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Population eff ect of 10-valent pneumococcal conjugate 
vaccine on nasopharyngeal carriage of Streptococcus 
pneumoniae and non-typeable Haemophilus infl uenzae in 
Kilifi , Kenya: fi ndings from cross-sectional carriage studies
Laura L Hammitt, Donald O Akech, Susan C Morpeth, Angela Karani, Norbert Kihuha, Sammy Nyongesa, Tahreni Bwanaali, Edward Mumbo, 
Tatu Kamau, Shahnaaz K Sharif, J Anthony G Scott

Summary
Background The eff ect of 7-valent pneumococcal conjugate vaccine (PCV) in developed countries was enhanced by 
indirect protection of unvaccinated individuals, mediated by reduced nasopharyngeal carriage of vaccine-serotype 
pneumococci. The potential indirect protection of 10-valent PCV (PCV10) in a developing country setting is unknown. 
We sought to estimate the eff ectiveness of introduction of PCV10 in Kenya against carriage of vaccine serotypes and 
its eff ect on other bacteria.

Methods PCV10 was introduced into the infant vaccination programme in Kenya in January, 2011, accompanied by a 
catch-up campaign in Kilifi  County for children aged younger than 5 years. We did annual cross-sectional carriage 
studies among an age-stratifi ed, random population sample in the 2 years before and 2 years after PCV10 introduction. 
A nasopharyngeal rayon swab specimen was collected from each participant and was processed in accordance with 
WHO recommendations. Prevalence ratios of carriage before and after introduction of PCV10 were calculated by 
log-binomial regression.

Findings About 500 individuals were enrolled each year (total n=2031). Among children younger than 5 years, the 
baseline (2009–10) carriage prevalence was 34% for vaccine-serotype Streptococcus pneumoniae, 41% for non-vaccine-
serotype Streptococcus pneumoniae, and 54% for non-typeable Haemophilus infl uenzae. After PCV10 introduction 
(2011–12), these percentages were 13%, 57%, and 40%, respectively. Adjusted prevalence ratios were 0·36 (95% CI 
0·26–0·51), 1·37 (1·13–1·65), and 0·62 (0·52–0·75), respectively. Among individuals aged 5 years or older, the adjusted 
prevalence ratios for vaccine-serotype and non-vaccine-serotype S pneumoniae carriage were 0·34 (95% CI 0·18–0·62) 
and 1·13 (0·92–1·38), respectively. There was no change in prevalence ratio for Staphylococcus aureus (adjusted 
prevalence ratio for those <5 years old 1·02, 95% CI 0·52–1·99, and for those ≥5 years old 0·90, 0·60–1·35).

Interpretation After programmatic use of PCV10 in Kilifi , carriage of vaccine serotypes was reduced by two-thirds 
both in children younger than 5 years and in older individuals. These fi ndings suggest that PCV10 introduction in 
Africa will have substantial indirect eff ects on invasive pneumococcal disease.
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Copyright © Hammitt et al. Open Access article distributed under the terms of CC BY.

Introduction
Introduction of pneumococcal conjugate vaccine (PCV) 
into the routine immunisation schedule of developed 
countries over the past 13 years has resulted in a dramatic 
reduction in the incidence of invasive pneumococcal 
disease caused by vaccine serotypes.1–5 Additionally, 
vaccinated individuals are less likely to be carriers of 
vaccine-serotype pneumococci, and are therefore less 
likely to transmit the infection, than non-vaccinated 
individuals. At a population level, vaccination leads to a 
reduction in the carriage prevalence of vaccine-serotype 
pneumococci in both vaccinated and unvaccinated 
individuals and a reduction in the incidence of invasive 
pneumococcal disease caused by vaccine-serotype 
pneumococci in the whole population (ie, herd 

protection). Within 4 years after the introduction of PCV 
into the childhood immunisation schedule in the USA, 
the incidence of vaccine-serotype invasive pneumococcal 
disease in people aged 5 years or older had fallen by 62%.6 
The indirect protection provided by PCV was greater than 
its direct protection, and this factor had a profound eff ect 
on estimates of the cost-eff ectiveness of the vaccine.7 The 
nasopharyngeal niche vacated by vaccine-serotype 
pneumococci is rapidly occupied by non-vaccine-type 
pneumococci, which has led to serotype replacement 
disease of varying magni tude in diff erent populations.5,8–10

Many low-income countries will introduce PCV in the 
coming decade.11 The paucity of robust longitudinal 
surveillance systems for invasive pneumococcal disease in 
developing countries poses a challenge in identifying the 
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programmatic eff ectiveness of PCV in these settings. 
However, studies of nasopharyngeal carriage, in which the 
anatomical locus of indirect vaccine eff ects are investigated, 
are logistically feasible in developing countries and can 
help monitor the population eff ect of PCV.12–14

In 2011, Kenya became one of the fi rst countries in Africa 
to introduce PCV and the fi rst country to use the 10-valent 
PCV conjugated to non-typeable Haemophilus infl uenzae 
protein-D (PCV10).15 Because PCV10 uses protein-D from 
non-typeable H  infl uenzae as its carrier protein, it might 
induce protection against infections caused by non-typeable 
H  infl uenzae, an important cause of otitis media and 
respiratory tract infection.16 The eff ect of vaccination on 
pneumococcal carriage prevalence, and possibly on non-
typeable H  infl uenzae carriage prevalence, might aff ect 
other bacteria in the nasopharynx. An inverse relation 
between carriage of pneumococcus and Staphylococcus 
aureus has been described, leading to speculation that PCV 
use might result in an increase in S aureus carriage in 
children, possibly leading to staphylococcal disease.17–20

With support from the GAVI Alliance, PCV10 was 
introduced into the routine infant vaccination programme 
in Kenya in January, 2011, with a catch-up campaign for 
infants. In Kilifi  County, a catch-up campaign was also 
done for all children aged younger than 5 years, which 
accelerated the population eff ect of cohort introduction by 
several years. We aimed to assess the programmatic 
eff ects of PCV10 introduction on nasopharyngeal carriage 
of Streptococcus pneumoniae, non-typeable H  infl uenzae, 
and S aureus at an early stage.

Methods
Study design and participants
The study took place in the Kilifi  Health and Demographic 
Surveillance System (KHDSS), a 891-km² area within 
Kilifi  County, a poor rural district on the Indian Ocean 
coast of Kenya. The KHDSS has a population of about 
260 000 people who have been under surveillance for vital 
events and migration through 4-monthly household visits 
since 2000.21 H  infl uenzae type  b conjugate vaccine was 
introduced into this area in 2001; coverage for three doses 
of H infl uenzae type b vaccine was 95% at 12 months of 
age among residents of the KHDSS in 2007.22

In January, 2011, the government of Kenya introduced 
PCV10 into the national immunisation schedule, 
administered simultaneously with pentavalent vaccine 
(diphtheria, whole cell pertussis, tetanus, hepatitis B, 
and H infl uenzae type b combined vaccine) at age 6, 10, 
and 14 weeks. In 2011, all infants were encouraged to 
present for a three-dose catch-up schedule 4 weeks apart. 
In Kilifi  County, an additional catch-up campaign was 
undertaken to provide up to two doses of PCV10 to 
children aged 12–59 months in two outreach campaigns, 
beginning on Jan 31, 2011, and March 21, 2011, and 
lasting 1–2 weeks. These campaigns were managed by 
the Ministry of Public Health and Sanitation at 
45 community health facilities.

We did annual cross-sectional studies of nasopharyngeal 
carriage in the KHDSS in the 2 years before and 2 years 
after introduction of PCV10. For each year of the study, we 
used a Stata program to randomly select 50 residents in 
each of ten age strata (0, 1–2, 3–4, 5–9, 10–14, 15–19, 
20–39, 40–59, 50–59, and ≥60 years) from the KHDSS 
population register. Using the same method, we randomly 
selected 30 additional residents in each age strata to serve 
as a back-up list to cater for people who were lost to 
follow-up or declined to participate. Participants included 
in the fi rst year were not excluded from future selection. 
During June–October, fi eldworkers visited the home of 
each potential participant, explained the study, and 
obtained written informed consent from each adult 
participant or from the parent or guardian of each 
participant aged younger than 18 years. The protocol was 
approved by the Oxford Tropical Ethical Review 
Committee (number 30-10) and the Kenya National 
Ethical Review Committee (SSC1433).

Procedures
Fieldworkers administered a short questionnaire 
eliciting risk factors for carriage, documented 
vaccination history from the immunisation cards of 
children, and then collected a nasopharyngeal swab 
specimen. Residents who had moved out of the KHDSS, 
could not be located, or declined to participate were 
replaced by choosing the fi rst remaining name from a 
back-up random selection of residents in each age 
stratum. A nasopharyngeal rayon swab (Medical Wire, 
Corsham, UK) specimen was collected from each 
participant. Specimens were collected by passing the 
swab through the nostril, along the fl oor of the nasal 
cavity until it touched the posterior nasopharyngeal wall, 
where it was left for 2–3 s, rotated, and removed. Swabs 
were placed in skim-milk tryptone glucose glycerol 
media and processed at the Kenya Medical Research 
Institute-Wellcome Trust Research Programme 
Laboratory (Kilifi , Kenya), in accordance with WHO 
recommendations.23 Isolates of S  pneumoniae were 
identifi ed from gentamicin-blood agar by optochin 
susceptibility testing; serotyping was done by latex 
agglutination and the Quellung reaction (including 
separate antisera for serotypes 6A and 6C). If 
pneumococcal colonies of varying appearance occurred, 
only those of the dominant colony morphology were 
serotyped. All serogroup 6 isolates were retested by PCR 
for confi rmation of serotype. Isolates of H infl uenzae 
were identifi ed from bacitracin-chocolate agar by gram 
stain and X and V factor dependence. Typing of 
H infl uenzae isolates was done by multiplex PCR using 
an IgA target that discriminates between H infl uenzae 
and Haemophilus haemolyticus, a bexA target, to identify 
encapsulation and specifi c targets for each capsular 
type.24,25 Isolates of suspected S aureus identifi ed from 
mannitol salt agar were subcultured and identifi ed by 
gram stain and biochemical testing.
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Statistical analysis
Vaccine serotypes were defi ned as those contained in 
PCV10 (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F). 
Nasopharyngeal carriage prevalence was estimated in four 
broad age strata for each bacterial group (vaccine-serotype 
and non-vaccine-serotype pneumococci, non-typeable 
H infl uenzae, and S aureus). Unadjusted prevalence ratios 
were calculated for the vaccine period (2011–12) compared 
with the baseline period (2009–10) using classic methods 
for estimation of risk ratios. To identify potential 
confounders, we tested the association between all 
questionnaire variables and the vaccine period. For 
consistency across models of diff erent age groups and 
bacterial groups, we adjusted all models for each of the 
confounding variables that was signifi cant at a p value of 
less than 0·1. To obtain unconfounded estimates of 
prevalence ratios in the vaccine period compared with the 
baseline period, we explored both secular changes in 
carriage prevalence and secular changes in potential 
confounders. Prevalence ratios were modelled using log-
binomial regression; if the models failed to converge, we 
used Poisson regression with robust 95% CIs.26

Variation in the eff ect of PCV10 on carriage prevalence 
with age was tested as an interaction term. Changes in 
prevalence over time, adjusted for vaccine period, were 
tested per year of study. Adjusted prevalence ratios were 
age standardised in ten strata, to represent the stratifi ed 
sampling scheme, by the inverse of the sampling ratio 
as population weights; the reference was the KHDSS 
population register at the midpoint of the study 
(Jan 1, 2011).

The signifi cance of vaccine eff ect on carriage of 
25 individual serotypes was tested using a Bonferroni 
correction (ie, 0·05/25). Vaccine eff ectiveness against 

carriage (VEcarr) was calculated as 1 minus the age-
standardised, adjusted prevalence ratio. Estimates of 
vaccine eff ectiveness against acquisition were calculated 
as 1 minus the age-standardised, adjusted odds ratio.27

All statistical analyses were done using Stata version 11.2.

Role of the funding source
This work was done under a collaborative arrangement 
with the PenumoADIP at Johns Hopkins Bloomberg 
School of Public Health and funded by the GAVI Alliance. 
This study was done at a research unit funded by the 
Wellcome Trust of Great Britain. The funders of the 
study had no role in study design, data collection, data 
analysis, writing of the report, or the decision to submit 
manuscript for publication. LLH had full access to all the 
data in the study, takes responsibility for the integrity of 
the data and the accuracy of the data analysis, and had 
fi nal responsibility for the decision to submit for 
publication.

Results
Overall, 2031 participants were enrolled (506 in 2009, 
511 in 2010, 504 in 2011, and 510 in 2012). The proportion 
of approached individuals who consented to participate 
was similar each year (2009: 78%, 2010: 72%, 2011: 71%, 
2012: 77%) as were the epidemiological characteristics of 
participants (table 1). Among participants younger than 
1  year, receipt of at least two doses of PCV10 was 
documented in 38 of 44 (86%; 95% CI 73–95) in 2011 
and 43 of 55 (78%; 65–88) in 2012; fi ve (5%) of 99 were 
completely unvaccinated (n=2) or had unknown 
vaccination status (n=3). Among participants aged 
1–4 years, receipt of at least one dose of PCV10 was 
documented in 67 of 107 (63%, 95% CI 53–72) in 2011 and 

2009 (n=506) 2010 (n=511) 2011 (n=504) 2012 (n=510)

Sex

Men 223 (44%) 236 (46%) 241 (48%) 233 (46%)

Women 283 (56%) 275 (54%) 263 (52%) 277 (54%)

Age

<5 years 152 (30%) 156 (31%) 151 (30%) 164 (32%)

5–17 years 126 (25%) 128 (25%) 125 (25%) 130 (25%)

18–49 years 124 (25%) 121 (24%) 122 (24%) 116 (23%)

≥50 years 104 (21%) 106 (21%) 106 (21%) 100 (20%)

Urban residence 60 (12%) 65 (13%) 62 (12%) 72 (14%)

Cough or rhinorrhoea (in preceding 14 days) 257 (51%) 357 (70%) 301 (60%) 298 (58%)

Antibiotic use (in preceding 14 days) 13 (3%) 27 (5%) 39 (8%) 18 (4%)

Smoker in household 116 (23%) 136 (27%) 122 (24%) 102 (20%)

Smoker (if aged ≥18 years) 29/228 (13%) 37/227 (16%) 29/228 (13%) 21/216 (10%)

Daycare attendance (if aged <5 years) 10/152 (7%) 28/156 (18%) 18/151 (12%) 27/164 (16%)

Number of people sharing a bed 1·8 (1–3) 1·4 (1–2) 1·4 (1–2) 1·3 (1–2)

Number of children aged <10 years in household 1·9 (1–3) 2·6 (1–4) 2·3 (1–3) 2·2 (1–3)

Data are number (%) or mean (IQR). Some percentages do not total 100 because of rounding.

Table 1: Epidemiological characteristics of participants
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in 80 of 109 (73%; 64–81) in 2012. After applying vaccine 
coverage levels in the study sample to the age distribution 
of the population, the age-standardised vaccine coverage 
for receipt of at least one dose of PCV10 among 
participants younger than 5 years was 69% (95% CI 62–76) 
in 2011 and 79% (72–86) in 2012. The corresponding 
fi gures for all KHDSS residents younger than 5 years 
were 63% in 2011 and 67% in 2012.28

A total of 872 pneumococci, 624 H infl uenzae, and 
143 staphylococci were isolated. An additional three to fi ve 

isolates per year were identifi ed as possible pneumococci 
on the basis of optochin testing but were non-typeable and 
were excluded from this analysis. Two serotype 6C isolates 
were detected: one in 2009 that was detected by PCR alone 
and one in 2012 that was detected by both the Quellung 
reaction and PCR. Among isolates of H infl uenzae, 
588 (94%) were non-typeable H infl uenzae by PCR.

Figure 1 shows the pneumococcal carriage prevalence 
for each of the 4 years of the study among participants in 
the four age groups. Figure 2 shows results for non-
typeable H  infl uenzae and S aureus. After adjusting for 
vaccine period and month of sampling within a given year, 
there were no signifi cant secular changes in carriage 
prevalence for any of the fi ve bacterial groups tested either 
in participants younger than 5 years or aged 5 years or 
older. Among ten epidemiological variables tested for 
association with vaccine period (table 1), three were 
signifi cant (p<0·1): month of sampling within a given 
year (p<0·0001), number of people with whom the 
participant shared a bed (p=0·0004), and self-reported use 
of antibiotics within the 14 days before swab collection 
(p=0·08). All subsequent prevalence ratios were adjusted 
for these three factors.

Table 2 details the carriage prevalence in the baseline 
and vaccine periods, crude prevalence ratios, and age-
standardised, adjusted prevalence ratios for each of the 
fi ve bacterial classifi cations. The adjusted prevalence 
ratios did not vary signifi cantly by age specifi ed in four 
strata (<5, 5–17, 18–49, ≥50 years). Consequently, the data 
are presented for simplicity in two age strata: those 
targeted for vaccination (age <5 years) and those who 
were not targeted for vaccination (age ≥5 years). Even in 
these two strata, the adjusted prevalence ratios did not 
diff er signifi cantly with age for any of the bacterial 
groups examined.

For vaccine-serotype S pneumoniae, the VEcarr was 64% 
(95% CI 49–74) among children younger than 5 years and 
66% (38–82) among individuals aged 5 years or older 
(table 2). For non-typeable H infl uenzae, the VEcarr was 38% 
(95% CI 25–48) among those younger than 5 years and 
29% (11–44) among individuals aged 5 years or older. 
Among children younger than 5 years, the estimates of 
VEcarr in 2011 and 2012 were 63% (95% CI 44–76) and 62% 
(38–76), respectively, for vaccine-serotype pneumococci, 
and 43% (26–56) and 26% (9–40), respectively, for non-
typeable H infl uenzae. In an exploratory post-hoc analysis, 
we compared the VEcarr for non-typeable H  infl uenzae in 
2011 and 2012 among individuals aged 5 years or older and 
found that the decline was no longer signifi cant 2  years 
after introduction of PCV10 (2011 VEcarr 38%, 95% CI 
16 to 54 vs 2012 VEcarr 23%, –2 to 42). The appendix shows 
estimates of vaccine eff ectiveness against acquisition of 
carriage for each of the fi ve bacterial classifi cations.

We also examined the eff ect of vaccination at an 
individual level in an exploratory post-hoc anaylsis. During 
the vaccine period, among children 1–4 years old, the 
adjusted prevalence ratio for those who received at least 

Figure 1: Nasopharyngeal carriage prevalence of Streptococcus pneumoniae, vaccine-serotype S pneumoniae, 
and non-vaccine-serotype S pneumoniae
Bars are 95% CIs.
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two doses of PCV10 compared with those who received 
zero or one doses was 0·47 (95% CI 0·21–1·03) for 
vaccine-serotype pneumococci and 1·22 (0·87–1·70) for 
non-typeable H  infl uenzae. Because of high vaccine 
uptake, we were not able to do this analysis among infants, 
or to compare children who received no doses with those 
who received at least one dose.

Figure 3 shows the serotype-specifi c carriage 
prevalence among children younger than 5 years for the 
baseline and vaccine periods. The diff erences in carriage 
prevalence were signifi cant only for serotypes 6B 
(10% vs 3%; p=0·0003) and 19F (12% vs 5%; p=0·002). 
No eff ects on carriage of the vaccine-related serotypes 
6A or 19A were noted.

Discussion
We report rapid, signifi cant reductions in vaccine serotype 
nasopharyngeal carriage at a population level in Kilifi , 
Kenya, after introduction of PCV10 into the routine infant 
vaccination schedule accompanied by a catch-up campaign 
for children younger than 5 years. To our knowledge, this 
is the fi rst study to report the eff ects on carriage of a 
national PCV vaccination programme in a GAVI Alliance-
eligible developing country (panel). Although pneumo-
coccal carriage is often asymptomatic and benign, it is a 
necessary precursor in the development of invasive 
disease. Because of this causal link, vaccine eff ect on 
carriage is an important marker of vaccine-induced 
protection against disease in children and adults.13

About 18 months after the introduction of PCV10, we 
noted a 64% reduction in vaccine-serotype S pneumoniae 
carriage among children younger than 5 years, 79% of 
whom had received at least one dose of PCV10. In 
comparison, in Alaska, USA, 3 years after introduction of 
7-valent PCV (PCV7), a 91% reduction in vaccine serotype 
carriage was noted among Alaska Native children aged 
5 years or younger, more than 99% of whom had received 
at least one dose of PCV7.33 In both settings, PCV was 
introduced with a catch-up campaign. In a large cluster-
randomised study in The Gambia,39 in which widespread 
PCV7 vaccination was undertaken, there was a 56% 
reduction in vaccine serotype carriage in children aged 
2–5 years living in villages where children younger than 
30 months were vaccinated and a 74% reduction in 
villages where all residents receive at least one dose of 
PCV7. Within 2 years after PCV7 was introduced into the 
public immunisation programme for infants without a 
catch-up campaign in a South African community with 
high HIV prevalence, vaccine serotype carriage was 
reduced by 50% among children younger than 2 years, 
51% of whom had received three doses of PCV7.40 In the 
Netherlands, 3 years after introduction of PCV7, without 
a catch-up campaign, vaccine serotype carriage was 
reduced by 80–90% among vaccinated children aged 
between 11 months and 24 months.34 In Portugal, 4 years 
after PCV7 became available, in children aged 4 months 
to 6 years, 57% of whom had received PCV7, vaccine 

Figure 2: Nasopharyngeal carriage prevalence of non-typeable Haemophilus infl uenzae and 
Staphylococcus aureus
Bars are 95% CIs.
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Age (years)

Carriage prevalence 
baseline period 
(2009–10)

Carriage prevalence 
vaccine period 
(2011–12)

Crude prevalence 
ratio (95% CI)

Age-standardised 
adjusted prevalence 
ratio (95% CI)*

Vaccine-serotype Streptococcus pneumoniae

<5 years 104/308 (34%) 41/315 (13%) 0·39 (0·28–0·53) 0·36 (0·26–0·51)

≥5 years 59/709 (8%) 25/699 (4%) 0·43 (0·27–0·68) 0·34† (0·18–0·62)

Non-vaccine-serotype S pneumoniae

<5 years 125/308 (41%) 179/315 (57%) 1·40 (1·19–1·65) 1·37 (1·13–1·65)

≥5 years 167/709 (24%) 186/699 (27%) 1·13 (0·94–1·35) 1·13 (0·92–1·38)

All S pneumoniae

<5 years 229/308 (74%) 213/315 (68%) 0·91 (0·82–1·01) 0·87‡ (0·77–0·97)

≥5 years 226/709 (32%) 204/699 (29%) 0·92 (0·78–1·07) 0·85 (0·71–1·03)

Non-typeable Haemophilus infl uenzae

<5 years 167/308 (54%) 126/315 (40%) 0·74 (0·62–0·87) 0·62‡ (0·52–0·75)

≥5 years 168/709 (24%) 127/699 (18%) 0·77 (0·62–0·94) 0·71 (0·56–0·89)

Staphylococcus aureus

<5 years 19/308 (6%) 20/315 (6%) 1·03 (0·56–1·89) 1·02 (0·52–1·99)

≥5 years 56/709 (8%) 48/699 (7%) 0·87 (0·60–1·26) 0·90 (0·60–1·35)

Data are n/N (%). *Adjusted for month of swab collection, number of people sharing a bed, and antibiotic use in 
the 14 days preceding swab collection. †The frequency of vaccine-type pneumococci among participants aged 
20–39 years in the vaccine period was zero; this stratum was combined with the group aged 40–49 years for the 
age-standardised analysis. ‡Binomial regression model data did not to converge so results of a Poisson model 
are presented.

Table 2: Carriage prevalence and prevalence ratios for nasopharyngeal carriage
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serotype carriage was reduced by 78%.35 The above-
mentioned studies show a substantial eff ect on vaccine 
serotype carriage 1·5–4 years after introduction of PCV 
with and without a catch-up campaign, with vaccine 
coverage in the target age group ranging between 50% 
and 100%. Reductions in carriage have been matched by 
reductions in invasive pneumococcal disease in settings 
where such data are available, including the KHDSS, 
where 1  year after PCV10 introduction, the vaccine 
eff ectiveness was estimated to be 72% (95% CI 34–88) 
against vaccine-serotype invasive pneumococcal disease 
in children aged younger than 5 years.36–38,41

In addition to the eff ect in the vaccine target age group, 
we noted a 66% reduction in vaccine serotype carriage 
adjusted prevalence in individuals aged 5 years or older. 
This fi nding is consistent with fi ndings among Alaska 
Native people, in whom a 68% reduction in vaccine 
serotype carriage was reported among people aged at 
least 18 years about 3 years after introduction of PCV7.33 
The reductions in vaccine serotype carriage in the non-
target age group in Kilifi  were apparent in the fi rst post-
PCV10 survey (2011), when coverage with at least one 
dose of PCV10 among children younger than 5 years was 
63% in the KHDSS and 69% among study participants. 
Reasons for the diff erence in the vaccine coverage 
estimates for study participants compared with all 
KHDSS children are as follows: (1) the time lag between 
the random selection of potential participants and their 
enrolment in the study caused our sample of the very 
youngest age group (0–12 months) to be skewed towards 
the upper end of this bracket when children were more 
likely to have been vaccinated; (2) our study captured 
vaccinations given outside the area covered by the vaccine 
registry; and (3) some of the migrant population—who 
generally have lower levels of vaccine coverage—would 
have been lost after random selection in our study. 
Nonetheless, our fi ndings suggest that substantial 
indirect eff ects occur when two-thirds of children 

younger than 5 years are vaccinated and imply that the 
indirect protection against invasive pneumococcal 
disease noted in the USA and UK can probably be 
replicated in developing countries.

In other settings, the reduction in vaccine serotype 
carriage prevalence after programmatic introduction of 
PCVs has been matched by a reciprocal increase in 
carriage prevalence of non-vaccine serotypes (ie, serotype 
replacement carriage) such that the overall pneumococcal 
carriage prevalence, typically, is unchanged from 
baseline. However, serotype replacement in the 
nasopharynx has had a variable eff ect on invasive 
pneumococcal disease.5,10 In most settings, serotype 
replacement invasive pneumococcal disease has been 
minimal, whereas in some settings it has almost negated 
the benefi cial eff ect of PCVs in some subgroups of the 
population. We noted a signifi cant increase in carriage 
of non-vaccine-serotype pneumococci among children 
younger than 5 years; however, because the magnitude 
of the decline in vaccine serotype carriage was greater, 
there was a slight decline in overall S  pneumoniae 
carriage prevalence in the PCV10 period. The reduction 
in overall pneumococcal carriage in children is likely to 
be attributable to the vaccine itself, rather than to 
underlying variations in carriage, because analyses of 
the change in carriage prevalence for all pneumococci 
over the 4 years did not identify a signifi cant decline in 
prevalence after adjusting for vaccine eff ect. Although 
non-vaccine serotype carriage increased signifi cantly in 
children younger than 5 years, the increase was not 
statistically signifi cant in people aged 5 years or older. 
Children are likely to experience more rapid, direct 
clearance of vaccine serotype carriage and subsequent 
replacement carriage, whereas adults experience 
delayed, indirect clearance. Thus, replacement carriage 
in adults is probably delayed. Two other studies in 
Africa—a cluster-randomised trial of PCV in The 
Gambia39 and an observational ecological study after 

Figure 3: Serotype-specifi c carriage prevalence of Streptococcus pneumoniae among children younger than 5 years
*p=0·0003. †p=0·002.
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programmatic introduction of PCV7 in South 
Africa40—found that non-vaccine serotype carriage 
declined in adolescents and adults after PCV use in 
children. However, these fi ndings are subject to several 
limitations including the short period of follow-up and 
changes in HIV treatment regimens in South Africa, 
and an intercurrent community-wide azithromycin 
campaign in The Gambia. Long-term surveillance is 
essential to understand PCV-induced changes in non-
vaccine serotype carriage and disease.

In serotype-specifi c analyses, we noted no eff ect on 
carriage of the serotypes 6A or 19A in the target age 
group. This fi nding is consistent with data from clinical 
trials that show that PCV10 does not induce a robust 
antibody response against these strains.42 Only the 
predominant colony appearance of pneumococcus was 
serotyped from each nasopharyngeal swab, so serotype-
specifi c variations do not account for changes that might 
have occurred among the non-dominant strains carried 
by an individual. However, assuming that the probability 
of sampling a strain is proportional to the frequency of 
that serotype in the nasopharynx then the present study 
is of a random sample of strains in a random sample of 
individuals and this limitation should not aff ect our 
conclusions about vaccine eff ectiveness. Carriage is 
expected to be in fl ux in the fi rst few years of vaccine use 
and carriage prevalence will probably continue to change 
before reaching equilibrium.43,44

We noted a signifi cant reduction in nasopharyngeal 
carriage of non-typeable H infl uenzae among participants 
younger 5 years and at least 5 years old in the vaccine 
period compared with baseline. However, the role of 
PCV10 as the causative agent of this change is questionable 
since non-typeable H  infl uenzae carriage prevalence 
seemed to rebound in year 2 of the vaccine period and we 
did not fi nd an association between an individual’s 
vaccination status and carriage of non-typeable 
H infl uenzae (by comparing individuals with at least two 
doses to those with zero or one dose). Findings from early 
clinical trials suggested that use of an 11-valent protein-D 
conjugate vaccine reduced the carriage prevalence of 
vaccine-serotype and non-typeable H infl uenzae, although 
the decline in non-typeable H infl uenzae carriage was not 
signifi cant when molecular methods were used to 
diff erentiate non-typeable H infl uenzae from the closely-
related H haemolyticus.16,45 In long-term follow-up, lower 
non-typeable H infl uenzae carriage prevalence in vaccine 
recipients compared with controls was documented at 
about 2  years of age but at no other timepoint.46 Other 
clinical trials of PCV10 have not documented a signifi cant, 
consistent eff ect of vaccination on carriage of non-typeable 
H infl uenzae.47–49 Although the prevalence of non-typeable 
H infl uenzae might have been higher had we collected an 
oropharyngeal swab in addition to a nasopharyngeal swab, 
our methods were similar across years of the study, thus 
allowing comparison between periods before and after 
vaccination.50

We reported no change in the carriage prevalence of 
S aureus after introduction of PCV10. By contrast, 
fi ndings from several studies have suggested an inverse 
relation between carriage of S pneumoniae and 
S aureus,17–20 and one population-level assessment in the 
Netherlands reported an increase in S aureus carriage 
after introduction of PCV7.51 Potential explanations for 
this diff erence include variations in the nasopharyngeal 
microbiome across populations and the competition 
dynamics that ensue after reductions in pneumococcal 
carriage in a rural developing country setting. S aureus 
was cultured in our study, and in most of the comparator 
studies cited earlier, from the posterior nasopharynx. 
Cultures of the anterior nares might be more appropriate 
to fully characterise the eff ect of the vaccine on S aureus. 
The period after vaccine surveillance in the present study 
is brief and the sustainability of eff ects (or absence of 
eff ects) on carriage of various diff erent bacteria can only 
be identifi ed after a longer period of surveillance. We 
intend to extend surveillance for at least 3  more years, 
but have reported early results because the catch-up 
campaign provided additional maturity to the programme 
and the vaccine eff ects are large.

In presenting measures of VEcarr, we used the term 
eff ectiveness to describe the magnitude of the eff ect of 
the vaccine in the total population (that we sampled 
randomly) under the short-term conditions of rapid 
introduction with high coverage. The eff ect of the 
programme will evolve over time and will be determined 

Panel: Research in context

Systematic review
After trials of pneumococcal conjugate vaccine (PCV) in the USA, The Gambia, and South 
Africa showed an excellent vaccine effi  cacy against vaccine-serotype invasive pneumococcal 
disease,29–32 WHO recommended that PCV should be included in the routine immunisation 
schedules of developing countries and several funding agencies pledged support for this 
introduction. Kenya was chosen as one of the fi rst countries in Africa to receive support for 
vaccine introduction from the GAVI Alliance. The Kenya PCV Impact Study28 was designed to 
assess the eff ectiveness and cost-eff ectiveness of PCV in a setting where it was possible to 
investigate the eff ect of PCV against a background of longitudinal surveillance. Several 
studies in developed countries have established a strong association between vaccine eff ect 
on carriage and vaccine eff ect on invasive pneumococcal disease.33–38 The nasopharyngeal 
carriage study of the Kenya PCV Impact Study was designed to provide an early assessment 
of vaccine eff ect in a developing country setting. A formal systematic review was not done as 
part of the study.

Interpretation
In this study, introduction of PCV10 in a developing country setting, with a catch-up 
campaign, led to a two-thirds reduction in carriage prevalence of vaccine-serotype 
pneumococci both in children targeted for vaccination and in older people who were not 
vaccinated. The eff ect reported in children provides convincing functional evidence that 
the vaccine is inducing immunological protection at a level suffi  cient to prevent invasive 
disease. The eff ect in older children and adults suggest that the childhood PCV10 
programme is reducing transmission of vaccine-serotype pneumococci within the 
population and this is likely to lead to a reduction in vaccine-serotype invasive 
pneumococcal disease across all age groups (ie, herd protection).
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in invasive pneumococcal disease after pneumococcal conjugate 
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sites. PLoS Med 2013; 10: e1001517.

6 Centers for Disease Control and Prevention. Direct and indirect 
eff ects of routine vaccination of children with 7-valent 
pneumococcal conjugate vaccine on incidence of invasive 
pneumococcal disease—United States, 1998–2003. 
MMWR Morb Mortal Wkly Rep 2005; 54: 893–97.
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pneumococcal disease caused by nonvaccine serotypes 
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pneumococcal conjugate vaccine coverage. JAMA 2007; 
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10 Weinberger DM, Malley R, Lipsitch M. Serotype replacement in 
disease after pneumococcal vaccination. Lancet 2011; 378: 1962–73.

11 International Vaccine Access Center (IVAC), Johns Hopkins 
Bloomberg School of Public Health. VIMS report: global vaccine 
introduction, March 2014. http://www.jhsph.edu/research/centers-
and-institutes/ivac/vims/IVAC-VIMS-Report-2014-Mar.pdf 
(accessed May 7, 2014).

 12 Nurhonen M, Cheng AC, Auranen K. Pneumococcal transmission 
and disease in silico: a microsimulation model of the indirect 
eff ects of vaccination. PLoS One 2013; 8: e56079.

 13 Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O’Brien KL. 
The fundamental link between pneumococcal carriage and disease. 
Expert Rev Vaccines 2012; 11: 841–55.

14 Weinberger DM, Bruden DT, Grant LR, et al. Using pneumococcal 
carriage data to monitor postvaccination changes in invasive 
disease. Am J Epidemiol 2013; 179: 1488–95.

15 GAVI Alliance. Kenya marks global roll out of pneumococcal 
vaccine. http://www.gavialliance.org/Library/News/Press-
releases/2011/Kenya-marks-global-roll-out-of-pneumococcal-
vaccine/ (accessed May 7, 2014).

 16 Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular 
polysaccharides conjugated to protein D for prevention of acute 
otitis media caused by both Streptococcus pneumoniae and 
non-typable Haemophilus infl uenzae: a randomised double-blind 
effi  cacy study. Lancet 2006; 367: 740–48.

 17 Bogaert D, van Belkum A, Sluijter M, et al. Colonisation by 
Streptococcus pneumoniae and Staphylococcus aureus in healthy 
children. Lancet 2004; 363: 1871–72.

18 Regev-Yochay G, Dagan R, Raz M, et al. Association between 
carriage of Streptococcus pneumoniae and Staphylococcus aureus 
in children. JAMA 2004; 292: 716–20.

 19 Madhi SA, Adrian P, Kuwanda L, Cutland C, Albrich WC, 
Klugman KP. Long-term eff ect of pneumococcal conjugate vaccine 
on nasopharyngeal colonization by Streptococcus pneumoniae—and 
associated interactions with Staphylococcus aureus and 
Haemophilus infl uenzae colonization—in HIV-infected and 
HIV-uninfected children. J Infect Dis 2007; 196: 1662–66.

 20 van Gils EJ, Hak E, Veenhoven RH, et al. Eff ect of seven-valent 
pneumococcal conjugate vaccine on Staphylococcus aureus colonisation 
in a randomised controlled trial. PLoS One 2011; 6: e20229.

21 Scott JA, Bauni E, Moisi JC, et al. Profi le: the Kilifi  Health and 
Demographic Surveillance System (KHDSS). Int J Epidemiol 2012; 
41: 650–57.

 22 Moisi JC, Kabuka J, Mitingi D, Levine OS, Scott JA. Spatial and 
socio-demographic predictors of time-to-immunization in a rural 
area in Kenya: is equity attainable? Vaccine 2010; 28: 5725–30.

 23 O’Brien KL, Nohynek H. Report from a WHO Working Group: 
standard method for detecting upper respiratory carriage of 
Streptococcus pneumoniae. Pediatr Infect Dis J 2003; 22: e1–11.

 24 Maaroufi  Y, De Bruyne JM, Heymans C, Crokaert F. Real-time 
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J Clin Microbiol 2007; 45: 2305–08.

by both the coverage in infants and the age structure of 
coverage among the total carrier population. In 
presenting the prevalence ratio, we have assumed that 
the key risk for disease is total carriage prevalence. If the 
key risk is acquisition of carriage, then the odds ratio 
might provide a more accurate estimate. However, the 
two methods (prevalence ratio and odds ratio) yielded 
similar results in this analysis.

PCVs are being introduced rapidly across developing 
countries, although there is, as yet, limited evidence of 
their operational eff ect. PCV10, in particular, has not been 
studied in any national vaccination programme. This 
study has shown that introduction of PCV10 in a 
developing country setting, with a catch-up campaign, 
has led to a two-thirds reduction in carriage prevalence of 
vaccine-serotype pneumococci both in children targeted 
for vaccination and in older people who were not 
vaccinated. The eff ect reported in children provides 
convincing functional evidence that the vaccine is 
inducing immunological protection at a level suffi  cient to 
prevent invasive disease. The eff ect in older children and 
adults suggests that the childhood PCV10 programme is 
reducing transmission of vaccine-serotype pneumococci 
within the population and this is likely to lead to a 
reduction in vaccine-serotype invasive pneumococcal 
disease across all age groups (ie, herd protection).
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