abundances of these bacteria were increasing at the first 30 days, but decreased after
that (data not shown). This suggests these bacteria could survive and enlarge population during the
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initial competition with native microbes, but continuous bio-fertilization is necessary to help these
microorganisms get advantage. In the present study, bacteria addition increased seedling height and
biomass accumulation under unsterilized soil condition. More importantly, they increased the biomass
of the whole plant, especially the biomass of the leaf, which is the most valuable organ for medicinal
use. Based on these results, applications of bio-fertilizer, such as MFCB, in leaf-use plantations of
C. paliurus could be a potential sustainable strategy for these plantations in the future.

To date, the interactive effects of co-inoculation with NFB and PSB on C-deficient soil conditions
have been less studied. However, advanced mechanisms for interpreting the synergistic effects between
NFB (A. chroococcum, A. brasilence) and PSB (B. megaterium, P. fluorescens) should be further investigated
and evaluated to clarify the biochemical basis of these interactions. The survival and growth of strains
vary with the chemical, physical, and biological differences between in vitro conditions and the field
environment. A combination of NFB and PSB might cause competition for energy sources, such as
root exudation and soil available nutrients. Hence, to obtain accurate conclusions about the effects of
co-inoculation with NFB and PSB, further studies should be considered under different environmental
media, and based on various research conditions [15,19].

5. Conclusions

Based on the results of the lab experiment and pot experiment, inoculation with beneficial bacteria
had a positive effect on soil amendment and plant growth. Bacterial additions increased soil N and
P availability, and co-inoculations with PSB and NFB enhanced the accumulation of the available P.
However, decreases in soil nutrients were observed at 60 days compared to 30 days, which were induced
by the decrease in bacterial quantities under C deficiency. These results highlight the interaction
mechanism between strains and soil with the increase in the incubation duration under C-deficiency
conditions. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth
promotion and nutrients uptake. In summary, aimed at amending the yellowish-brown clay soil
with low levels of C, bacteria combinations (PSB+NFB) are recommended for practical application at
intervals of 30–45 days. The lab experiment provided the basis for applying these microorganisms
in natural environments, which helped us understand the possible interactions between PSB and
NFB under C deficiency. The pot experiment results cross-validated that co-inoculation with PSB and
NFB resulted in greater performance. This research gives the first interpretation of the mechanism
of action and interaction between bacteria strains and soil under C deficiency, and contributes to the
development of a biotechnological strategy, and sustainable agriculture, thereby minimizing the input
of chemical fertilizers.
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