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Pyruvate : ferredoxin oxidoreductase (PFO) and iron only hydrogenase
([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit
anaerobic niches. Their function is tomaintain redox balance by donating elec-
trons from food oxidation via ferredoxin (Fd) to protons, generating H2 as a
waste product. Operating in series, they constitute a soluble electron transport
chain of one-electron transfers between FeS clusters. They fulfil the same
function—redox balance—served by two electron-transfers in the NADH-
and O2-dependent respiratory chains of mitochondria. Although they possess
O2-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among
numerous algae that produce O2. The evolutionary persistence of these
enzymes among eukaryotic aerobes is traditionally explained as adaptation
to facultative anaerobic growth. Here, we show that algae express enzymes
of anaerobic energymetabolismat ambientO2 levels (21%v/v),Chlamydomonas
reinhardtii expresses them with diurnal regulation. High O2 environments
arose on Earth only approximately 450 million years ago. Gene presence/
absence and gene expression data indicate that during the transition to
high O2 environments and terrestrialization, diverse algal lineages retained
enzymes of Fd-dependent one-electron-based redox balance, while the
land plant and land animal lineages underwent irreversible specialization
to redox balance involving the O2-insensitive two-electron carrier NADH.
1. Introduction
Molecular oxygen (O2) had a far-reaching impact on evolution. From about
2.7–2.5 billion years ago onwards, cyanobacteria started using H2O as the
electron donor for a photosynthetic electron transport chain consisting of two
photosystems connected in series [1,2], generating O2 as a waste product of
primary production. Before that, all life was anaerobic [3,4]. However, oxygen-
ation of the planet did not occur quickly, as atmospheric oxygen concentrations
remained low for almost 2 billion years [5,6] (figure 1).

Current findings have shown that the monophyletic origin of land plants,
which occurred some 450 Ma [12,13], boosted O2 accumulation to modern
levels through massive carbon burial [9,10]. Eukaryotes arose roughly 1.8 bil-
lion years ago [14,15], from which it follows that the first 1.3 billion years of
eukaryote evolution took place in low oxygen conditions [7] at atmospheric
and marine O2 levels comprising only a fraction—0.001–10%—of today’s O2
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Figure 1. Overview of the changes in Earth’s biochemistry and the rise and diversification of major groups with respect to oxygen concentration. After the great
oxidation event (GOE) about 2.4 billion years ago, oxygen concentrations remained low, around the Pasteur point, as indicated by the cloudy line [2,5,7,8]. The rise
of oxygen concentration to modern levels coincides with the conquering of land by streptophyte algae some 500 Ma and the beginning of massive carbon burial on
land [6,9,10]. The Pasteur point is a classical term from microbiology that designates the O2 partial pressure at which facultative anaerobes switch from aerobic to
anaerobic metabolism (or vice versa); it corresponds to roughly 1% PAL or about 0.2% O2 v/v [11]. Ma, million years ago. (Online version in colour.)
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levels [5,6,9,10]. Because eukaryotes arose and diversified
over a billion years before atmospheric O2 reached the current
value of 21% [v/v], it is hardly surprising that all major
lineages (or supergroups) of eukaryotes possess enzymes of
anaerobic energy metabolism (figure 2) [7]. In diverse eukary-
otic lineages, these enzymes afford redox balance during ATP
synthesis in mitochondria, anaerobic mitochondria [17],
hydrogenosomes [18,19] and the cytosol [20] without requiring
the presence of O2 as the terminal acceptor [7,21].

The enzymatic backbone of redox balance in anaerobic
energy metabolism in unicellular eukaryotes is pyruvate :
ferredoxin oxidoreductase (PFO) and [Fe-Fe] hydrogenase
([Fe]-HYD), which were first described for eukaryotes in
studies of carbon and energy metabolism in trichomonad
hydrogenosomes [18]. The ecophysiological function of
these enzymes, together with a larger set of proteins widely
distributed across eukaryotes (figure 2), is generally inter-
preted as affording growth without oxygen. Hence, they are
typically designated as enzymes of anaerobic metabolism.
Like the pyruvate dehydrogenase complex of human or
yeast mitochondria, PFO performs oxidative decarboxylation
of pyruvate, generating acetyl-CoA and transferring electrons
to the 4Fe4S cluster of the one-electron carrier ferredoxin (Fd).
To maintain redox balance from growth substrate oxidation,
reduced Fd (Fdred) is reoxidized by [Fe]-HYD, which donates
the electrons to protons, generating H2 gas that leaves the cell
as a waste product. Fdred generated by PFO is a low potential
one-electron carrier (Fdox/Fdred E0 =−420 mV) that can
readily transfer a single electron to O2 generating the super-
oxide radical, O2

–·[22,23] and reactive oxygen species (ROS).
ROS are potent cytotoxins, a reason why organisms that
employ the soluble PFO-Fd-[Fe]-HYD electron transport
chain avoid high O2 environments. In addition, PFO and
[Fe]-HYD are irreversibly inactivated by O2. Accordingly,
eukaryotes that employ PFO and [Fe]-HYD in energy metab-
olism typically inhabit low oxygen environments, with their
possession of these enzymes being interpreted as niche
specialization [20,24,25].

However, PFO, [Fe]-HYD and a larger suite of enzymes
associated with anaerobic energy metabolism are also present
in algae [7,26–28], phototrophic eukaryotes with plastids that
generate O2. Their presence in algae is known to enable facul-
tative anaerobic growth in low oxygen environments [7,28],
and their expression is observed to be upregulated in
response to anoxia in algae [29,30], in the same way that fer-
mentation enzymes are hypoxia-induced in higher plants
[31]. However, the expression in O2-producing algae of
enzymes associated with anaerobic redox balance has not
been studied under normoxic conditions. Here, we investi-
gated gene expression data from eukaryotic algae grown at
ambient O2 levels (21% v/v) to better understand the physi-
ology, function and evolutionary persistence of Fd-dependent
enzymes for one-electron-based redox balance in algae.
2. Distribution of enzymes for anaerobic
metabolism in eukaryotes

The distribution of 47 genes for enzymes involved in anaero-
bic energy metabolism [7] in 56 eukaryotes spanning the



Figure 2. The presence–absence pattern of enzymes associated with anaerobic metabolism across the eukaryotic tree of life. The presence of each enzyme in
eukaryotes scored as a dark blue square. An additional BLAST-based search (at least 30% identity and e-value of less than 10−7) identifies additional homologues
(shown in magenta) that are not represented in the eukaryote–prokaryote clusters (EPCs) from Ku et al. [16] that is based, for example, on 40% global sequence
identity for eukaryote proteins including BLAST hits for K. nitens, which was not included the original analysis [16]. Enzymes of anaerobic metabolism are present
among all eukaryotic supergroups recognized, including all groups of algae, that is those carrying plastids of primary (e.g. C. reinhardtii, Cyanaphora paradoxa, V.
carteri) and secondary origin (e.g. B. natans). For the enzymes that are identified as EPCs, phylogenetic trees (see the electronic supplementary material) indicate
that 36 out of 43 (80%) of the genes show a single origin that traces to the eukaryotic common ancestor. Eukaryote monophyly as observed in phylogenetic trees
constructed from protein sequences present in each cluster is shown with a dark red square (far right column), while orange indicates trees where the eukaryotes are
non-monophyletic. For an extended presence–absence pattern including prokaryotes, see the electronic supplementary material, figure S1.
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diversity of known lineages is summarized in figure 2. The
enzymes are widely distributed across diverse eukaryotic
lineages, although missing in some, consistent with a stan-
dard process of ecological specialization to aerobic and
anaerobic habitats entailing the process of differential
loss [16]. Some enzymes of one-electron-based redox
balance have undergone lineage-specific functional
specialization and have altered functional constraints in
the protein. For example, [Fe]-HYD has lost its H2-produ-
cing enzymatic activity in several eukaryotic lineages
and has assumed different functions. The [Fe]-HYD hom-
ologues IOP1/NAR1 repress the hypoxia-inducible
factor-1α subunit (HIF1-α) in humans [32] and, further-
more, possess conserved functions in cytosolic FeS
cluster assembly in the human and yeast [33,34]. Prokar-
yotes employ O2-labile FeS clusters for O2-sensing and
signalling [35]. In land plants, the [Fe]-HYD homologue
has relinquished enzymatic activity to become the
oxygen sensor GOLLUM [36].

Prokaryotic [Fe]-HYD enzymes can be trimeric [37], with
24 and 51 kDa subunits associated with the catalytic 64 kDa
subunit, which contains the H2-producing site, the H cluster.
The 24 and 51 kDa subunits allow the enzyme to accept elec-
trons simultaneously from both NADH and Fd via electron
confurcation [37], affording redox balance for both Fd and
NADH pools. Some eukaryotic [Fe]-HYD enzymes, including
the one from Trichomonas hydrogenosomes, also possess the
24 and 51 kDa subunits [38], which are related to mitochon-
drial complex I subunits. They are thought to allow the
eukaryotes in question to perform electron confurcation, facil-
itating redox balance via NADH-dependent H2 production
[7], which would be thermodynamically unfavourable in
the absence of Fdred [37,39].

Intermediate states in the evolutionary transition from
Fd-dependent, one-electron-based redox balance to
NADH-dependent redox balance are observed. In various
eukaryotic lineages, PFO has become fused to an FAD–
FMN–NAD binding domain that converts the ancestrally
Fd-dependent enzyme (one-electron transport) into an
NAD(P)+-dependent enzyme that transfers hydride (two-
electron transport) to generate NADPH. This fusion,
called PNO for pyruvate : NADP+ oxidoreductase [40], is
now known to be widespread among eukaryotes (figure 2)
[7,25], and represents an evolutionary intermediate in the
transition from Fd-dependent to NADH-dependent redox
balance, in that electrons from the FeS clusters of
the PFO domain are channelled directly to NAD(P)H,
bypassing the generation of soluble Fdred.
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Figure 3. Expression of enzymes of anaerobic metabolism under aerobic conditions in algae and in a diurnal manner in C. reinhardtii. (a) Representative algae of all
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Seq data of the chlorophyte alga C. reinhardtii show that the enzymes are mostly expressed in a diurnal manner under aerobic growth conditions. PFL is again seen
to be expressed at high levels throughout (to the extent of a house-keeping gene), but with a peak early on during the dark phase that matches that of the other
genes in question. LECA, last eukaryotic common ancestor; RPKM, reads per kilobase of transcript, per million mapped reads. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191491

4

3. Algae express enzymes for anaerobic
metabolism at ambient O2

The presence of the genes in representatives of the major algal
groups (figure 2) raises the question of whether and when
they are expressed. This is important, because genes for
anaerobic energy metabolism have been retained in some
eukaryotes with strictly O2-dependent energy metabolism
[41]. To determine whether enzymes of anaerobic redox bal-
ance are expressed independent of anaerobic culturing
conditions, we generated transcriptome data for several
algal lineages with sequenced genomes: the red alga Porphyr-
idum purpureum, the glaucophyte Cyanophora paradoxa, the
chlorarachniophyte Bigelowiella natans with a plastid of sec-
ondary green origin and the cryptophyte Guillardia theta
with a plastid of secondary red origin. All algae were
grown under the same culturing conditions and at ambient
O2 levels of 21% [v/v]. In all algae studied, including algae
with secondary plastids (figure 3a), we were able to detect
the expression of at least a subset of the corresponding
genes. It is well known that other algae such as Vitrella bras-
sicaformis and Chromera velia encode a set of anaerobic
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enzymes that is as complete as that of C. reinhardtii [25]. We
therefore screened available transcriptome data for aerobi-
cally grown Chr. velia [42,43], Volvox carteri [44], Chlorella
variabilis [45,46] and Thalassiosira pseudonana [47] and Klebsor-
midium nitens [48], and find that, for example, the chlorophyte
C. variabilis and the chromerid C. velia (carrying a secondary
plastid of red algal origin), express pyruvate formate lyase
(PFL), PNO, hydrogenase maturases A/F/G (HydA/F/G)
and bifunctional alcohol and aldehyde dehydrogenase
(ADHE) in the same way as C. reinhardtii for which we
generated RNA-Seq data (figure 3a).

The high-resolution RNA-Seq data available for
C. reinhardtii [49] provided detailed insights into expression
of enzymes for redox balance over the time course of 24 h.
Chlamydomonas is among the algae that has preserved the
most complete repertoire of O2-sensitive enzymes involved
in redox balance among eukaryotes studied so far (figure 2);
it expresses them in the presence of 21% oxygen and in a diur-
nal fashion (figure 3b). PFL is found to be constantly
expressed, butmore so during the dark phase and in particular
towards the end of the night (consistent with our RNA-Seq
data). The same pattern is observed for its activating
enzyme, although at much lower levels, similar to what is
observed in prokaryotes [50]. Other genes in question, includ-
ing both genes for the [Fe]-HYD catalytic subunit, HydA1 and
HydA2, are upregulated with the onset of night (figure 3b).
Importantly, this induction is observed independent of
anaerobic culturing conditions, the standard method
employed to induce [Fe]-HYD expression, typically in the con-
text of biohydrogen applications [51–54]. The Chlamydomonas
relatives Chlorella and Volvox display similar induction of
enzymes involved in H2 production and dark fermentation
[55,56]; hence, anaerobiosis-independent expression is
conserved and Chlamydomonas is the rule, not an exception.

The main finding from figure 3 is that the expression of
the enzymes for anaerobic redox balance in eukaryotes
does not correspond to any form of adaptation to anaerobic
niches, as ambient O2 does not change during the 24 h
cycle. Instead, their expression in C. reinhardtii corresponds
to the onset and end of illumination, where electron flux to
and from the photosynthetic electron transport chain
undergoes transient changes. In Chlamydomonas, PFO and
[Fe]-HYD are localized in the plastid [54], not the mitochon-
drion or the cytosol, where they help to buffer electron flow
into and out of the thylakoid membrane. This function does
not preclude the existence of other functions under other con-
ditions. For example, the same genes are expressed in
C. reinhardtii during anaerobiosis [29,30]. Yet, for most of
the algae surveyed in figure 3a, extended anaerobic growth
phases are unknown, and the main habitat is the photic
zone, where daily diurnal light conditions are encountered.

Some might view C. reinhardtii as an extreme case among
algae, as it appears to mimic true anaerobic protists such as
Trichomonas or soil-dwelling anaerobic bacteria when experi-
encing hypoxia. But Chlamydomonas can only endure
anaerobic conditions for a limited amount of time, not
thrive under them. To produce H2 in a biofuels context, the
typical procedure is to let Chlamydomonas cells assimilate
CO2 normally, then expose them to anoxic conditions while
blocking photosystem II (PSII) to induce H2-generating
assimilate fermentation [29]. Low-level H2 production by
Chlamydomonas for up to two weeks can, however, be
achieved under low-light conditions without PSII inhibition
[57]. This indicates that photosynthetic redox balance and
one-electron-based redox balance conferred by the soluble
PFO-Fd-[Fe]-HYD electron transport chain can operate inde-
pendent of anaerobiosis. Finally, C. reinhardtii is not the
only alga encoding such a complete set of anaerobic enzymes
[25,28], but the only one that has been extensively studied in
this respect.

4. Discussion
The retention and anaerobiosis-independent expression of
Fd-dependent enzymes in algae, together with their localiz-
ation to plastids in cases studied to date, indicates that the
enzymes have been retained during algal evolution as the
result of selection for redox balance in cells with one-electron
transport. In terms of gene distribution (figure 2) and phylo-
geny (electronic supplementary material, figure S1), the
enzymes of anaerobic energy metabolism in eukaryotes
trace to the eukaryote common ancestor [17,26,28] (figure 2);
hence, the archaeplastidan founder lineage that acquired the
cyanobacterial ancestor of plastids already possessed them.

Eukaryotic enzymes involved in Fd-based redox balance
have been the subject of many evolutionary investigations.
There are two alternative hypotheses to account for their
presence in eukaryotes. One has it that the Fd-dependent
enzymes were present in the eukaryote common ancestor,
which was a facultative anaerobe that was able to survive
with or without O2 as terminal acceptor, and were involved
in its energy metabolism and redox balance [7,17,20,58].
The alternative lateral gene transfer (LGT) hypothesis has it
that the ancestral eukaryote was a strict aerobe, unable to
survive under anaerobic conditions, the presence of the
Fd-dependent enzymes in eukaryotes resulting from multiple
LGTs during eukaryote evolution to confer the ability to
colonize anaerobic niches [25,59,60]. Directly at odds with
the LGT theory is the observation that the archaeplastidal
ancestor, whose PFL and PFL-activating enzyme are of
monophyletic origin [59], did not adapt to an anaerobic
niche, rather it acquired a cyanobacterial endosymbiont that
became an O2-producing plastid. The archaeplastidal lineage
diversified into three main groups, representatives of which
have retained the enzymes [25,28] (figure 2).

Though various formulations of the LGT hypothesis for
enzymes of anaerobic redox energy metabolism in eukar-
yotes differ with respect to the number, nature and
direction of LGTs [25], the underlying evolutionary rationale
of the LGT hypothesis has remained constant: the lateral
acquisition of Fd-dependent enzymes supposedly allowed
eukaryotes to colonize oxygen-poor niches [61]. Notwith-
standing the circumstance that the majority of eukaryote
evolution occurred in oxygen-poor environments [5,7,9,20]
(figure 1), the diurnal expression of Fd-dependent enzymes
in algae at 21% [v/v] O2 (figure 3) and independent of
anaerobic growth conditions is incompatible with the view
that the presence of these genes has anything to do with lat-
eral acquisitions for adaptation to anaerobiosis. Rather, the
data indicate that the genes for Fd-dependent redox balance
were present in the eukaryote common ancestor, lost in
some lineages during specialization to permanently oxic
habitats (electronic supplementary material, figure S2) and
retained in lineages that did not undergo the irreversible
adaptation to complete O2 dependence and NADH-
dependent redox balance (figure 1).
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Evolutionary responses to redox balance in eukaryotes
can include recompartmentalization of pathways [62] to the
cytosol, to plastids [63], to glycosomes [64] or to mitochon-
dria [65]. Based upon their presence in the eukaryote
common ancestor and their current localization within plas-
tids in algae studied to date, the Fd-dependent enzymes
PFO and [Fe]-HYD were recompartmentalized to the plastid
during algal evolution. In the plastid, they assumed essential
roles in light-dependent redox balance in an organelle that,
upon contact with light, has no choice but to commence
photosystem I (PSI)-dependent Fd reduction, rapidly deplet-
ing the available Fdox pool. In land plants, Fdred is mainly
reoxidized by ferredoxin : NADP+ oxidoreductase (FNR),
NADPH being reoxidized in turn by NADP+-dependent
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [66]
in the Calvin cycle. In aquatic environments, CO2 is more
limiting than in air, for which reason algae have evolved
diverse CO2 concentrating mechanisms [67]. Algae thus
require a means in addition to CO2 fixation for redox
balance at the onset of illumination, Fd-dependent
enzymes of anaerobic energy metabolism fulfil that role.
That functional aspect, redox balance in the plastid
rather than anaerobiosis, accounts for diurnal expression
and retention of enzymes for anaerobic redox balance
among many independent algal lineages (figure 1). The
expression of ferredoxin-dependent enzymes thus enables
redox balance in the presence of O2 in plastids and in the
absence of O2 as it occurs in C. reinhardtii ([29]) and many
lineages of anaerobic protists that arose and diversified
before the origin of plastids [7,20].

The transition to life on land approximately 450 Ma
marked the advent of life in very high O2 conditions [9,10].
Plants were the first major colonizers of land [68]. Massive
carbon burial by land plants precipitated the high O2

environment into which the first land animals followed (elec-
tronic supplementary material, figure S2). The colonization of
land was, physiologically, an adaptation to high O2 air. That
adaptation to high O2 witnessed the loss of Fd-dependent
redox balance independently in both the land plant and
land animal lineages (electronic supplementary material,
figure S2) in response to the O2 sensitivity of FeS clusters in
PFO and [Fe]-HYD and in response to the ROS generating
potential PFO of Fdred. Once on land, both the plant and
animal lineages were subsequently confronted again with
hypoxic environments in adaptations to aquatic environ-
ments. The corresponding adaptations did not, however,
involve gene acquisitions via LGT, merely novel expression
regulation for NADH-dependent enzymes involved in
redox balance during hypoxic response. In plants, these
responses include mainly ethanol fermentations in water-
logged roots [31,69,70]. In animals, the evolutionary
responses include various pathways regulated by the
hypoxia-induced factor HIF [71,72], and secondary adap-
tations to the aquatic lifestyle among various vertebrates
[73,74]. In addition, many marine and soil-dwelling invert-
ebrates independently evolved their own specialized
strategies for redox balance [7], from opine accumulation in
mussels [75] to rhodoquinone dependent short chain fatty
acid excretion in worms [76]. The land plant and land
animal anaerobiosis adaptation pathways are, however,
always NADH-dependent.

The retention of the chloroplast encoded NADH dehydro-
genase complex (cpNDH) specifically in the land plant
lineage (figure 1) is noteworthy. The functional cpNDH com-
plex is localized close to complex I in thylakoids, both in the
cyanobacterium Synechocystis [77] and in land plants, where it
supports the cyclic flow of electrons essential for PSI to prop-
erly perform photosynthesis [78,79]. Among genes in plastid
DNA, the cpNDH genes have undergone the highest number
of independent losses [80]. Their retention in the plastid was
probably a prerequisite for the transition to life on land
[48,68], because they have been retained by the plastid in
all land plant lineages, indicating a strong functional con-
straint for maintaining redox balance in the organelle [81].
Land plants have recruited a cytosolic NADH-dependent
GAPDH [82] and a cytosolic malate dehydrogenase [83] to
plastids for NADH-based redox balance. Even the origin of
photorespiration, a process central to NAD(P)H-dependent
redox balance, can be understood as an evolutionary
response to high O2 in the transition to life on land [84].
Land plant thylakoids cannot, however, relinquish
Fd-dependent one-electron transport altogether, because the
structure and function of PSI strictly require a steady flow
of single electrons from the FeS clusters of PSI to generate sol-
uble Fdred, the stromal levels of which are monitored in some
photosynthetic lineages by the flavodiiron (FLV) proteins
[85]. Our findings indicate that in the plant and animal
lineages, terrestrialization entailed an irreversible physiologi-
cal transition away from one-electron-based Fd-dependent
redox balance towards NAD(P)H-dependent redox balance
involving two-electron transfers. The underlying evolution-
ary mechanisms were gene expression changes, enzyme
recompartmentalization and gene loss in adaptation to high
O2 levels. Algae retained the Fd-dependent pathway for
Fd-dependent, one-electron-based redox balance in plastids,
not for anaerobic growth.
5. Material and methods
(a) Identification of homologous proteins
As part of a larger study [16], sequences from 55 eukaryotes and
1981 prokaryotes (1847 bacteria and 134 archaea) were clustered
into protein families in order to identify eukaryotic proteins with
prokaryotic homologues. This approach resulted in 2585 disjunct
clusters that contain at least two eukaryotes and no less than five
prokaryotes. Within these 2585 eukaryote–prokaryote clusters
(EPCs) using existing annotations, we identified 42 clusters con-
taining proteins involved in anaerobic energy metabolism, which
were relevant for the current analysis (electronic supplementary
material, table S1). Phylogenetic trees and results from the tests
on eukaryote monophyly were taken directly from [16] (shown
in the electronic supplementary material, table S1). For proteins
that did not have an EPC, the same dataset was used to perform
a BLAST search and only hits with an identity of greater than
30% and an e-value of less than 10−10 were considered and pro-
vided in the electronic supplementary material, table S2. All the
sequences that were used to identify the EPCs and perform the
BLAST search are provided in the electronic supplementary
material, file S1 along with the BLAST hits.
(b) Cultivation of algae, RNA isolation and
transcriptomics

All algae were grown in their respective media (see SAG Göttin-
gen or ncma.bigelow.org) in aerated flasks under controlled
conditions at 22°C and illuminated with 50 µE under a
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12L : 12D cycle. RNA was isolated from cells growing in the
exponential phase and at 6 h into the day and 6 h into the
night. RNA was isolated using either Trizol™ reagent (Thermo
Fisher, cat. no.: 15596018) or the Spectrum™ Plant Total RNA
Kit (Sigma Aldrich, cat. no.: STRN50) according to the manufac-
turer’s protocols. Then, samples were DNase treated (DNase I,
RNase free, Thermo Fisher, cat. no.: EN0525) and RNA-Seq
was performed at the Beijing Genome Institute (BGI, Hong
Kong) using an Illumina HiSeq2000 resulting in 150 bp paired-
end reads. For each sample, three individual runs were
performed and pooled. Raw reads were subjected to several
cleaning steps. First, adapter sequences as well as reads contain-
ing more than 5% of unknown nucleotides or more than 20% of
nucleotides with quality scores less than 10 were removed.
Further, reads were processed using TRIMMOMATIC (v. 0.35) [86]
by removing the first 10 nucleotides as well as reads which
showed a quality score below 15. Additionally, poly-A/T
tails≥ 5 nt were removed using PRINSEQ-LITE (v. 0.20.4) [87].
Finally, only reads with a minimum length of 25 nt were retained.
Trimmed reads were assembled using TRINITY (v. 2.2.0) [88] and
resulting contigs were filtered for a minimum length of 300 nt
using an in-house perl script. Subsequently, open reading
frames (ORFs) were identified using TRANSDECODER (v. 3.0.1)
(https://github.com/TransDecoder/TransDecoder/wiki). These
ORFs were used for a BLAST with an identity cut-off of 30%
against the genome of the respective organisms to verify their
presence in the genome and to remove possible contaminations.
Transcriptomes are available via the Sequence Read Archive of
NCBI (https://www.ncbi.nlm.nih.gov/sra) with the accession
number PRJNA509798.
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