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The mammalian myocardium is an omnivorous organ that relies on multiple substrates in order to fulfill its tremendous energy
demands. Cardiac energy metabolism preference is regulated at several critical points, including at the level of gene transcription.
Emerging evidence indicates that the nuclear receptor PPARα and its cardiac-enriched coactivator protein, PGC-1α, play impor-
tant roles in the transcriptional control of myocardial energy metabolism. The PPARα-PGC-1α complex controls the expression of
genes encoding enzymes involved in cardiac fatty acid and glucose metabolism as well as mitochondrial biogenesis. Also, evidence
has emerged that the activity of the PPARα-PGC-1α complex is perturbed in several pathophysiologic conditions and that altered
activity of this pathway may play a role in cardiomyopathic remodeling. In this review, we detail the current understanding of the
effects of the PPARα-PGC-1α axis in regulating mitochondrial energy metabolism and cardiac function in response to physiologic
and pathophysiologic stimuli.

Copyright © 2008 J. G. Duncan and B. N. Finck. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The myocardium has an enormous and steady demand for
energy that is met through high-level mitochondrial oxida-
tive metabolism. Glucose, lactate, and fatty acids are all oxi-
dized in the mitochondrion to produce reducing equivalents
required for ATP synthesis in the process of oxidative phos-
phorylation (OXPHOS). Much of the mitochondrial-derived
ATP is then transported to the cytoplasm, making energy
available for cellular work, which includes its crucial role in
cardiac myocyte contraction. Acute changes in flux through
these metabolic pathways are mediated by changes in sub-
strate concentrations and covalent or allosteric modification
of enzymes catalyzing these reactions. However, the capacity
for mitochondrial oxidative metabolism is also mediated at
the level of gene transcription [1].

Work in several labs has demonstrated that the three
PPAR isoforms (PPARα, β/δ, and γ) are expressed, to varying
degrees, in the myocardium and play important roles in the
transcriptional regulation of cardiac metabolism and func-
tion. The ability to modulate PPAR activity with specific ac-

tivating ligands as well as genetic activation or deactivation
in mice has enriched our understanding of the importance
of each of the various PPAR isoforms in determining car-
diac metabolism, structure, and function. However, given the
limited space available in this review, we will focus our atten-
tion on the PPARα isoform and its coactivator protein PGC-
1α.

2. PPARα AND MYOCARDIAL
FATTY ACID METABOLISM

The PPARα isoform is robustly expressed in the parenchymal
cells of the adult heart and plays an important role in regulat-
ing cardiac myocyte metabolism [2, 3]. In the myocardium,
PPARα activation induces the expression of genes encoding
nearly every step in the cellular fatty acid utilization pathway
including (i) fatty acid transport proteins that facilitate fatty
acid entry into the cell, (ii) acyl-CoA synthetases that esterify
fatty acids to coenzyme A and prevent their efflux, (iii) fatty
acid binding proteins that shuttle fatty acids to various cel-
lular compartments, (iv) proteins that catalyze the import of
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fatty acids into the mitochondrion, (v) every enzyme in the
mitochondrial fatty acid β-oxidation spiral, and (vi) various
accessory components of fatty acid metabolism (e.g., uncou-
pling proteins).

Administration of PPARα ligand to rodent models re-
sults in a robust activation of PPAR target genes in liver, but
the effects of in vivo ligand administration on cardiac gene
expression is minimal [4]. Indeed, PPARα agonist admin-
istration to diabetic mice actually leads to diminished car-
diac fatty acid utilization [5, 6], possibly by reducing the ex-
posure of the heart to triglyceride-rich lipoproteins or en-
dogenous fatty acid ligands. It is unclear whether PPARα
ligand administration targets the heart directly in humans;
and there are likely differences in the PPAR response between
the species. Due to the hepatic specific effects of PPARα lig-
ands in rodents, much of our knowledge regarding the tar-
get pathways of PPARα in myocardium is based on studies
with genetic alterations in PPARα activity. Mice with consti-
tutive deletion (in all tissues) of the gene encoding PPARα
(PPARα null mice) exhibit diminished rates of cardiac fatty
acid oxidation (FAO) and increased reliance on glucose uti-
lization pathways [7–9]. This shift is mediated, at least in
part, by diminished expression of several genes involved in
FAO [10] and a concomitant increase in the expression of
genes encoding proteins involved in glucose uptake and uti-
lization [7]. At the other end of the metabolic spectrum, we
have characterized transgenic mice overexpressing PPARα in
a cardiac-restricted manner (MHC-PPARα mice) [8, 11–16].
The expression of many genes involved in fatty acid uptake
and utilization is upregulated in MHC-PPARα mice, while
the expression of glucose transporter and glycolytic enzymes
is strikingly suppressed [11]. Consistent with this pattern of
metabolic gene expression, MHC-PPARα mice rely almost
exclusively on FAO and use very little glucose [8, 9, 11]. In
summary, the opposing metabolic phenotypes of these trans-
genic models with activation or deactivation of PPARα sup-
port an important role for PPARα in regulating cardiac en-
ergy metabolism.

3. THE PGC-1α TRANSCRIPTIONAL
COACTIVATOR AND THE CONTROL OF
CARDIAC ENERGY METABOLISM

Transcriptional coactivators are a group of proteins that
control gene expression via protein-protein interactions
with DNA-bound transcription factors, including PPARα
(Figure 1). Although several transcriptional coactivators are
known to interact with PPARα, in the heart, the physical and
functional interaction with PPARγ coactivator 1α (PGC-1α)
has been best described. PGC-1αwas originally discovered in
a yeast two-hybrid screen for proteins that interacted with the
PPARγ isoform and that were enriched in a brown adipocyte
library [17]. Based on sequence homology in some highly
conserved regions, two additional PGC-1 family members
have now been identified (PGC-1β and PGC-related coac-
tivator (PRC)) [18, 19].

Coactivators are broadly categorized into two classes.
Class I coactivators regulate genetranscription through en-

zymatic modification of chromatin (e.g., acetylation and
methylation), which facilitates DNA unwinding and en-
hances the probability that a gene will be transcribed by the
RNA polymerase II complex. Class II coactivators work by
interacting with the RNA polymerase machinery (e.g., RNA
polymerase II or the TRAP/DRIP complex) [20, 21]. PGC-
1α functions as a Class II coactivator since it does not possess
intrinsic chromatin modifying activity and interacts directly
with the TRAP/DRIP complex to link with RNA polymerase
II (Figure 1) [20]. PGC-1α also recruits Class I coactivators
with histone acetyltransferase activity to chromatin in the
target gene promoter [20, 22] and docks with a protein called
ménage-à-trois 1, which phosphorylates RNA polymerase II
to modulate its activity (Figure 1) [23]. Finally, PGC-1α pos-
sesses an RNA processing domain that may also contribute
to its transcriptional regulatory function [24].

PGC-1 interacts with and coactivates a broad array
of transcription factors to transduce developmental, nutri-
tional, and physiological stimuli to the control of diverse cel-
lular energy metabolic pathways [25, 26]. In heart, PGC-1α
has thus far been linked with 3 families of transcription fac-
tors: (i) the PPAR family, (ii) the estrogen-related receptor
(ERR) family, and (iii) nuclear respiratory factor 1 (NRF-
1). The interaction between PGC-1α and PPARα serves to
control the expression of enzymes involved in fatty acid up-
take and oxidation [27] and possibly proteins involved in the
process of mitochondrial biogenesis [15]. The ERR family
(ERRα, β, γ) of orphan nuclear receptors is also an impor-
tant cardiac PGC-1α target that drives increased expression
of genes encoding FAO and OXPHOS enzymes [28–31]. Fi-
nally, NRF-1 is a nuclear-encoded transcription factor that
is coactivated by PGC-1α to regulate transcription of genes
involved in mitochondrial OXPHOS, mtDNA transcription
and replication, and mitochondrial biogenesis [32–35]. Ad-
ditional details regarding PGC-1-mediated control of energy
metabolism through ERRα and NRF-1 can be found in other
recent reviews [26, 35–37].

Several genetically-engineered mouse models have been
used to probe the role of PGC-1α in regulating cardiac
metabolism. Mice that constitutively overexpress PGC-1α in
the myocardium exhibit profound mitochondrial prolifer-
ation, cardiomyopathy, and early death secondary to heart
failure [33]. The severity of the cardiomyopathy in this model
precluded a full investigation of the pathologic mechanisms
that contribute to cardiac dysfunction. To address this issue,
a second model evaluated overexpression of PGC-1α in the
heart using a tetracycline-inducible system [38]. This model
revealed dramatic mitochondrial proliferation when PGC-
1α was overexpressed in the neonatal phase, without overt
effects on cardiac function. In contrast, overexpression of
PGC-1α in adult mice provoked only modest mitochondrial
proliferation, but led to abnormal mitochondrial and my-
ofibril architecture and severe cardiac dysfunction [38]. In-
terestingly, cardiomyopathy in these mice was completely re-
versible by discontinuing PGC-1α overexpression [38]. These
gain-of-function strategies indicate that PGC-1α plays im-
portant roles in regulating multiple aspects of myocardial
metabolism and is a strong stimulus for the process of mi-
tochondrial biogenesis.
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Figure 1: Mechanisms of PPARα activation and PGC-1α coactivator activity. Depiction of a potential PPARα target gene and nuclear receptor
response element (NRRE) within the promoter region in the nonactivated state (top). PPARα activation by fatty acid (FA) ligand leads to
binding to the NRRE with its heterodimeric partner RXRα; and its coactivator PGC-1α. PGC-1α recruits additional coactivators with histone
acetyltransferase (HAT) activity, which promotes chromatin unwinding and increases RNA polymerase II (POL II) access to the target gene
promoter (middle). PGC-1α also interacts with the TRAP/DRIP complex and with ménage-à-trois 1 (MAT1) which phosphorylates POL
II to increase the probability of gene transcription. In addition, PGC-1α plays a role in RNA splicing via an RNA processing domain in its
C-terminus (bottom).

The cardiac phenotype of two separate lines of mice
with constitutive PGC-1α deficiency also support an impor-
tant role for PGC-1α in cardiac metabolism and function
[39–41]. Both lines of PGC-1α-deficient mice exhibit im-
paired mitochondrial OXPHOS function and decreased ex-
pression of many genes encoding enzymes in mitochondrial
metabolic pathways. PGC-1α deficiency also leads to cardiac
dysfunction, especially in the context of pathophysiologic
stimuli like pressure overload-induced cardiac hypertrophy
[40, 41]. Interestingly, the severity of the cardiac functional
phenotype varies between the two lines of knockout mice.
One line exhibits age-associated cardiac dysfunction that is
manifested by 7-8 months old as left ventricular chamber
dilatation, diminished fractional shortening, and an activa-
tion of gene markers of cardiomyopathy [41]. Conversely, the
other line of knockout mice exhibits no signs of cardiac dys-

function, but displays diminished chronotropic capacity in
response to a β-adrenergic stimulus [39]. The mechanistic
basis for this disparity in the two mouse mouse models is un-
known. Collectively, these gain- and loss-of-function studies
demonstrate that PGC-1α has a critical role in control of car-
diac energy metabolism.

4. PPARα-PGC-1α-MEDIATED CONTROL OF
METABOLISM IN RESPONSE TO
DEVELOPMENTAL OR PHYSIOLOGIC CUES

Myocardial energy substrate preference is remarkably pli-
ant and the heart can rapidly modulate fuel utilization de-
pending upon the developmental stage, nutritional context,
or disease state [42]. The PPARα-PGC-1α complex plays
an important role in catalyzing these changes. For example,
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Figure 2: Dynamic regulation of PPARα-PGC-1α complex activity in developing, failing, and diabetic heart. Physiological cardiac growth
resulting from postnatal maturation is associated with increased PPARα and PGC-1α expression and marked expansion of mitochondrial
volume density and oxidative capacity. Conversely, pathologic hypertrophy is linked to decreased PPARα-PGC-1α expression and/or activity
and diminished reliance on oxidative mitochondrial metabolism often leading to intramyocellular lipid accumulation. Finally, in the diabetic
heart, PPARα-PGC-1α complex activity is increased along with the cardiac reliance on FAO. Despite of high-level FAO, the cardiac lipid
accumulation is a hallmark of the diabetic heart and lipotoxicity may play a key role in the development of diabetic cardiomyopathy.

the fetal heart utilizes predominantly anaerobic glucose
metabolism to fulfill its energy needs. However, almost im-
mediately after birth, a rapid and profound developmental
shift occurs. The workload of the heart is increased and the
availability of fatty acids and oxygen for fuel becomes much
greater (Figure 2). In response to these changes, the my-
ocardium increases its reliance on mitochondrially derived
ATP as an energy source through a coordinated induction
of mitochondrially and nuclear-encoded genes involved in
mitochondrial metabolism, structure, and function [43–45].
This developmental shift is accompanied by a robust activa-
tion of the PPARα-PGC-1α system [33, 43]; and it is likely
that these two factors play a crucial role in this developmen-
tal switch.

Fasting is another physiologic context associated with a
marked increase in PPARα-PGC-1α activity. To “spare” glu-
cose for other organs that lack the capacity to catabolize fatty
acids, the heart markedly increases its use of fatty acids under

conditions of food deprivation [42]. Although the expression
of the gene encoding PPARα is unaltered, the expression of
PGC-1α is strongly induced [33]. Together with heightened
availability of fatty acids that act as endogenous ligands for
PPARα, this serves to rapidly amplify PPARα transcriptional
activity. In fact, the expression of the broad program of my-
ocardial FAO enzymes is markedly induced by food depriva-
tion and this response is significantly blunted in mice lacking
PPARα [10]. In sum, the PPARα-PGC-1α complex serves to
regulate the capacity for FAO in response to physiologic cues
that signal an increased need for mitochondrial fatty acid uti-
lization.

5. ALTERED PPARα-PGC-1α SIGNALING
IN THE FAILING HEART

Cardiac energy substrate metabolism is perturbed in the
hypertrophied and failing heart, reverting to a program of
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energy substrate metabolism similar to the “fetal” profile
(Figure 2). Specifically, the myocardium shifts from depen-
dence on FAO towards glucose utilization; primarily anaer-
obic glycolysis [46–49]. Importantly, this switch in energy
substrate preference detected in various experimental mod-
els is also observed in humans with idiopathic dilated car-
diomyopathy [50]. These changes in energy substrate pref-
erence are mediated, at least in part, by a downregula-
tion of the genes encoding enzymes involved in FAO, OX-
PHOS, and the PPARα-PGC-1α complex [3, 48, 51–60].
The expression of the genes encoding PPARα and PGC-
1α is known to be diminished in several rodent models of
pressure overload or hypertensive heart disease [3, 40, 61],
pacing-induced heart failure [62, 63], hypoxia [52], ischemic
heart disease [55, 58, 59, 64], as well as genetically engi-
neered models of heart failure [65–67]. The molecular mech-
anisms whereby pathologic stimuli lead to a transcriptional
downregulation of PPARα and PGC-1α are not well under-
stood, but may involve reactive oxygen species generation
[64]. In addition, under pathologic conditions, PPARα ac-
tivity is inhibited post-translationally through lower levels
of the obligate heterodimeric partner of PPARα, retinoid X
receptor (RXR) [57], and direct phosphorylation by the ex-
tracellular signal-related kinase and mitogen-activated pro-
tein kinase (ERK-MAPK) pathway [3]. These findings sug-
gest that deactivation of the cardiac PPARα-PGC-1α axis
in failing heart is a key component of the observed shift
in energy metabolism. In support of this, reactivation of
PPARα or PGC-1α prevents the downregulation of oxida-
tive gene expression that occurs in cardiac myocytes chal-
lenged with pathologic stimuli [61, 63–65, 68, 69]. Experi-
mental models have found altered metabolism and gene ex-
pression in both the hypertrophied and the overtly failing
heart, but longitudinal evaluation of progressive changes in
the PPARα-PGC-1α axis has not been done. Studies to eval-
uate the sequence of events will be crucial to understanding
the role of altered metabolic regulation in disease progres-
sion.

One point that remains to be addressed is whether de-
activation of oxidative metabolism and the PPARα-PGC-1α
complex in the hypertrophied and failing heart is adaptive
or maladaptive. The shift towards glycolysis allows contin-
ued ATP production with less oxygen consumption, and thus
would appear to be an adaptive response. Indeed, overex-
pression of the GLUT1 glucose transporter prevented cardiac
dysfunction in response to pressure overload [70]. Partial in-
hibitors of FAO also produce positive inotropic effects in pa-
tients with ischemic and nonischemic heart disease [71–76].
Ligand-mediated activation of PPARα in models of pressure
overload [61] or ischemia [64] exacerbated ventricular dys-
function and pathologic remodeling. However, other reports
show no ill effects of PPARα agonism or increased FAO in
pathologic conditions [68, 69, 77]. Moreover, there is abun-
dant evidence that chronic shifts towards glycolysis are mal-
adaptive. Most reports suggest that PPARα agonists are ben-
eficial in the response to ischemia [78–80] and various mod-
els of heart failure [63, 81–83]. Similarly, PGC-1α overex-
pression rescued the cardiac myocyte dysfunction and apop-
tosis in a mouse model of cardiomyopathy [65]. Mice with

chronic reliance on glucose metabolism due to loss of cardiac
lipoprotein lipase develop cardiac dysfunction with age and
demonstrate significant mortality associated with the stress
of aortic banding [84]. Finally, PPARα deficient animals that
shift metabolism predominantly towards glucose oxidation
exhibit age-associated cardiac fibrosis [85] and were unable
to respond to increased workload and developed energy de-
pletion [86].

The concept that the myocardium must maintain
metabolic flexibility and a balance of substrate utilization
during pathologic remodeling has recently pushed to the
forefront. However, the biologic basis for this concept is un-
clear. It may be that chronic reliance on glucose as the pre-
dominant substrate is insufficient for ATP production in fail-
ing heart. Compared to FAO, glycolysis produces much less
ATP per mole of substrate and there is evidence that long-
term reliance on glycolysis leads to ATP deficiency in failing
heart. Indeed, the phospho-creatine/ATP ratio is reduced in
failing heart [49, 87–89] and a decline in this ratio is pre-
dictive of impending mortality in human heart failure pa-
tients [90]. The idea that energy starvation plays a significant
role in the development of heart failure is also supported by
severe cardiomyopathies in animal models with deletions in
FAO enzymes [91, 92] or enzymes involved in mitochondrial
ATP production [93–95]. Moreover, humans with inborn er-
rors in these pathways often present with cardiomyopathy
[96]. It is also possible that impairments in rates of FAO in
failing heart are maladaptive because they lead to myocardial
lipid accumulation (lipotoxicity) [97], which is linked to car-
diac dysfunction [98–100]. Alternatively, or in addition, the
inability to switch energy substrate preference in the context
of changes in substrate availability could also contribute to
pathologic remodeling.

6. PPARα AND PGC-1α IN THE DIABETIC HEART

Cardiovascular disease is exceptionally prevalent in patients
with diabetes. Although the prevalence of dyslipidemias and
hypertension certainly contributes to cardiovascular risk in
diabetic subjects, cardiomyopathy is highly prevalent inde-
pendent of these risk factors. Cardiomyopathy in diabetic
subjects that occurs in the absence of known risk factors is
often termed “diabetic cardiomyopathy” [101–104]. Unfor-
tunately, the etiology of diabetic cardiomyopathy is poorly
understood.

Evidence has emerged that abnormalities in myocardial
energy metabolism play a significant role in the pathogenesis
of diabetic cardiomyopathy. Indeed, in experimental models
of uncontrolled diabetes (type 1 or 2), cardiac energy sub-
strate flexibility becomes constrained and the diabetic heart
relies almost exclusively on mitochondrial FAO for its ATP
requirements [105–108]. Recently, these metabolic observa-
tions from animal models have also been confirmed in hu-
man subjects with type 1 diabetes [109]. The expression of
PPARα, PGC-1α, and many target genes involved in FAO
are increased in the murine insulin-resistant [15] and di-
abetic heart (type 1 and type 2) [11, 110, 111] and may
play a key role in the observed metabolic switch to FAO.
PPARα deficiency in the setting of insulin resistance [15] or
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diabetes [110] blunts activation of FAO gene expression, sug-
gesting that activation of the PPARα-PGC-1α regulatory net-
work is critical for the increased FAO rates and lipid uptake
seen in the diabetic heart. Consistent with this, transgenic
mice that overexpress PPARα exclusively in the heart (MHC-
PPARα mice) have a cardiac metabolic phenotype similar to
that observed in diabetic heart, including accelerated rates
of FAO, a striking diminution in glucose uptake and utiliza-
tion, and a mitochondrial biogenic response [11, 15]. We
have also observed that high-level fatty acid utilization in
hearts of MHC-PPARα mice leads to the development of
cardiac hypertrophy and dysfunction [11, 12]. We believe
that sustained activation of the PPARα-PGC-1α complex in
the insulin-resistant and diabetic heart promotes a state of
metabolic inflexibility that leads to cardiomyopathic remod-
eling.

Despite high rates of FAO, myocardial lipid accumula-
tion is a hallmark of the diabetic heart [112–116]. Prolonged
accumulation of fats in the myocardium is believed to be
highly toxic and is linked to the development of insulin re-
sistance and cardiac dysfunction [12, 98–100, 114]. Our data
suggest that PPARα drives this lipotoxic response in diabetic
heart. The cardiomyopathic phenotype is relatively mild in
unchallenged MHC-PPARα mice, but when the transgenic
mice were given a high-fat diet, the cardiomyopathic pheno-
type was strikingly exacerbated; and mice exhibited clinical
signs of heart failure, including depressed fractional shorten-
ing and ventricular chamber dilatation [12]. Pathologic re-
modeling in MHC-PPARαmice was accompanied by marked
cardiac lipid accumulation. Moreover, genetic ablation of the
fatty acid transporter CD36 in the context of PPARα over-
expression prevents high-fat diet-induced cardiac lipid accu-
mulation and dysfunction [16]. Finally, ligand-mediated ac-
tivation of PPARα also drives lipid accumulation and an ad-
verse outcome following ischemic insult [64]. These findings
suggest that PPARα-driven lipotoxicity could be an impor-
tant mechanism in cardiomyopathic remodeling of the dia-
betic heart.

Other components of the metabolic derangements in di-
abetic heart are abnormalities in mitochondrial ultrastruc-
ture and function [15, 111, 117–120]. Mitochondria iso-
lated from diabetic rodents exhibit depressed rates of OX-
PHOS [117, 118] and diminished efficiency in ATP synthe-
sis [120, 121], likely due to increased uncoupled respiration
[121]. Mitochondrial proliferation is common in hearts of
diabetic rodents [15, 119, 121, 122]. However, mitochondria
from both type 1 and type 2 diabetic hearts often exhibit
ultrastructural abnormalities, including degenerative cristae
[15, 119]. The literature regarding the effects of insulin re-
sistance and diabetes on mitochondrial gene expression is
mixed with some reports showing an activation [15, 119] and
others showing deactivation [123, 124]. We recently found
that mitochondrial biogenesis and OXPHOS gene expression
are increased in a mouse model of obesity-related insulin re-
sistance [15]. These effects of insulin resistance were blunted
in PPARα null mice and recapitulated in MHC-PPARα mice,
suggesting that PPARα is involved in mitochondrial biogen-
esis in the myocardium in the context of insulin resistance,
which was previously not well-appreciated.

7. CONCLUSIONS

In summary, the heart requires a continuous and abundant
source of substrate to meet it high-energy demands. In situ-
ations where energy needs change, such as heart failure, the
heart must adapt and will utilize the most efficient source of
substrate (glucose) to meet its needs. Similarly, when glucose
availability becomes limited, as it does in fasting or diabetes,
the heart will adapt and use fatty acid to meet its ATP re-
quirements. PPARα and PGC-1α play a central role in this
metabolic flexibility by driving robust changes in gene ex-
pression of key components of mitochondrial biogenesis and
metabolism. However, it is still not entirely clear whether
long-term PPARα-PGC-1α-mediated alterations in energy
metabolism are adaptive versus maladaptive changes for both
heart failure and diabetic cardiomyopathy.
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