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Abstract: The tumor-microenvironment (TME) is an amalgamation of various factors derived from
malignant cells and infiltrating host cells, including cells of the immune system. One of the important
factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional
level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged
as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus
making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma
cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the
TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as
well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell
phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical
nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor
therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in
the TME and provide an overview of how these miRs are involved in current cancer-therapeutic
approaches from bench to bedside.

Keywords: breast cancer; inflammation; macrophage; microRNA; RNA therapy

1. Introduction

Tumors consist of rapidly dividing neoplastic cells and stroma that comprises con-
nective tissue, blood vessels, and various host cells. The interactions between these cells
via various mediators define a particular tumor-microenvironment. Growing tumors re-
program tumor-associated host cells to perform pro-tumoral functions. This is usually
achieved by means of various tumor-derived factors that are dynamically interposed be-
tween tumor cells and host stroma. The continued relationship of several factors and
different types of host with malignant cells makes it difficult to design efficient cancer
therapeutic agents. In 2020, Globocan estimated over 19.2 million new cancer cases and
9.96 million deaths worldwide, suggesting that there are still hardships encountered during
cancer diagnosis and treatment. Combinatorial therapies, where more than one drug is
administered to target different cancerous molecules or pathways, have been shown to
yield better therapeutic outcomes. However, they are usually cost-intensive, require com-
plicated treatment, and bear the risk of undesirable drug–drug interactions. Importantly,
with the progress in genome sequencing, new classes of non-coding RNAs (ncRNA) have
been identified that may open the way for designing gene modulating anti-cancer agents.
These ncRNAs include microRNAs (miRs), natural antisense transcripts, piwi-interacting
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RNAs (piRNAs), and long ncRNAs (lncRNAs), with miRs being the most studied ncRNA
candidates in clinical research [1–3].

MiRs are small regulatory RNA molecules of around 18–25 nucleotides in length.
They bind to the 3′ untranslated region (UTR) of mRNA targets, thereby regulating gene
expression. While perfect pairing of the miR with the target mRNA promotes mRNA
degradation, imperfect pairing may repress protein translation [4]. MiRs have also been
shown to increase target protein levels by either stabilizing mRNA translation [5], or af-
fecting the transcription of target genes in the nucleus [6], but these events seem to occur
less frequently. Since the base-pairing does not have to be perfectly complementary to the
target sequence, a single miR can regulate the translation of multiple mRNAs [7–10]. In
addition, the 3′ UTR of a single mRNA is frequently targeted by several different miRs,
suggesting that miRs cooperate to fine tune gene expression [9,11]. Since miRs orches-
trate tissue homeostasis, it is reasonable to think that their impaired expression causes
dysregulation in cancerous networks. Considering that miRs regulate several genes and
protein networks, restoration of the normal miR programs in cancer and tumor infiltrating
host cells might aid in reversing cancer phenotypes [12,13]. Thus, developing miR-based
therapies may prove to be more comprehensive and successful than targeting individual
proteins or genes.

Since cancer is a complex system of malignant cells and infiltrating host cells, it is
reasonable that such anti-tumoral miR therapeutic agents will not only act on malignant
cells, but also on other cells of the tumor microenvironment (TME), including tumor-
associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs). TAMs are the
most abundant immune cell type in the TME and are associated with crucial tumor hall-
marks, e.g., angiogenesis, invasion, motility, intravasation, survival, and premetastatic site
formation [14]. In response to factors of the TME they can adapt their phenotype towards
pro- (M1-like) or anti-inflammatory (M2-like) functions, and subsequently suppress or
promote tumor initiation and progression. MiRs engaged in these processes have been
reviewed recently [15].

MiRs can also exist in a stable cell-free form in body fluids and other extracellular
environments, including plasma, serum, urine, saliva, seminal, ascites, amniotic pleural
effusions, and cerebrospinal fluid [16,17], and act as signaling molecules through paracrine
and even endocrine signaling [18–20]. Thus, miRs closely linked to malignant phenotypes
can be utilized for diagnostic, prognostic, and predictive purposes by measuring their
amounts noninvasively in human serum or plasma samples, even in the initial stages
of cancer [21–25]. Since most screenings fail to identify tumors in their early stages and
biopsies and surgeries of solid tumors are often taken when cancer has considerably
developed, measuring miR expression in blood samples is an indispensable tool for early
cancer diagnosis [21,23]. Moreover, the development of advanced RNA chemistry and
strategies to deliver RNA molecules to target tissues in vivo has now enabled miR-based
agents to move into clinical trials. In this review, we will discuss the latest discoveries
related to miR-based therapeutics in cancer and provide an overview about miR mimics
and antagomiRs that are currently in clinical trials and their combination with other anti-
cancer agents. Since cancer is a complex system comprising not only malignant cells but
also cells of the immune system, we will also shed light on how miR-based anti-cancer
agents might impact on the TME.

2. Mechanisms of MiR Dysregulation in the TME

Over the past decade it has become clear that miRs are differentially expressed in
many human malignancies [11,26] and associated with stage, progression, and metastasis of
cancer [27]. Understanding the underlying mechanisms of miR dysregulation in malignant
cells, that include chromosomal aberrations, changes in transcriptional control, epigenetic
changes, and defects in the miR biogenesis pathway, is important to develop therapeutical
anti-cancer strategies [28]. In this section, we summarize mechanisms that alter the miR
profile of malignant cells. We also show some examples of how the TME can alter the miR
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profile of tumor-infiltrating TAMs, CAFs, and other host cells, which has been reviewed
recently [29,30].

2.1. Mechanisms of MiR Dysregulation in Malignant Cells

In malignant cells of hematopoietic and solid tumors, a plethora of non-random
chromosomal abnormalities have been discovered, and miR genes frequently reside in
such cancer-associated genomic regions [31]. These regions may be tumor suppressor
gene-containing minimal regions showing a loss of heterozygosity, or oncogenes harboring
minimal regions of amplification, or fragile sites or general breakpoint regions of the
genome [31]. In B-cell chronic lymphocytic leukemia, the miR-15a/16-1 cluster gene at
chromosome 13q14 is lost [32] whereas in lung cancer, the decreased expression of miR-143
and miR-145 is due to the loss of the 5q33 region harboring both miR genes [33]. On the
other hand, the miR-17-92 cluster, which comprises seven miRs and resides in intron 3 of the
C13orf25 gene at 13q31.3, is frequently amplified in B-cell lymphomas [34], lung cancer [35],
and T-cell acute lymphoblastic leukemia [36], resulting in overexpression of these miRs.
Furthermore, Genomic alterations in miR loci have been shown in melanoma, ovarian
and breast cancer [37]. These findings implicate that the aberrant expression of miRs in
malignant cells as compared to healthy tissue can often be attributed to amplification,
deletion, or translocation of miR genes and miR gene locations.

In addition, the expression of miRs is tightly controlled by various transcription factors
that induce the transcription of precursor-miRs, thereby increasing the miR expression.
In cancer, deregulation of key transcription factors, such as c-Myc and p53, results in the
dysregulated expression of miRs and subsequently promotes tumor development. c-Myc
is frequently upregulated in different types of cancer, where it regulates cell proliferation
and apoptosis, and transactivates the expression of the oncogenic miR-17-92 cluster by
binding to E-box elements in the miR-17-92 promoter [38,39]. Chang et al. analyzed
human and mouse models of B cell lymphoma and demonstrated that consistent with
its role as an oncogene, c-Myc represses the transcriptional activity of tumor suppressive
miRs such as miR-15a, miR-26, miR-29, miR-30, and let-7 families [40]. In hepatocellular
carcinoma (HCC), c-Myc represses miR-122 expression that in turn indirectly inhibits c-
Myc transcription by targeting the transcription factor Dp-2 (Tfdp2) and E2F transcription
factor 1 (E2f1), which are essential for tumor development [41]. Another example of how a
transcriptional factor can control miR expression is the miR-34-p53 axis, which mediates
tumor suppressive functions [42]. p53 is a tumor suppressor and regulates the expression
of many genes, thereby controlling cell cycle progression, apoptosis, and senescence. p53 is
activated upon DNA damage and oncogenic stress and induces the expression of miR-34a
to trigger apoptosis. In turn, miR-34a downregulates sirtuin 1 (SIRT), a negative regulator
of p53 by deacetylation, causing a positive feedback loop [43–45]. p53 also controls the
expression of several other miRs, such as miR-605 [46], miR-1246 [47], miR-107 [48], and
miR-145 [49]. Huang et al. found that upon hypoxia, the transcription factor hypoxia-
inducible factor-alpha (HIF1α) regulates the expression of miR-210 in multiple tumor
types through a hypoxia-responsive element (HRE) [50]. Similarly, miR-155 also contains
a functional HRE in its promoter and is induced by HIF1α in epithelial cells [51], where
it contributes to the resolution of HIF effects upon chronic hypoxia by directly inhibiting
HIF mRNA. The miR-200 family genes have been shown to be tightly regulated by the
zinc-finger E-box-binding homeobox transcription factors ZEB1 and ZEB2, which are the
key activators of epithelial-to-mesenchymal transition (EMT) [52]. In addition, the ligand
activated transcription factors and hormone receptors estrogen receptor (ER) and androgen
receptor (AR) can indirectly change miR abundance through several signaling pathways
but also activate the transcription of certain miRs in cancer. For instance, miR-515 is
transcriptionally repressed by ERα and functions as a tumor suppressor in breast cancer
cells by increasing the level of oncogenic sphingosine kinase 1 (SK1) [53]. In breast cancer,
ER negatively modulates the miR-221/222 gene by recruitment of transcriptional repression
partners leading to enhanced proliferation and migratory activity [54]. Like estrogen/ER,
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androgen/AR can directly regulate oncomiRs, such as miR-125b, miR-21, miR-221/222,
miR-27a, and miR-32 [55] and tumor-suppressor miRs, miR-135a, and miR-141 [56,57],
which has been validated by chromatin immunoprecipitation analysis.

In addition, miRs, similar to protein-coding genes, are susceptible to epigenetic modu-
lations, which include DNA hypomethylation, hypermethylation of CpG islands in tumor
suppressor genes, and disruption of histone modification patterns [58,59]. For instance,
in acute myeloid leukemia (AML) the acute myeloid leukemia-associated fusion protein
AML1/ETO induces the heterochromatic silencing of miR-193a through CpG methylation,
thereby contributing to leukemogenesis [60]. In T24 bladder cancer cells, treatment with
DNA methylation and histone acetylation inhibitors results in more than 3-fold upregula-
tion of 17 of 313 human miRs [61]. Interestingly, miR-127, which is embedded in a CpG
island and frequently downregulated in cancer cells, was upregulated upon treatment
resulting in downregulation of the protooncogene B-cell lymphoma 6 (BCL6), indicating
that DNA demethylation and histone deacetylase inhibition can activate the expression of
miRs that may act as tumor suppressors. Lujambio et al. treated lymph node metastatic
cancer cells with a DNA demethylating agent, resulting in hypermethylation-associated
silencing of miR-148a, miR-34b/c, and miR-9 [62]. Restoring those miRs inhibited motility
and reduced tumor growth and metastasis formation in vivo. Similarly, miR-9-1, miR-124a,
and miR-145-5p are epigenetically silenced by DNA hypermethylation in breast, lung,
and colon carcinoma, respectively [63–65], which highlights the crucial role of epigenetic
regulations in miR expression during tumorigenesis.

The maturation of miRs from primary miR precursors is tightly controlled by a few
enzymes and regulatory proteins such as Drosha, Dicer, DiGeorge syndrome critical region
8 (DGCR8), Argonaute (AGO) proteins, and exportin-5, suggesting that the mutation or
aberrant expression of those components of the miR biogenesis system provokes aberrant
miR expression, which is associated with tumor progression. Recent studies showed that
the two key RNase III endonucleases Drosha and Dicer, which are responsible for the
precursor-miR and miR-miR* duplex formation, are deregulated in various tumors. Thom-
son et al. demonstrated that a large fraction of miR genes is regulated post-transcriptionally
at the Drosha-processing step, downregulating various miRs in cancer and upon embryonic
development [66]. Moreover, single-nucleotide substitution/deletion mutations of DGCR8
and Drosha have been found to occur in 15% of 534 Wilms’ tumors, leading to a significantly
decreased expression of mature let-7a and the miR-200 family [67]. Iliou et al. reported
that the impairment of Dicer1 in colorectal cancer results in the downregulation of miRs,
such as miR-34a, miR-126, and miRs of the miR-200 family, resulting in enhanced stemness
features and EMT as well as a greater capacity for tumor initiation and metastasis [68].

2.2. Mechanisms of MiR Dysregulation in Tumor-Infiltrating Host Cells

The regulation of miR expression in TAMs, CAFs, and other tumor-infiltrating host
cells can be mainly ascribed to soluble factors of the TME or the direct transfer and uptake
of exogenous miRs [29,30]. miR-155 is one of the crucial miRs that is involved in the
pro-inflammatory functions of macrophages and is persistently downregulated in TAMs.
He et al. showed that in HCC this downregulation is due to soluble factors secreted by
tumor cells, and restoration of miR-155 in TAMs promoted indirect anti-tumor responses
by T-cell activation [69]. In plasmacytoid dendritic cells (DCs), miR-155 is induced in
later stages of toll-like receptor 7 (TLR7) activation to repress the expression of interferon
(IFN)-α/β [70]. In CAFs of gastric cancer, miR-145 is induced by transforming growth
factor (TGF)-β, enhancing α-smooth muscle actin (α-SMA) expression [71]. Chromosomal
aberrations also control miR expression in cancer associated stromal cells. By using pro-
teomic and expression profiles, Broniszet et al. reported that the ablation of the phosphatase
and tensin homolog (PTEN) gene in mammary stromal fibroblasts activates an oncogenic
secretome, accompanied by the downregulation of miR-320 and the transition of NFs into
CAFs in breast cancer [72].



Int. J. Mol. Sci. 2021, 22, 2210 5 of 37

Tumor cells use their own miR repertoire to hijack tumor-promoting functions of
immune cells, including TAMs, which has been reviewed by our group recently [29].
Several mechanisms of miR transfer have been described, for instance the delivery via
exosomes, microvesicles, or apoptotic bodies. For instance, Park et al. demonstrated
that upon hypoxia, tumor cells secrete exosomes containing let-7a that directly targets
the insulin-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway in
TAMs and induce the expression of TAM-associated genes [73]. Pancreatic cancer cells
deliver microvesicles containing miR-155 to NFs, thereby stimulating their reprogramming
towards CAFs [74]. Recently, we showed that apoptotic breast cancer cells release low-
density lipoprotein-bound miR-375, which could be taken up by TAMs to induce their
infiltration and migration towards tumor sites [75]. However, how the TME can regulate
the expression of miRs in different subsets of tumor-infiltrating host cells needs to be further
investigated and might provide novel approaches for immunomodulatory-based therapies.

MiRs can act as tumor-suppressors by regulating the expression of oncogenes and/or
genes that control differentiation and apoptosis and are frequently downregulated upon
malignant transformation. On the other hand, several oncogenic miRs are upregulated
upon tumorigenesis to enhance tumor development. An overview of deregulated miRs in
different stromal cells and their impact on tumorigenesis is shown in Figure 1.

Figure 1. Examples of dysregulated microRNAs (miRs) in cells of the tumor microenvironment (TME) and their impact on
tumor cells. MiRs can either act as tumor-suppressors by regulating molecules or pathways with anti-tumoral characteristics
(red box; red T bar) or oncomiRs that directly or indirectly impact on tumor-promoting genes and protein networks (green
box; green arrow). The differential expression of miRs in macrophages and tumor-associated macrophages (TAMs), or
the uptake of exogenous miRs, modulate their polarization. Similarly, miRs expressed in cancer-associated fibroblasts
(CAFs) regulate their migration, cytokine production, and trans-differentiation as well as tumor growth. CAF-derived miRs
(e.g., miR-522) can also enhance drug resistance of tumor cells. In dendritic cells (DCs), miRs regulate Th17 differentiation,
co-stimulatory molecule expression, and T cell activation. miRs expressed in cancer-associated endothelial cells (CAEs)
regulate the microvascular invasion and angiogenesis activity to drive tumorigenesis. In myeloid-derived suppressor
cell (MDSCs), miRs modulate the expansion/immune-suppressive functions. In natural killer (NK) cells, miRs modulate
the production of effector molecules (e.g., IFN-γ) and the activating receptor encoded by killer cell lectin like receptor K1
(NKG2D). Furthermore, miRs regulate the expression of transcription factors and cytokine production of regulatory T cells
(Tregs). ARG1, arginase 1; α-SMA, α-smooth muscle actin; CAE, cancer-associated endothelial cell; CAF, cancer-associated
fibroblast; DC, dendritic cell; Fgf2, fibroblast growth factor 2; IFN, interferon; iNOS, inducible NO synthase; NF, normal
fibroblast; NKG2D, encoded by killer cell lectin like receptor K1; ROS, reactive oxygen species; TAM, tumor-associated
macrophage; Treg, regulatory T cell.
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3. Therapeutic Modulation of MiRs in Cancer

The current understanding of cancer as a “signaling pathway disease” implies that for
successful cancer treatment, therapeutic strategies are required that interfere with multiple
oncogenic pathways [76]. Since a single miR can regulate multiple oncogenes or oncogenic
pathways that are commonly deregulated in cancer, the therapeutic restoration of tumor
suppressor miRs through miR mimics or the suppression of oncomiRs by using antagomiRs
provides an appealing tool for cancer therapy.

3.1. Restoration of Tumor Suppressive MiRs

MiR mimics are synthetic oligonucleotide duplexes and have the same sequence as the
depleted, naturally occurring miR counterpart. Thus, miR mimics were expected to target
the same set of mRNAs, suggesting that nonspecific off-target effects are unlikely. They can
be chemically modified to have higher stability or to enable the systemic delivery to target
cells by using modes and technologies that are also used for siRNAs [77]. Moreover, miR
mimics are much smaller than proteins, implying that they can easily enter cells. Besides
these advantages of miR mimics as therapeutic molecules the strongest rationale is that
a single miR mimic may be designed to target multiple genes and multiple pathways. In
2014, a computational software, miR-Synth, was developed to design miR mimics and the
prediction of their mRNA targets and altered signaling pathways [78]. Another strategy to
replenish deficient miRs is to transfect cancer cells with adenoviral, lentiviral, or retroviral
vectors expressing the tumor-suppressive miR for anti-tumor effects [79]. All these miR
replacement strategies seek to activate those cellular programs that are required for cellular
homeostasis and interfere with oncogenic signaling cascades that are required for the
malignant properties.

To date, various tumor suppressor miRs have been identified in vitro and in vivo and
some of them have already been tested in proof-of-concept studies for miR replacement
therapy in preclinical animal models. For instance, in non-small-cell lung cancer (NSCLC),
exogenous delivery of let-7 to established tumors efficiently restrained tumor growth by
blocking cell proliferation and cell cycle pathways [80,81]. Treatment of prostate tumor
xenografts with the miR-15a and miR-16-1 mimic caused growth arrest, apoptosis, and
inhibited proliferation [82]. Similarly, ectopic expression of the miR-15/16 cluster using
viral vectors significantly reduced tumor volume and growth in the MEG01 subcutaneous
model of leukemia [83]. In xenograft mouse models of malignant pleural mesothelioma
and NSCLC, the tumor-targeted delivery of miR-16 by using a EGFR-targeted EnGeneIC
Delivery Vehicle (EDV) and nanocell delivery system (TargomiRs) significantly reduced
tumor growth [84]. Another miR that has been demonstrated to be a potential anticancer
therapeutic in several studies in vivo is the master tumor-suppressor miR-34. For instance,
intra-tumoral and intravenous administration of lipid nanoparticle-encapsulated miR-34
mimics markedly inhibited tumor growth in mouse models of lung, liver, and prostate can-
cer [85–87]. In a Kras;Trp53 NSCLC mouse model, co-delivery of let-7 and miR-34 by using
the same lipid nanoparticle carrier resulted in a significantly reduced tumor burden [88].
Due to their strong anti-tumor effects, lipid nanoparticle-encapsulated miR-34 mimics
were tested in a phase I clinical trial (NCT01829971) in several solid and hematological
malignancies. Moreover, delivery of members of the miR-200 family using 1,2 dioleoyl-sn
glycero-3 phosphatidylcholine (DOPC)-lipid nanoparticles in orthotopic mouse models
of ovarian (miR-200a/b), basal-like breast (miR-141), and lung (miR-200a/b) cancers was
shown to significantly reduce tumor nodules and metastasis [89]. In a parallel study,
Cortez et al. demonstrated that miR-200c upregulation increases intracellular reactive oxy-
gen species by regulating the oxidative stress response genes peroxiredoxin 2 (PRDX2,) NF
E2 related factor 2 (NRF2), and sestrin 1 (SESN1) [90]. The systemic delivery of miR-200c in
a xenograft lung cancer model fosters tumor cell apoptosis and increased radiosensitivity.
miR-mimics have also been used in preclinical trials to induce repolarization of TAMs.
In a mouse model of lung cancer, the combinatorial delivery of the pro-inflammatory
miR-125b mimic together with wt-p53 cells using CD44/epidermal growth factor receptor
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(EGFR)-targeted hyaluronic acid-based nanoparticles repolarized TAMs towards the M1
phenotype and inhibited tumor growth [91]. Similarly, the targeted delivery of miR-99b
in HCC or subcutaneous Lewis lung cancer mice re-educated TAMs from M2 to M1 phe-
notype by targeting κB-Ras2 and/or mTOR, thereby enhancing immune surveillance and
impeded tumor growth [92]. In a xenograft mouse model of oral squamous cell carcinoma,
overexpression of miR-34a-5p by miR mimic significantly inhibited tumorigenesis [93].

3.2. Suppression of OncomiRs

It is well accepted that oncogenic miRs are increased in cancer tissues and inhibit
important tumor-suppressor genes, resulting in enhanced cell turnover and cell prolifera-
tion. Inhibition of oncogenic miRs has become an important area for gene therapy since
the restoration of tumor suppressor genes is the pre-requisite to restore normal cellular
homeostasis. Thus, inhibition of oncomiRs represents a useful strategy in the fight against
cancer. Several different methods have been established to either prevent the binding of
oncomiRs to their targets or interfere with the mRNA targets without affecting the miR
activity. Synthetic antisense oligonucleotides (ASOs; anti-miR) are single stranded nucleic
acids that are around 20-25 bases long. They are designed to complementarily bind to
their mature miRs targets, thereby preventing the interaction of that miR with its mRNA
target and the consequent normal translation [94]. ASOs can be structurally or chemically
modified to make them more resistance to nuclease-mediated degradation, enhance their
penetration across the cell membrane, binding affinity, and thermal and metabolic stabil-
ity [95,96]. Recently, a comprehensive guide for designing anti-miR oligonucleotides has
been reported [97]. The therapeutic potential of ASOs have been shown in different types
of cancer in vitro and in vivo. For example, inhibition of the anti-apoptotic miR-21 by anti-
miR oligonucleotides activates apoptosis and reduces tumor growth in breast cancer [98].
Griveau et al. showed that miR-21 can be silenced by locked nucleic acid (LNA)-modified
oligonucleotides in glioblastoma, resulting in reduced cell viability and enhanced intracel-
lular caspase amounts [99]. There are also some studies showing that ASOs can be used to
repolarize TAMs towards a pro-tumoral phenotype, thereby reducing tumor burden. For
instance, miR-100 is highly expressed in TAMs and maintains pro-tumoral functions by
targeting the mTOR signaling pathway. Intra-tumoral treatment of miR-100 antagomiR
together with cisplatin significantly reduced tumor metastasis and the invasion capacity
in a 4T1 mouse breast cancer model [100]. MiR-21 has been reported to be involved in
the metabolic alteration of CAFs in vitro. Treatment of CAFs with a miR-21 antagomiR
upon indirect coculture with the pancreatic cancer cell line BxPc-3 reduced glycolysis and
lactate acid production in CAFs and decreased oxidative phosphorylation and invasion
of tumor cells [101]. For more target specificity, ASOs can also be coupled to ligands (e.g.,
to be specifically recognized by receptors on the surface of the blood–brain barrier) or
arginine-rich cell penetrating peptides to support receptor-mediated endocytosis and direct
membrane translocation, respectively [102].

Another strategy to inhibit oncogenic miRs are miR sponges, which are short tran-
scripts that contain multiple artificial miR binding sites. These binding sites are comple-
mentary to the specific miR target or a miR family sharing the same seed region and thus
sequester endogenous miR in a sequence specific manner [103]. miR sponges are used in
several cancer types such as breast, lung, renal, colorectal, and melanoma to effectively
inhibit oncomiRs, including miR-19, miR-155, miR-221, and miR-222 to exhibit anti-cancer
effects in vitro and in vivo [104,105]. MiR-9 is upregulated in breast cancer cells and in-
hibits the expression of the tumor suppressor gene CDH1. Treatment of tumor cells with
miR sponges containing several miR-9 binding sites inhibited the oncogenic function of
miR-9 and effectively restored CDH1 expression, thereby suppressing metastasis [106].
Interestingly, circular miR sponges have been found to be more effective in inhibiting their
miR targets compared to their linear counterparts in malignant melanoma and gastric
cancer cells [107]. In the last years, several approaches have been investigated to enhance
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the cytotoxic effect of chimeric antigen receptor (CAR) T-cell to kill cancer cells and miR
sponges might be a helpful tool to optimize CAR expression [108].

Since ASO-based agents prevent the binding of oncogenic miRs to their target mRNAs
and reactivate the normal activity of genes that were repressed, they were also described as
miR-masking oligonucleotides [109]. The function of miR-masking oligonucleotides was
first described in breast cancer, where the inhibition of the tumor suppressor TP63 could be
prevented by miR-196a2 masking oligonucleotide, reducing tumor cell proliferation [110].
In glioblastoma cells, the miR-9 masking oligonucleotide prevented the interaction of miR-9
with its target PTCH1 and overcame temozolomide resistance, confirming the therapeutic
potential of these RNA agents [111].

In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-
associated nuclease 9 (Cas9) system has been demonstrated to efficiently inhibit the expres-
sion of oncogenic miRs, including miR-17, miR-21, miR-141, and miR-3188 to reduce tumor
cell proliferation, invasion, but to enhance apoptosis [112,113]. This technology can also be
used to introduce mutations in key enzymes of the biosynthesis machinery of specific onco-
genic miR precursors to prevent the expression of the mature oncomiR [114]. Moreover,
CRISPR/Cas9 enhances the sensitivity to chemotherapeutic agents, including cisplatin
and paclitaxel [112]. In both in vitro and in vivo models, downregulation of miRs by the
CRISPR/Cas9 system is highly stable and could last for 30 days, making it a promising
approach for anti-cancer therapy [115].

In 2017, Patutina et al. first described a novel technique to efficiently inhibit oncomiRs
by covalently binding an artificial ribonuclease or catalytic peptide to a miR-targeting
oligonucleotide to mediate miR degradation [116]. They investigated several miRNases
and one of them specifically reduced miR-21 in lymphosarcoma cells, resulting in restora-
tion of key tumor-suppressor proteins and suppressing tumor cell proliferation without
appreciable off target effects.

In essence, several techniques and technologies can be exploited for therapeutic
modulation of miRs in a context dependent manner by carefully weighing the pros-and-
cons of those approaches. An overview of the above discussed strategies to modulate miR
expression and delivery systems for miR therapeutic agents is depicted in Figure 2.

4. Combination with Cancer Therapy to Counteract MiR-Mediated Therapy Resistance

Cancer therapy is often associated with several disadvantages, which include toxicity
to non-malignant cells or drug resistance. Thus, the demand for new therapy approaches
is high and miR therapeutics seem to have high potential, at least as an adjuvant therapy.

Several miRs are involved in chemotherapy resistance and upregulation of oncomiRs
is as disruptive for chemotherapy as downregulation of tumor suppressor miRs. For in-
stance, upregulation of miR-155 has been shown to be involved in chemotherapy resistance
in several different cancers [117], while for miR-34 its low expression is associated with
poor treatment response [118]. For both miRs, and several other prominent ones, their
involvement in therapy resistance has been reviewed extensively by others [117–122]. How-
ever, the knowledge about miR involvement in chemotherapy resistance can be exploited
to determine the efficiency of therapy strategies. Several miRs are used as biomarkers to
predict clinical outcome and as indicators for therapeutic efficiency of radio-, chemo-, or
immunotherapy [123–125]. For instance, the oncomiR miR-10b is inhibited by linifanib,
which reverses its oncogenic effect. However, at higher expression levels, miR-10b could
“hijack” linifanib during cancer treatment and reduce its anti-tumor efficacy by reducing
its kinase inhibitory effects. Therefore, miR-10b expression levels may serve as a biomarker
to select patients for linifanib treatment [126]. Furthermore, the efficacy of immunotherapy
in NSCLC can likely be predicted using miR-320d, miR-320c, and miR-320b as biomark-
ers [127]. Being able to predict the therapy efficacy before starting the treatment could be
valuable in taking treatment decisions and potentially safe lives by providing rationales
for applying more promising treatment strategies. Thus, miR-biomarkers predicting the
treatment success show a high potential in clinical therapy assignment.
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Figure 2. Therapeutic modulation of miR expression and miR carriers. Tumor suppressive miRs can be replenished by miR
mimics (a), thereby suppressing translation of mRNAs encoding for oncogenes. On the other hand, oncogenic miRs can
be inhibited by ASOs (b), miR-sponges (c), artificial ribonucleases (d), small molecules (e), or the CRISPR/Cas9 system
(f). Small molecules have been shown to either suppress oncomiRs or globally enhance miR expression. To increase
oligonucleotide stability, chemical modifications can be inserted. Several delivery systems have been established to further
increase the stability of the miR therapeutic agent and improve tumor cell targeting, e.g., cationic dendrimers (g), lipoplexes
(h), nanoparticles with tumor-specific ligands (i), inorganic nanoparticles (j), micelles (k), polymer nanoparticles (l), and
exosomes/microvesicles (m). See text for more details. AGO, argonaute protein; ASOs, antisense-oligonucleotides; AuNPs,
gold nanoparticles; DOPC, 1,2 dioleoyl-sn glycerol-3 phosphatidylcholine-lipid nanoparticles; EDVs, EnGeneIC Delivery
Vehicle; LNA, locked nucleic acid; NLE, neutral lipid emulsions; PAMAM, poly(amidoamine); PEI, poly(ethyleneimine);
pHLIP, pH low insertion peptide; PLGA, Poly(lactide-co-glycolide); Pol II, RNA-polymerase II; PPI, poly(propylenimine);
RISC, RNA-induced silencing complex.

Once patients developed chemotherapy resistance, a promising approach to overcome
chemotherapy resistance is the combined delivery of chemotherapeutics and miRs to
sensitize tumor cells to chemotherapy, e.g., by targeting of DNA-damage response or cell
cycle genes as well as genes related to apoptosis or multidrug resistance by co-delivered
miRs [120,128]. However, in this review, we focus on the involvement of TME-derived
or induced miRs in immune evasion and therapy resistance as well as on therapeutic
candidates that deliver miRs and chemotherapeutics combined in nanoparticles to exploit
their synergistic effect.

4.1. MiRs as Possible Immunotherapeutics—The Role of MiRs in Immune Evasion in the TME

Immune evasion is one of the emerging hallmarks of cancer and is associated with
bad prognosis. TME-mediated miRs have been shown to be one of the regulators involved
in immune evasion. As they are affecting all cell types in the TME, there are several points
of intervention for combining miR and immunotherapeutic therapies. An important cell
type in immune evasion are macrophages as they play a crucial role in activating other
immune cells in the TME. For instance, miR-146a-5p neutralization affects the crosstalk
between tumor cells and macrophages, thereby changing the entire TME. The underly-
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ing mechanism is a miR-146a-5p-induced block of the inducible nitric oxide synthase
(iNOS), thereby inhibiting nitric oxide synthesis and subsequently conferring resistance
to macrophage-induced cell death in mouse renal carcinoma and colon carcinoma CT26
cell lines. The combination of miR-146a-5p suppression with macrophage therapy could
enhance infiltration of cytotoxic CD8+ T cells and thus successful anti-tumor immunity
in vivo [129]. HCC cells achieve immune evasion by exosome-mediated upregulation of
programmed death ligand 1 (PD-L1) expression in macrophages, which in turn inhibits
T-cell function. The authors of this study propose that the underlying mechanism is the
release of exosomes from ER-stressed HCC cells. These exosomes contain high levels
of miR-23a-3p, which targets PTEN, thereby regulating PI3K/AKT signaling and PD-L1
expression [130]. Therefore, inhibiting miR-23a-3p could have therapeutic effects. Similarly,
ER stress-induced exosomal miR-27a-3p derived from breast cancer cells indirectly inhibits
PD-L1 expression in macrophages, thus promoting immune evasion [131].

Furthermore, the number of infiltrating lymphocytes is indicative of efficiency of
anti-tumor immunity, which is modified by miRs. Zarogoulidis et al. showed that miR-155
activates the immune system and promotes tumor-infiltrating lymphocyte infiltration [132].
In addition, the combinatorial therapy of miR-155, blocking autophagy, is beneficial to
increase chemo-sensitivity to carboplatin in lung cancer, thereby posing an option for ther-
apeutic exploitation [132]. Moreover, miR-142-5p treatment enhances anti-tumor immunity
by blocking the PD-L1/PD-1 interaction in pancreatic cancer: miR-142-5p overexpression in
tumor cells decreases PD-L1 expression, subsequently increasing IFN-γ and TNF-α levels
as well as infiltrating CD4+ T lymphocytes and CD8+ T lymphocytes, while decreasing
PD-1+ T lymphocytes in vivo [133]. Furthermore, miR-183 targets PD-L1 and another
immune checkpoint CTLA-4. Wei et al. demonstrated that miR-183 is a potential candidate
for immunotherapy, as it showed anti-glioma efficacy by modulating the immune system:
miR-183 overexpression in human CD4+ T cells lead to decreased CTLA-4, PD-1, and Fork-
head box protein 3 (FoxP3) expression and in vivo miR-183 treatment of GL261 gliomas
in immune-competent mice showed tumor regression, which could not be observed in
immune-incompetent mice or after CD4+ or CD8+ T cell depletion. Furthermore, in vitro
treatment of glioma cells with miR-183 at physiological levels had no suppressive effect,
supporting its immunomodulatory function [134]. Regulatory T-cell-mediated immune
suppression can also be mediated by tumor-secreted miR-214. MiR-214 targets PTEN and
promotes Treg expansion and subsequent enhanced tumor growth [135].

The DC- or NK cell-mediated anti-tumor immune response can also be repressed by
miRs. Exemplarily, miR-203-containing exosomes from pancreatic cancer cells suppress
anti-tumor immunity. In recipient DCs, miR-203 inhibits the expression of TLR4, thus
downregulating the production of TNF-α and IL-12 [136]. For NK-cells, Berchem et al.
demonstrated that NK cytotoxicity and function is modulated by tumor-derived exosomal
miR-23a and TGF-β via decreasing the expression of NKG2D activator surface recep-
tors [137]. Another candidate for immunotherapy is miR-128, as it modulates the activity
of several TME immune cells at once. miR-128 was found to inhibit pancreatic ductal
adenocarcinoma (PDAC) growth and metastasis in in vivo experiments. As part of the
underlying mechanism, the authors of the study propose enhanced anti-tumor immunity
of DCs, CD8+ T cells and natural killer T cells (NKT). miR-128 regulates ZEB1 and inhibits
CD47, thereby interfering with CD47-mediated immune evasion [138]. Likewise, miR-130a
and miR-145 overexpression qualifies as a possible therapeutic approach targeted at the
metastatic microenvironment and host anti-tumor immunity. Ishii et al. demonstrated
that miR-130a and miR-145 are downregulated in Gr-1+CD11b+ immature myeloid cells.
Ectopic miR-130a and miR-145 expression reprogramed the tumor-associated myeloid cells
as well as skewed the microenvironment towards anti-tumoral [139].

Furthermore, Sasaki et al. proposed the genetical engineering of miR-17-92 expressing
T cells as a promising approach for cancer immunotherapy. They found that the miR-17-92
cluster is downregulated in glioma patient samples as well as in murine Th2 cells in murine
models, where the miR-17-92 downregulation could be reversed by disruption of IL-4
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signaling. Additionally, miR-17-92 transgenic mice showed a superior type-1 phenotype in
CD4+ T cells in comparison to wild type mice. Conclusively, miR-17-92 downregulation in T
cells diminishes tumor control and the persistence of tumor-specific T cells [140]. Moreover,
a study by Ledo et al. indicated that myeloid-derived suppressor cell (MDSC)-mediated im-
mune suppression could be targeted by co-delivering miR-142-3p and the CCL2 chemokine.
miR-124-3p-loaded nanocapsules reduced the immunosuppressive monocyte-macrophage
subset and the CCL2 induced a potent monocyte-macrophage chemoattraction in in vitro
studies in primary MDSC cultures [141]. Taken together, these studies demonstrate the
potential for targeting miRs to enhance the immunotherapy efficiency.

4.2. MiR Therapeutics to Reverse Chemotherapy Resistance in the TME

Together with immune evasion, chemotherapy resistance is posing one of the big
challenges in cancer therapy. This resistance can be mediated by various factors—one of
them being miRs induced by TME stimuli, like hypoxia or cell–cell communication.

One characteristic feature of the TME is hypoxia due to insufficient vascularization of
rapidly growing tumors. Hypoxia influences the miRome of cancer and stromal cells in the
TME via downregulation of miR biogenesis machinery proteins or regulation of transcrip-
tion factors that control miR expression. Consequently, several hypoxia-regulated miRs
and their role in tumor progression have been identified. Some of the hypoxia-regulated
miRs, e.g., miR-181b, miR-210, miR-26a, miR-424, miR-519c, and miR301-a, have also been
associated with chemo- or radiotherapy response in different cancers [142–145]. Targeting
these miRs for therapy could be a way to re-sensitize hypoxic tumors to therapies. For
instance, in the hypoxic pancreatic cancer microenvironment, HIF-1α induces gemcitabine
(GEM) resistance. Xin et al. showed that transfection of miR-519c, which is downregulated
in pancreatic cancer, could inhibit HIF1-α in GEM-resistant pancreatic cancer cells under
hypoxia. Therefore, a redox-sensitive nanoplatform co-delivering GEM and miR-159c was
developed, which downregulates HIF-1α and genes responsible for glucose uptake and
cancer cell metabolism, thereby significantly inhibiting orthotopic desmoplastic pancre-
atic cancer growth in NSG mice. Consequently, this treatment reversed hypoxia-induced
chemotherapy resistance [146], showing the potential of miR therapeutics.

The crosstalk between tumor cells and stromal cells via miRs can also enhance
chemotherapy resistance. It has been demonstrated that altering the miR transfer in
the TME can be exploited for cancer treatment by a study showing that propofol prompts
TAMs to secrete miR-142-3p, which conveys propofol action in cancer cells. It was first
demonstrated that propofol inhibited tumor growth in tumor-bearing mice in an HCC
model. Upon investigating the mechanism, it was shown that these effects were medi-
ated by the delivery of miR-142-3p via secreted microvesicles from TAMs upon propofol
stimulation [147]. Thus, interfering with miRs that are involved in TME-mediated therapy
resistance is a possible way to reverse resistance and could be attempted in several scenar-
ios: miR exchange between tumor cells and CAFs, TAMs, or other stromal or cancer cells
or miRs involved in signaling that confers chemotherapy or immunotherapy resistance.
Following, a few studies will be depicted that show the potential of developing therapeutic
approaches, targeting miRs involved in the TME crosstalk-mediated drug resistance.

As an important cell type in the TME, CAFs are also involved in TME-mediated
chemotherapy resistance via miRs. For example, cisplatin and paclitaxel promote CAF
secretion of miR-522 in exosomes via activating the ubiquitin-specific protease 7 (USP7)/
heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) axis. Exosome-derived miR-522
suppresses arachidonate lipoxygenase 15 (ALOX15) and decreases lipid-ROS accumulation
in the recipient gastric tumor cells, which inhibits ferroptosis and decreases the sensitivity
to chemotherapy [148]. In addition, miR-27a is transferred from fibroblasts to prostate
cancer cells, where it increases resistance to chemotherapy by preventing p53 gene ex-
pression [149]. Zhang et al. found a correlation between resistance to gemcitabine and
miR-21 expression in PDAC patients. They also demonstrated that miR-21 overexpression
activated CAFs in vitro and promoted desmoplasia and increased gemcitabine resistance
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in PDAC, while downregulation had the opposing effect in vivo. Thus, they concluded
that miR-21 regulated drug resistance in PDAC via CAFs [150].

The transfer of miRs from or to TAMs has also been shown to confer therapy resistance
in several different studies. Challagundla et al. demonstrated that neuroblastoma cells
polarize human monocytes to M2 macrophages via TLR8 activation by tumor-derived
miR-21-containing exosomes. In turn, the TAMs secrete miR-155 in exosomes, which tar-
gets telomeric repeat binding factor 1 (TERF-1) in neuroblastoma cells, thereby increasing
telomerase activity and subsequently cisplatin resistance [151]. In addition, TAM-derived
exosomal miR-21 has been shown to confer cisplatin resistance in gastric cancer via inhibi-
tion of apoptosis and enhanced activation of PI3K/AKT signaling via PTEN downregula-
tion [152]. Similarly, in epithelial ovarian cancer (EOC), hypoxic TAMs secrete miR-223,
which enhances drug resistance in EOC cells via the PTEN-PI3K/AKT pathway [153]. In
PDAC macrophage-derived exosomal miR-365 has been shown to weaken gemcitabine
activation and to confer therapy resistance in vitro and in vivo. Molecularly, it is proposed
to be upregulation of the triphospho-nucleotide pool in cancer cells as well as inactivation
of gemcitabine via induction of the enzyme cytidine deaminase [154]. Upregulation of
these miRs mediates chemotherapy-resistance, thus they are candidates for treatment with
miR inhibitors. However, miR mimics could be equally valuable as shown by miR-770
in triple negative breast cancer (TNBC). miR-770 sensitizes TNBC cells to doxorubicin
by downregulating STMN1 as shown by Li et al. [155]. They demonstrated that over-
expression of miR-770 not only regulated apoptosis and EMT in cancer cells, but was
also transferred to TAMs, where it affected macrophage polarization and antagonized M2
macrophage-induced chemotherapy-resistance.

Other stromal cells in the TME also influence therapy resistance. Bone marrow
stromal cell-mediated therapy-resistance in AML is conferred via miR-23a-5p. Stromal
cell-induced NF-kB signaling in leukemic cells downregulates miR-23-5p, which causes
upregulation of protective autophagy via TLR2. Thus, leukemic cells are protected from
chemotherapy-induced apoptosis [156]. Furthermore, it has been shown that doxorubicin
treatment induced miR-21-5p expression in mesenchymal stem cells and derived exosomes.
The exosome-derived miR-21-5p induced S100A6 expression in breast cancer cells, thus
mediating chemoresistance in vitro and in vivo [157].

Finally, exosomal transfer of miRs can also happen between cancer cells, thereby
conferring chemotherapy or radiotherapy resistance e.g., miR-155 has been shown to
shuttle from resistant oral cancer cells to sensitive cancer cells, also desensitizing those
cells to cisplatin [158]. Furthermore, exosome-derived miR-301a is involved in mediating
glioblastoma radioresistance from hypoxic, resistant to normoxic, sensitive cells by tar-
geting the tumor suppressor TCEAL7 gene, which negatively regulates Wnt/β-catenin
signaling [159].

In most of the mentioned examples, a therapeutic approach would likely include
overexpression or downregulation of the miRs to reverse chemotherapy resistance and
be able to continue the therapy. However, as exosomal transfer facilitates miR-mediated
chemotherapy resistance in some cases, disrupting this route of transfer could have a
valuable impact on preventing resistance in the first place.

4.3. Co-Delivery

Several studies showed that delivering the miR drug together with a chemotherapeutic
agent can improve the efficiency of the treatment. Polymer-based co-delivery systems
have been reviewed by Dai et al. [160]. We describe some studies for the two most widely
used miRs.

The most extensively used miR therapeutic in combinatorial delivery with chemother-
apeutics is a miR-21 inhibitor. Simultaneous delivery of the cytostatic anticancer drug
5-FU and the miR-21 inhibitor oligonucleotide (miR-21i) to HER2-expressing cells in engi-
neered exosomes demonstrated an anti-tumor effect in a colon cancer mouse model after
systemic administration. MiR-21 target gene expression was rescued, thereby reducing
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tumor proliferation and induce apoptosis. Furthermore, treatment with the engineered
exosomes reversed drug resistance and enhanced cytotoxicity in 5-FU-resistant colon can-
cer cells [161]. In gastric cancer, the same combination of 5-FU and miR-21 inhibitor was
delivered in trastuzumab-conjugated nanoparticles. This strategy increased trastuzumab
targeting and antibody-dependent cellular cytotoxicity, while also enhancing sensitivity of
HER2-expressing gastric cancer cells to trastuzumab and 5-FU in vitro and in vivo [162].
Furthermore, co-delivery of 5-FU and anti-sense miR-21 in PAMAM dendrimers improved
cytotoxicity and decreased migratory abilities of glioblastoma cells in vitro [163]. Another
cytostatic, docetaxel, has also been employed for miR-21 co-delivery in TNBC. In vitro
experiments showed improved chemosensitivity of TNBC cells to docetaxel treatment
after treatment with so-called chitosomes. Chitosomes are self-assembling core-shell
supramolecular nanovectors carrying anti-miR-21 and docetaxel [164]. Another study
co-delivered miR-21 inhibitor and the cytostatic gemcitabine to pancreatic cancer cells
using polyethylene glycol-polyethylenimine-magnetic iron oxide nanoparticles targeted
to CD44. Application of those nanoparticles resulted in downregulation of miR-21 fol-
lowed by upregulation of PDCD4 and PTEN as well as EMT suppression. Additionally,
proliferation was inhibited, and clonal formation, migration, invasion, and apoptosis were
induced in vitro. The nanoparticles, in vivo, accumulated at the tumor site and potently
inhibited tumor proliferation and metastasis. The synergistic anti-tumor effect suggested
the nanocarriers as a promising anti-cancer therapy in pancreatic cancer [165]. Further-
more, promising delivery vehicles for co-delivering miR-21 inhibitor and doxorubicin
or epirubicin have been developed, some of which show synergistic anti-cancer effects
of the therapeutics [166,167] or the ability to overcome multi drug resistance [168] and
others, which show high delivery efficiency but no synergistic effect [169]. Similarly, a
co-delivery system for an anti-miR-21 oligonucleotide and pemetrexed in cationic solid
lipid nanoparticles for glioblastoma treatment shows promising uptake in vitro but no
increased cytotoxicity [170].

As a sequential delivery of miR inhibitors and chemotherapeutic compounds can be
critical for synergistic efficacy [171], Ren et al. designed nanoparticles to achieve sequential
drug delivery. They employed a system of near-infrared-radiation (NIR)-responsive hollow
gold nanoparticle (HGNPs) modified with PAMAM and loaded with miR-21 inhibitor
and doxorubicin to target breast cancer cells in vitro and in a xenograft mouse model.
Sequential delivery was achieved by first releasing the miR-21 inhibitor using the proton
sponge effect of the PAMAM polymer after endocytic uptake of the nanoparticle. After
4h, NIR application collapsed the hollow gold-nanoparticles, freeing the encapsulated
doxorubicin into the sensitized cancer cells. Anticancer efficacy increased 4-fold compared
to doxorubicin only treatment after intravenous administration, showing the potential of
this sequential delivery concept for cancer therapy [172].

The prominent tumor suppressor miR-34a is the second most used miR in combinato-
rial therapy approaches with chemotherapeutics as its downregulation is often involved in
chemotherapy resistance. Thus, several approaches of co-delivery with cytostatics have
been taken. Li et al. used polymeric hybrid micelles to deliver miR-34 and irinotecan in col-
orectal cancer cells. They showed enhanced anti-tumor effects due to the combined therapy
in vitro and in vivo [173]. Another study by Shi et al. delivered miR-34 and paclitaxel in
cationic solid lipid nanoparticles to melanoma lung metastases in mice where the nanoparti-
cles showed potent synergistic anti-cancer efficacy [174]. Similarly, the delivery of miR-34a
and docetaxel in nanocarriers inhibited tumor growth and metastasis in a metastatic breast
cancer mouse model [175]. Delivering doxorubicin and miR-34a showed anti-tumor activ-
ity in prostate [176] and breast [177] cancer in vitro and in vivo. Furthermore, in uterine
leiomyosarcoma, a maternal embryonic leucine zipper kinase MELK inhibitor (OTSSP167)
may increase the sensitivity to doxorubicin via reversing MELK-induced M2 macrophage
polarization via the miR-34a/JAK2/STAT3 pathway, subsequently promoting doxorubicin
chemoresistance in the TME [178].
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In addition to the combination with cytostatic drugs, miR-34a mimics have also been
used in two further approaches. One study showed that co-delivery of miR-34a and sPD-1
in cationic lipid microbubbles (release via Ultrasound-targeted microbubble disruption
(UTMD)) inhibited tumor growth and increased antitumor activity in cervical cancer in a
xenograft mouse model [179]. Another study targeted miR-34a-carrying nanoparticles to
Notch1-overexpressing TNBC cells using Notch1 antibodies. Here, the Notch1 antibodies
had a dual role and did not only serve the purpose of being the targeting moiety, but also
enabled suppression of Notch signaling. Additionally, the performed in vitro experiments
showed regulation of miR-34a targets as well as induction of senescence and reduction
of cell proliferation and migration [180]. Taken together, the developed systems for co-
delivery show high potential to overcome chemotherapy resistance. Several other miRs
that have been applied in co-delivery systems with chemotherapeutics are listed in Table 1.

Table 1. Pre-clinical studies for co-delivery of miRs and chemotherapeutics in cancer.

MiR Therapeutic Chemotherapeutic Delivery Vehicle Cancer Type Ref.

miR-7 Paclitaxel PEG-PLGA-poly(l-lysine)
nanoparticles Ovarian cancer [181]

miR-10 inhibitor Paclitaxel pH-sensitive liposomes Breast cancer [182]

miR-21 inhibitor

Doxorubicin

Core-shell tecto dendrimers Breast cancer [166]

NIR-responsive hollow gold
nanoparticles Breast cancer [172]

Amphiphilic copolymers Glioma [169]

Graphene oxide-based nanoparticles Breast cancer [168]

Epirubicin MUC1 aptamer-targeted poymers Breast cancer [167]

Docetaxel Chitosome TNBC [164]

Cisplatin Nano-Graphene oxide nanoparticles Lung cancer [183]

5-FU Engineered exosomes Colon cancer [161]

5-FU Poly(amidoamine) dendrimers Human glioma [163]

Gemcitabine

Dendrimer-entrapped gold particles
using UTMD Pancreatic cancer [184]

PEG-PEI magnetic iron oxide
nanoparticles Pancreatic cancer [165]

Pemetrexed
Lipid-polymer hybrid nanoplexes Glioblastoma [185]

Cationic lipid nanoparticles Glioblastoma [170]

Sorafenib Dual targeting reconstituted HDL Hepatocellular
carcinoma [186]

4-Hydroxy-tamoxifen PLGA-b-PEG nanoparticles Breast cancer [187]

miR-29b Retinoic acid Micellar nano system NSCLC [188]

miR-31 Doxorubicin Stimuli-responsive silica
nanoparticles HeLa cell line/tumors [189]

miR-34a

Doxorubicin

Hyaluronic acid chitosan
nanoparticles TNBC [177]

Cationic polypeptide-based micelles Prostate cancer [176]

Paclitaxel Lipid nanoparticles Melanoma lung
metastases [174]

Irinotecan Polymeric hybrid micelles Colorectal cancer [173]

Notch1 antibody PLGA nanoparticles TNBC [180]
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Table 1. Cont.

MiR Therapeutic Chemotherapeutic Delivery Vehicle Cancer Type Ref.

tRNA-mir-34a Doxorubicin Creatin-based polymer Breast cancer lung
metastases [190]

miR-34a activator
rubone Docetaxel Dual responsive micelles Prostate cancer [191]

miR-122

Doxorubicin Gold nanocages Hepatocellular
carcinoma [192]

5-FU Chitosan nanoparticles Hepatocellular
carcinoma [193]

miR-181a Melphalan Lipid nanoparticles Retinoblastoma [194]

miR-200 Irinotecan
pH-sensitive and peptide-modified

liposomes and solid lipid
nanoparticles

Colorectal cancer [195]

miR-200c Docetaxel Gelatinases-responsive
nanoparticles Gastric cancer [196]

miR-205 Gemcitabine Cationic copolymers Pancreatic cancer [197]

miR-218 Temozolomide Folate-chitosan gel-delivered gold
nanoparticles

Glioblastoma & lung
cancer [198]

miR-221/222 inhibitors Paclitaxel Calcium phosphate-polymer hybrid
nanoparticles TNBC [199]

miR-345 Gemcitabine Polymeric dual delivery nanoscale
device Pancreatic cancer [200]

miR-375 Cisplatin Lipid-coated nanoparticles Hepatocellular
carcinoma [201]

miR-451 Doxorubicin Coated calcium carbonate
nanoparticles

Multidrug resistant
bladder cancer [202]

miR-542-3p mimic Doxycycline HA/PEI-PLGA nanoparticles TNBC [203]

miR-1284 Cisplatin CD59 receptor-targeted liposomes Cervical cancer [204]

5. Pharmacological Targeting of Pathways That Provoke Differential Expression of MiRs

Next to modulating miR expression via oligonucleotides, small molecules could also
be employed. As those molecules do not need to interact with the miR itself (or substitute
it), there are several stages in the miR pathway that can be targeted. One option is the
pre-transcriptional targeting of miRs. To this end, promoters or their methylation status
could be targeted. Additionally, interfering with the signaling cascades (starting from
receptor activation) and transcription factors involved in miR expression could alter the
miRome. Another way to influence miR expression is via targeting the biogenesis pathway.
Describing all the involved pathways and targets for therapeutical interventions is beyond
the scope of this review. We focus on the use of small compounds used to directly regulate
miR expression in cancer.

However, an exemplary study demonstrating the implications that treatment with
small compounds can have on the TME was performed by Chang et al., even if the miR
is only regulated indirectly. They showed that miR-21 levels in the glioblastoma (GBM)
microenvironment were associated with macrophage M2 polarization and temozolomide
resistance. TAMs were secreting miR-21-containing exosomes, which increased tumorigenic
properties and drug resistance in vitro. Furthermore, they propose a feedback loop of
increased ability to promote M2 polarization by GBM cells with exogenously increased
miR-21 levels via secretion of the M2 cytokines IL-6 and TGF-β1. Application of the STAT3-
associated pathway inhibitor pacritinib reduced the release of miR-21-containing exosomes
from TAMs as well as cell viability and colony formation associated with reduced levels
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of STAT3, Sox2, PDCD4, and miR-21 in GBM cells. Additionally, pacritinib application
in a TMZ-resistant LN18-bearing mouse model showed its potential to overcome TMZ-
resistance [205].

5.1. Upregulation of Tumor Suppressor MiRs

To influence global miR expression RNAi research aimed to identify small-molecule
enhancers of microRNA (SMERs). Suppression of miRNA expression has been observed in
cancer during normal expression of the miRNA biogenesis machinery components [206], as
well as caused by downregulation of the miRNA-processing machinery components Drosha
and Dicer [207,208]. Reduced Dicer and/or Drosha expression is associated with shorter
survival in e.g., breast cancers [209–211]. Therefore, SMERs pose an attractive treatment
option. The small molecule enoxacin, a fluoroquinolone antibiotic, has been shown to be an
RNAi enhancer [212], that increases mature miR or siRNA levels. Furthermore, it reduces
cell viability by enhancing maturation of downregulated tumor suppressor miRs in several
different cancer models [213]. Furthermore, Chen et al. identified a universal activator of
miRNAs from the photoreaction products of naphthalene-1,4-dione with acetylenes. The
compound non-specifically upregulated endogenous mature miR levels by promoting pre-
miRNA processing [214]. In combination with miR mimics, those mature miR enhancing
agents could potentially add to the drug performance by increasing the amount of mature
miR therapeutics.

In addition to the globally acting SMERs, small compounds for upregulation of specific
miRs can also have therapeutic potential. This is shown, e.g., by rubone, a miR-34 activator
that inhibits tumor growth in HCC in vitro and in vivo [215]. Furthermore, rubone has been
used in combination with paclitaxel for micellar co-delivery to reverse chemoresistance in
prostate cancer [216].

5.2. Downregulation of OncomiRs

Small molecules can also be employed for miR inhibition, but in this case targeting
single miRs opposed to global miR expression. The so-called small molecule inhibitor
of specific miRNAs (SMIR) approach aims to specifically decrease mature miR levels
by targeting either the mature miR or any precursor form. One challenge that several
studies face is the specificity for only the targeted miR, as numerous compounds efficiently
decrease the targeted miR, but also others [217]. The first SMIR was found for miR-21. It
decreased miR-21 levels by targeting the transcription of the miR-21 coding gene [218].
Later, several other SMIRS targeting miR-21 were identified [219–223]: Streptomycin was
shown to bind the miR-21 precursor sequence, thereby interfering with Dicer processing
and repressing miR-21 levels [220]. Naro et al. identified a small molecule inhibitor
that perturbs miR-21 function, shows cytotoxicity and can reverse chemoresistance [219].
Additionally, topoisomerase inhibitors can bind the Dicer motif of oncogenic miR-21,
thus inhibiting its processing both in vitro and in cultured cells. Target de-repression and
inhibition of a miR-21-mediated invasive phenotype by the most potent compound could
be observed [221]. There is also evidence suggesting that SMIRs can influence TME effects,
as the miR-21 inhibiting compound AC1MMYR2 has been shown to impair CAF-induced
metastasis in breast cancer [224]. These examples (more are listed in Table 2) show the
potential of SMIRs as therapeutics for cancer treatment, and the ongoing research in this
field is promising; also for several other miRs [225]. Several different methods for high-
throughput screening of compounds or the computational design of SMIRs based on the
target (pre-)-miR sequence have been developed, allowing for systematic discovery of new
drug candidates [126,226–229]. Further examples for small compounds increasing miR
levels are listed in Table 2.
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Table 2. Small molecule compounds mediating upregulation (↑) or downregulation (↓) of cancer-relevant miRs.

miR (Regulation) Compound Effect Ref

miR-33b ↑ Curcumin analog EF24 Suppression of EMT and migratory
potential of melanoma cells [230]

miR-34 ↑ Rubone
Inhibition of tumor growth in HCC
and reversal of chemoresistance in

prostate cancer
[215,216]

miR-99a ↑ Diaporine A Tumor suppression in NSCLC cells
via miR-99a/mTOR pathway [231]

miR-138 ↑ α-solanine

Restriction of cell migration and
invasion and increase of

chemosensitivity and
radiosensitivity of lung cancer cells

[232]

miR-203 ↑ Curcumin
Decrease of proliferation and

increase of apoptosis via Akt2 and
Src in bladder cancer cells

[233]

miR-214 ↑ Sulforaphane
Inhibition of cancer stem cell-like
properties and cisplatin resistance

in NSCLC
[234]

miR-485 ↑ EGCG Restraining of CSC-like
characteristics in NSCLC [225,235]

A panel of tumor suppressor miRs ↑ Diallyl trisulfide Inhibition of proliferation of
osteosarcoma [236]

miR-21 ↓

4-benzoylamino-N-(prop-2-
yn-1-yl)benzamide

compound

Increase of apoptosis, retardation of
proliferation, and upregulation of

PDCD4 in HeLa and human
glioblastoma cells

[237]

Triptolide Reduction of proliferation and
increase of apoptosis [238]

Topoisomerase-inhibitor
compound

Target de-repression and inhibition
of the miR-21-mediated invasive
phenotype in breast cancer cells

[221]

oxadiazole inhibitors
Cytotoxicity in several cancer cell

lines; re-sensitizes RCC cells to
chemotherapy

[219]

Honokiol

Suppression of proliferation and
induction of apoptosis via

regulation of the
miR-21/PTEN/PI3K/AKT

signaling pathway in human
osteosarcoma cells

[239]

Pre-miR-21 ↓

AC1MMYR2

Target de-repression and inhibition
of TME in cancer cells; impairs high

dose paclitaxel-induced tumor
metastasis, reprogramms CAFs

[224,240,241]

Inforna-designed [228]
small molecule

Impairment of lung metastasis of
breast cancer in a mouse model [242]

Chem-CLIP-Frag-Map-
designed

fragment-based dimer

Selective reduction of mature
miR-21 in vitro and in cells [227]

Butylcycloheptyl prodiginine
Target de-repression and inhibition
of cellular proliferation in colorectal

cancer cells
[243]
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Table 2. Cont.

miR (Regulation) Compound Effect Ref

miR-96 ↓ Inforna-designed [228]
Targaprimir-96

Decreases tumor burden in a mouse
model of TNBC [244]

Pre-miR-372 ↓ Neomycin-nucleobase-amino
acid conjugates

Anti-proliferative activity toward
gastric cancer cells [228,245]

pre-miR-373 ↓ Neomycin-nucleobase-amino
acid conjugates

Target de-repression and inhibition
of proliferation in gastric

adenocarcinoma cells
[228]

miR-424-3p ↓ Baicalein

Inhibition of cell growth and
increase of cisplatin sensitivity of

lung cancer cells via the
PTEN/PI3K/Akt pathway

[246]

miR-515 ↓ Dimeric compound sensitized HER2- breast cancer
ccells to Herceptin [247]

miR-544 ↓ Inforna-designed [228]
small molecule

Selective induction of apoptosis
under hypoxia and sensitization to

5-FU in TNBC cells in vitro and
growth inhibition vivo.

[248]

6. Delivery of MiR Therapeutics

Delivering miR drugs poses challenges, from general considerations like the effect
of miR mimics or antimiRs on endogenous miR expression, over oligonucleotide modi-
fications to increase stability, to suitable delivery vesicles and targeting possibilities. For
mimics especially, the saturable endogenous RNAi machinery is needed for them to func-
tion. For this reason, it is preferable to deliver miR mimics instead of precursor-miR
oligonucleotides, to not influence the endogenous miR expression by saturating the miR
biogenesis system [249]. However, there are pre-clinical studies successfully designing and
evaluating bioengineered miR pro-drugs consisting of precursor-miRs that are coupled
to tRNA in bacteria. This system has the advantage of not needing artificial RNA modi-
fications and the pro-drugs’ potential for cancer therapy is supported by its capacity to
influence target gene expression [250–253].

Administration of drugs can be performed systemically or directly into the tumor
via injection. While intra-tumoral injection can enhance target specificity and efficacy,
and minimize side effects [254,255], it is less useful for treating metastasizing tumors or
leukemia [256]. Therefore, targeted approaches to systemic delivery are needed. In this
section, we give an overview of the current state of the art. For additional details, we
encourage you to read the reviews done by Rupaimoole et al. and Labatut et al. [257,258].

6.1. Oligonucleotide Modifications

Free dsRNA is degraded rapidly in plasma, so the stability and pharmacokinetics
of the miR mimic or antimiR in the circulation need to be ensured. To this end, modi-
fications can be made to the oligonucleotides. In general, phosphorothioate backbone
modifications as well as 2′-alkylation (prevents RNaseH activation [259]) stabilizes the
oligonucleotides, but are, especially for mimics, only tolerated up to a certain point as they
hinder incorporation into the RNAi machinery [260].

For antimiRs different modifications have been tested, some of them being derived
from siRNA technologies. As the functional blocking of the targeted miR is achieved by
binding and no RISC incorporation is needed (opposed to miR mimics), antimiRs can
be designed more freely. The use of a phosphorothioate backbone stabilizes antimiRs
against degradation and increases the binding affinity to plasma proteins. Furthermore,
2′-O-methoxyethyl, 2′-O-methyl, or 2′-O-fluoro modifications and the use of locked-nucleic
acids (LNA) have been shown to increase stability and/or binding affinity [95,257,261]. The
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LNA modification is the most successful modification and describes the methylene bridge
between the 2′-oxygen and 4′-carbon in a ribonucleotide, which results in the nucleotide
being locked in the C3′-endo conformation. This conformation favors pairing with RNA
and increases specificity for the target sequence, while also improving endonuclease
resistance [262]. So-called LNA mixmers [263] for miR-122 inhibition in the liver have been
successfully tested in vivo in mice and non-human primates [264,265]. Those mixmers are
consisting of two deoxyribonucleotides, followed by one locked ribonucleotide, to increase
miR targeting efficacy. Furthermore, the passenger strand often has a higher amount of
modifications and off-target effects can be reduced by the three-stranded nicked design,
which ensures that no useable passenger strand exists [266].

6.2. Cellular Uptake

Even with increased stability in the circulation due to the chemical modifications,
the delivery of miR drugs into the cells still poses a challenge as naked miRs are mainly
taken up via endocytosis, eventually leading to miR degradation in late endosomes or
lysosomes. The need for endocytic uptake results from the miR’s negative charge repelling
the negative charge of phospholipids in the cell membranes. In addition, the lipophilic
bilayer hinders the transition of the hydrophilic miRs through the cell membrane. However,
one solution to achieve endosomal escape is the “proton sponge” effect, which is exploited
by some polymer delivery strategies. Polymers containing unprotonated amines can absorb
the protons that enter the endosome during its maturation to the lysosome. This proton
absorption enhances an osmosis-induced influx of chloride anions and water, which results
in the rupture of the endosome, liberating the miR drugs [267].

Another modification, designed to overcome the cell membrane barrier and improve
tumor delivery, is the addition of a pH low insertion peptide (pHLIP) via a disulfide bond.
The pHLIP undergoes a pH-dependent conformational change in the hypoxic/low-pH
TME, which facilitates the formation of a transmembrane α-helix by the carboxyl terminus
in the cell membrane. The cleavage of the disulfide bond in the cytosol subsequently
results in the release of the cargo antimiR [268]. Similarly exploiting the unique chemical
composition of the TME is an approach to engineer ROS sensitive polymers. Those poly-
mers dissolve upon engaging ROS molecules in the TME, thereby releasing their miR drug
cargo [269].

6.3. Delivery Vehicles for Oligonucleotides

One approach to increase stability and the possibility to target tumor cells is the en-
capsulation of oligonucleotides. Here, several different approaches can be taken, including
viral vectors, polymer- or lipid-based vesicles, exosomes, or inorganic nanoparticles. Encod-
ing the RNA molecules in adenoviral vectors showed some promising results in vitro [270]
and in vivo [271,272]. However, viral vectors have some safety issues in the clinic due to
immune reactions.

A widely used method is the packaging in polyplexes, consisting of polymers and
complexed nucleic acids, which has been exploited in various studies [273–276]. Here,
the toxicity needs to be balanced with the miR binding capacity. In general, cationic poly-
mers have a higher miR binding capacity and interaction rates with cell membranes than
neutral ones, but their charge is also associated with higher toxicity. The classically used
cationic polymer poly(ethyleneimine) (PEI) enters the cell via endocytosis and uses the
proton sponge effect for endosomal escape. It is employed in various delivery studies—
sometimes used in combination with neutral polymers such as poly(ethylene-glycol) (PEG),
to reduce toxicity. In line with PEI, cationic dendrimers, consisting poly(amidoamine)
(PAMAM) or poly(propylenimine) (PPI) are delivering conjugated nucleic acids efficiently.
Additionally, its comparatively low toxicity, biodegradability, and biocompatibility makes
PAMAM preferable over PEI [27]. An even safer possibility are neutral Poly(lactide-
co-glycolide) (PLGA) particles, which show no toxicity, but also a lower miR binding
capacity. PLGA is also often combined with cationic peptides [268] or other polymers,
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like e.g., PEG, which improves encapsulation efficiency, circulation time, and bioavail-
ability in animals [257,277–279]. A component being able to compromise between charge
and toxicity, which could be well suited for miR delivery, could be the cationic polymer
chitosan. It is derived from the naturally occurring chitin, a polysaccharide composed
of glucosamine and N-acetylglucosamine residues. Chitosan shows low cellular toxic-
ity, is biodegradable [258,280] and has been used for miR delivery in in vitro and in vivo
studies [281–283]. Notably, chitosan nanoparticles without a targeting moiety have been
used to deliver miR-33 to macrophages in mice to alleviate atherosclerotic lesions. The
study showed that delivery of a functional miR mimic to macrophages is feasible [284].
As macrophage specificity could be enhanced by using targeting peptides, appropriately
engineered chitosan nanoparticles could be employed in cancer treatment, targeting TAMs.
Another study by Deng et al. used mannose-modified trimethyl chitosan [MTC]-conjugated
nanoparticles carrying a miR-146b mimic for an immunotherapeutic approach targeted
at intestinal macrophages in the DSS mouse model. They showed that M1 macrophage
activation could be inhibited and concluded that the miR-146b nanoparticles could be used
in immunotherapies for ulcerative colitis and colitis-associated cancer [285].

There are also a couple of lipid-based delivery methods like lipoplexes, stable nucleic
acid lipid particles (SNALPs), or neutral lipid emulsions (NLEs). Lipoplexes are liposomes
composed of a mix of lipids with cationic head groups and helper lipids, including e.g.,
some PEG chains, and the polyanionic nucleic acids [266]. Their overall positive charge
facilitates binding to anionic cell surface molecules. The lipoplex composition can facilitate
fusion with the cytoplasmic, endosomal, or nuclear membrane, depending on the charac-
teristics of its components. As with the polyplexes, strategies e.g., for endosomal release
can be incorporated: By adding a pH sensitive lipid head group, interaction with anionic
phospholipids in the endosome can be facilitated, disrupting the endosomal membrane and
releasing the RNA [262]. In addition, in line with polyplexes is the potential for toxicity that
comes along with the cationic charge. Furthermore, it has been shown that lipoplexes show
a higher toxicity in macrophages [286,287] and elicit pro-inflammatory responses [288].
Both effects could play a role in the TME and need consideration when designing miR
therapeutics.

SNALPs are composed of cationic, fusogenic, and PEGylated lipids, can efficiently en-
capsulate nucleic acids and are therefore used in clinical programs for siRNA delivery [266]
and have been used in in vitro [289] and in vivo studies for miR delivery in cancer mod-
els [290–292]. NLEs are composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),
squalene oil, polysorbate 20, and an antioxidant and only show low toxicity at the same
time as showing a more equal distribution over the tissues and less liver accumulation as
cationic lipoplexes [86,266]. Furthermore, DOPC-based nanoparticles for siRNA delivery
have reached clinical trials and show promising results in preclinical studies for miR mimic
delivery [89,293–296].

Inorganic nanoparticles have also been employed for miR transport in several studies.
They are non-toxic, non-immunogenic, and are highly stable in vivo, but on the down-
side show non-specific binding affinities to functional groups in biological systems and
colloidal stability [27]. The most extensively used inorganic vesicles for miR therapeutics
are silica or gold nanoparticles (AuNPs). AuNPs have been shown to be able to deliver
therapeutic miRs to tumor cells in models of breast [297] and prostate cancer [298] as well
as hepatocellular carcinoma [299] and leukemia [300], amongst others. Similarly, silica
nanoparticles have been used to deliver miR mimics to tumor cells—also in combination
with chemotherapeutics. Silica nanoparticles dissolve upon hydrolysis, releasing their
cargo, and need receptor targeting to be taken up into cells as they are not taken up by
cells on their own [266,301]. If engineered accordingly, this may ensure cell type specificity,
therefore potentially decreasing side effects, which are a huge challenge in cancer therapies.

Furthermore, in a study by Akao et al. ex vivo miR-transfected THP-1 macrophages
shed miR-containing microvesicles after injection in mice. Based on their success they
propose a treatment scheme where patient-derived macrophages could be transfected with
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therapeutic miRs ex vivo before re-injecting the macrophages for miR delivery [302]. Using
exosomes as delivery vehicles solves the biocompatibility problem, but at the same time, a
stable quality and composition is hard to guarantee.

6.4. Delivery Vehicles for Co-Delivery of Oligonucleotides and Other Pharmaceuticals

For encapsulation of different drugs their different physiochemical properties can also
pose a challenge. MiR mimics or antimiRs are hydrophilic while chemotherapeutics, like
paclitaxel, can be hydrophobic. Zhou et al. solved this issue by using calcium phosphate-
polymer hybrid nanoparticles that could encapsulate both, the miR inhibitors as well as
paclitaxel. Their strategy involved first encapsulating the oligonucleotides in calcium
phosphate and then coating these capsules with an anionic lipid, dioleoylphosphatidic
acid (DOPA), for co-encapsulation with paclitaxel inside the same nanoparticle. Another
system, able to deliver a hydrophobic drug, doxorubicin (DOX), and a negatively charged
miR, miR-34a, used reducible self-assembling polypeptide-based cationic micelles. The
DOX is entrapped in the hydrophobic core of the poly(l-arginine)-poly(l-histidine)-stearoyl
micelles, while the miR is bound to the hydrophilic outer shell. The study demonstrated
that the system is able to simultaneously deliver DOX and miR-34a in vitro and in vivo.
Furthermore, the micelles facilitate endosomal escape of miR34a as well as DOX release
into the cell nucleus resulting in synergistic anti-tumor activity in prostate cancer cells [176].
Further examples for co-delivery systems of miR agents and chemotherapeutics are named
in the section ‘Co-delivery’.

6.5. Tumor/TME-Targeting of the Delivery Vehicles

The vesicles, discussed above, achieve stability in the circulation and increase the
half-life of the miR therapeutics. However, systemically administered miR drugs still face
the challenge of reaching the tumor cells or their target cells in the TME. For this, different
targeting strategies have been employed, including targeting via antibodies or stimulus-
dependent drug-release. For instance, lipoplexes can be targeted to a certain cell type by
using maleimide tethers as anchoring points for scFv ab fragments [303,304]. For miR-29b
delivery to chronic lymphocytic leukemia cells, the oncofetal antigen receptor tyrosine
kinase orphan receptor 1 (ROR1) was used for targeting the nanoparticles. Selectivity is
ensured as only malignant B-CLL cells express ROR1 [305].

Another promising approach that is being tested in clinics is the targomiR approach.
TargomiRs consist of a double-stranded, synthetic RNA molecule, non-living bacterial
minicells (EDVTM nanocells from EnGeneIC Ltd.) [306] as drug delivery vehicle and a
targeting moiety like e.g., an anti-EGFR antibody [84]. In addition, targeting of miR-
containing exosomes, that are generated e.g., by transfection of exosome producing HEK
cells, can be achieved by transfection with the miR as well as a targeting moiety [307].
Another tumor-specific targeting moiety is hyaluronic acid (HA), which binds to CD44, a
cell adhesion membrane glycoprotein that is overexpressed on metastatic breast cancer cells.
Wang et al. used this to develop HA-coated PEI-PLGA nanoparticles that can potentially
deliver chemotherapeutic agents and miRs for combinatorial cancer therapy [203].

Next to targeting the tumor via antibody or receptor-mediated approaches, general
TME characteristics can be exploited to achieve tumor-targeting. The TME is unique in pH,
temperature, redox potential, and levels of certain proteins/enzymes that can be targeted,
and most solid tumors show a phenomenon called enhanced permeability and retention
(EPR), which enhances lipid and macromolecular drug uptake in tumors. EPR is caused by
the extensive angiogenesis and hyper-vasculature, defective vascular architecture as well as
the impaired lymphatic drainage/recovery system, and a high abundance of a number of
permeability mediators in the TME [308]. Additionally, the application of external stimuli,
including light, ultra sound, or magnetism, to release drugs can be employed for targeted
delivery of drugs to tumors [309].

One of the advantages of the modern possibilities of drug design is the high degree to
which it is possible to customize the drugs. With sufficient engineering the encapsulation of
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the desired drug combination can be achieved and, as long as a specific targeting receptor
can be found on the target cell, specificity can be increased, thus showing the high potential
of this approach in cancer therapy.

7. MiR Therapeutics in Clinical Trials

Even though there is great potential in the clinical use of agents that modulate miR
expression, there are no miR pharmaceuticals approved and no phase 3 studies listed on
Clinicaltrials.gov to date. The highly related class of siRNA drugs is only slightly more
successful on its way to clinical application, highlighting the number of challenges that
need to be faced to successfully develop an oligonucleotide drug.

The difficulties of developing miR drugs for cancer treatment are also reflected in the
clinical studies currently running. Clinicaltrials.gov lists several Phase 1 and 2 studies for
miR agents aimed to treat different diseases, including diabetes, cardiovascular diseases,
hepatitis C virus infection, and cancer with diverging outcomes. A prominent example of a
miR drug that encountered problems in clinical trials is MRX34 from Mirna Therapeutics,
Inc. The synthetic double stranded RNA oligonucleotide was administered by liposomal
injection in patients with primary liver cancer to substitute depleted miR-34 and restore
its activity on the p53/wnt cellular pathways. However, the study was terminated due to
immune related serious adverse events and a planned phase 2 study in melanoma patients
was withdrawn.

More promising results were obtained in other clinical studies examining drugs
targeted at dysregulated miRs in cancer. Asbestos Diseases Research Foundation in co-
operation with EnGeneIC Limited developed targeted minicells containing a miR mimic,
so-called targomiRs. The first TargomiR, Mesomir 1, was tested in a phase 1 study in
patients with malignant pleural mesothelioma. Mesomir 1 carries a miR mimic for miR-
16, a tumor suppressor in several cancers. Targeting to EGFR-expressing lung cancer
cells is achieved by an anti-EGFR bispecific antibody. According to the authors of the
study, additional studies are supported by the acceptable safety profile and activity of the
drug [84,310].

Another drug candidate aimed against a dysregulated miR in cancer was announced
by Regulus. Their drug RGLS5579 aims to target miR-10b in glioblastoma multiforme,
where it has been identified as a promising therapeutic target [311]. In their current study,
they aim to confirm that miR-10b expression patterns in glioma samples can serve as
prognostic and diagnostic markers and want to test the sensitivity of individual primary
tumors to anti-miR-10b treatment in vitro. A positive study outcome would pave the way
for their drug to enter clinical trials.

Furthermore, a few miR drugs in clinical trials for other pathologies are giving reason
for hope if the same strategies can be applied to cancer treatment. That one class of
miR drugs can work in different diseases is shown by locked nuclear acid (LNA)-based
anti-miRs, which seem to be a promising class of miR drugs as human phase 1 studies
of 3 LNA-based anti-miRs proved safety and activity of those agents. One is Miravirsen
(SPC3649 from Roche), which targets the liver-specific miR-122 [312] and showed prolonged
dose-dependent reductions in hepatitis C virus (HCV) RNA levels without evidence of viral
resistance in a phase 2 study in patients with chronic HCV genotype 1 infection [313]. The
second LNA-based anti-miR shown to be safe in humans is Cobomarsen (MRG-106), which
targets miR-155 in multiple hematological malignancies [314]. Currently, there are two
phase 2 clinical studies ongoing for the use of Cobomarsen in cutaneous T-cell lymphoma.
The newest of the 3 anti-miR drug candidates is MRG-110, which inhibits miR-92a and is
intended to promote angiogenesis and to be used in treatment of cardiac diseases. A phase
1 trial showed that MRG-110 reduces miR-92a levels and de-represses miR-92a target genes
in the peripheral blood compartment. As target gene expression was especially altered
in T cells and NK cells, the authors propose a potential therapeutic benefit in diseases
with dysregulated immune functions [315], which could also become interesting in the
tumor context.

Clinicaltrials.gov
Clinicaltrials.gov
Clinicaltrials.gov
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Another promising approach to modulate miR expression in diseases is taken by
Abivax. They are testing a compound, ABX464, in two phase 2 studies in subjects with
Crohn’s disease or moderate to severe active ulcerative colitis, which often progresses to
colon cancer. Administration of ABX4664 causes miR-124 overexpression by binding to the
cap binding complex at the 5′-end of pre-mRNA and enhancing splicing of a single long
noncoding RNA to generate the anti-inflammatory miR-124 [316].

Finally, UniQure Biopharma B.V. developed a gene silencing technology, using artifi-
cial micro-RNAs called miQURE™. For therapy of Huntington’s disease, they designed
a AAV5 vector carrying one such miQure miR targeting the huntingtin gene (AMT-130),
which is currently tested in a phase 1/2 study for evaluation of safety and proof of con-
cept [317]. If the system proves to be safe and efficient in humans, it could probably be
applied for cancer treatment as well.

8. Conclusions

Within the last decades, extensive studies of miRs in cancer have shown their impact
on multiple cancerous gene and protein networks, suggesting them to be a hidden pattern
behind malignant diseases. Understanding the regulatory pathways of miRs and their inter-
actions, in both malignant cells and in tumor-infiltrating host cells, may be the prerequisite
to take miRs one step further towards therapeutic application [318]. In vitro and in vivo
studies have shown, that targeting a single miR or a target in a miR network is inefficient
and cannot necessarily be transferred into the clinic. As mentioned before, miR-34 has
been a promising target for treatment of liver cancer and liver metastasis. Unfortunately,
administration of a miR-34 mimic had strong side effects in some patients. miRs, including
miR-34, target several genes and in most cases not all interactions and molecules that can
be affected by a specific miR are known, making it difficult to predict and to evaluate
the side effects. In the case of miR-34, it can be speculated that the side effects might be
caused by high concentrations of miR-34 in the blood or in the cell, thereby triggering
undesirable toxic pathways of the miR agent. Thus, to proceed miR therapeutic agents
into the clinic it is not enough to know the in vivo toxicity, but rather the entire regulatory
network of a particular miR needs to be understood. This challenge is even more difficult
since multiple miRs are not only dysregulated in malignant cells, but also in other cells
of the TME, where they might have opposing functions. Therefore, it is inevitable to test
the effect of a potential miR target in a comprehensive manner to assess their regulatory
network in the TME and to gain insights regarding the context-dependent functions of the
miR. The knowledge about the expression and function of immune-modulatory miRs is
indispensable to fully elucidate the molecular mechanism underlying tumor progression
and to predict the response and clinical outcomes of cancer immunotherapy. This knowl-
edge would also be crucial in personalized medicine by precisely targeting a dysregulated
signaling pathway in a particular cancer patient.

To date, there are some phase 1 and 2 clinical trials involving miR-targeting drugs, but
no miR drug has entered a clinical phase III trial so far. This is partly due to the challenge of
designing efficient miR carriers and delivery systems to specifically target cell types, tissues,
and organs. The specific targeting of miRs to a cell of interest by using antibodies, ligands,
and nanoparticles has been shown to enhance treatment efficacy and reduce off-target
effects, including immunotoxicity [255], but there are still limitations. Using other miR
carriers, for instance AGO proteins or low-density lipoproteins, in combination with a
suitable delivery system might further increase the cellular uptake of miR therapeutics and
their incorporation into RISC to enhance their regulatory functions. Developing strategies
to directly target dysregulated miRs in TAMs or CAFs might be useful to restore anti-
tumoral properties and enhance treatment responses. The application of miRs as cancer
therapeutic molecules stands and falls with the efficacy and specificity of its delivery system
and will be of relevance, once those miR carriers can progress from phase I/II to phase
III. Since tumor progression is caused by the deregulation of multiple cellular pathways,
traditional therapeutic approaches that target single proteins, as well as chemotherapy or
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radiotherapy alone are less effective. Combinatorial approaches with miR therapeutics
have proven to reduce chemotherapy resistance and treatment efficacy in pre-clinical
studies and, thus, pave the way for novel cancer therapies once the discussed obstacles
have been overcome.
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