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Abstract: The Developmental Origins of Health and Disease (DOHaD) framework aims to un-
derstand how early life exposures shape lifecycle health. To date, no comprehensive list of these
exposures and their interactions has been developed, which limits our ability to predict trajectories
of risk and resiliency in humans. To address this gap, we developed a model that uses text-mining,
machine learning, and natural language processing approaches to automate search, data extraction,
and content analysis from DOHaD-related research articles available in PubMed. Our first model
captured 2469 articles, which were subsequently categorised into topics based on word frequencies
within the titles and abstracts. A manual screening validated 848 of these as relevant, which were
used to develop a revised model that finally captured 2098 articles that largely fell under the most
prominently researched domains related to our specific DOHaD focus. The articles were clustered
according to latent topic extraction, and 23 experts in the field independently labelled the perceived
topics. Consensus analysis on this labelling yielded mostly from fair to substantial agreement, which
demonstrates that automated models can be developed to successfully retrieve and classify research
literature, as a first step to gather evidence related to DOHaD risk and resilience factors that influence
later life human health.

Keywords: Developmental Origins of Health and Disease; developmental programming; machine
learning; natural language processing; text mining

1. Introduction

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that
environmental exposures in early life programme health across the lifecycle [1]. To un-
derstand health determinants and the pathogenesis of diseases and disorders [2], it is
necessary to not only consider early-life events, but also integrate knowledge on social, en-
vironmental, and biomedical health factors. Such an approach will enable better prediction
of developmental trajectories and health risks, and identification of protective factors that
promote resiliency and optimise health outcomes. Quantifying the complex interactions
between early-life exposures and health and disease outcomes is a barrier to consolidating
interdisciplinary knowledge in the DOHaD field, and, to-date, no comprehensive list of
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influential exposures and their interactions has been developed, limiting our ability to
predict risk and resilience trajectories in humans [3].

The lack of efficient methods for gathering, analysing, and disseminating information
from the multitude of multidisciplinary publications in the DOHaD field is a key barrier to
synthesising knowledge on factors that promote risk and resiliency. Advances in techniques
that allow for automated retrieval of relevant information and literature, including text
mining, have been successfully used in the biomedical, life science, chemistry, and genetics
fields [4–6]. In text mining, large bodies of text are navigated to identify patterns and extract
relevant information, and machine learning (ML) and natural language processing (NLP)
can further aid the process of mining text in scientific publications [7]. Papers identified as
relevant can then be organised into groups of similar data items, using topic modelling or
clustering, to make inferences and generate analysis at a broader semantic level [7,8].

Here, we aimed to incorporate text mining, ML, and NLP approaches to develop
an automated process to capture information spanning the breadth of DOHaD literature,
which constitutes a novel approach in this context. Our objective was to build a tool that
can search, filter, and categorise information from primary literature in the DOHaD field, to
enable the creation of an inclusive list of the early life exposures that most impact later life
health outcomes. This research lays the foundation for a comprehensive DOHaD database
that will integrate knowledge on the social, environmental, and biomedical determinants
of health, and serves as the first step in the development of a tool that can mine data from
the literature and integrate this with personalised information to predict developmental
outcomes, health risks, and identify protective factors that ensure resiliency.

2. Methods

The creation and refinement of the text-mining model was composed of five processes
(Figure 1). The methods and materials provided follow previously proposed guidelines
for model development, evaluation, and reporting (Supplementary Table S1) [9,10]. The
source code used to generate the models and visualisations can be found at the THRIVE
repository (https://gitlab.com/papablo/thrive). Here, we provide instructions for how
to create a containerised environment to run the data scraping and model creation and
generate the intended visualisations.
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2.1. Part 1: Text-Mining Model 1

To first create the foundation of a text-mining model, we narrowed our scope to the
largest research database, PubMed. Although DOHaD research is multidisciplinary, as
a proof-of-concept, we aimed to focus on a single research database, tailoring the tool to
one search engine and its format. There were no date restrictions added to the model as
the intention was to text-mine any article that fell into the search string parameter. The
following search string, developed through preliminary research and expert consensus [3],
was used to capture articles grounded in DOHaD: (maternal* OR paternal*) AND (weight
OR obes* OR nutrition OR diet* OR stress OR social support) AND (child OR infant) AND
(programming AND development); mother-child relation* AND programming; child*
AND development AND programming AND (stress OR depression OR anxiety OR sensi-
tivity OR temperament) AND mental health; parent-child relation* AND programming;
programming AND *natal; development* AND origins AND programming; development*
origins of health and disease; (maternal* OR paternal*) AND (gene* OR immune* OR
metabol* OR inflam* OR brain OR neuro* OR cardio* respiratory) AND (development OR
growth OR programming) AND (child OR infant).

We automatically captured all the articles from PubMed that met the criteria above,
using a web scraper using Python and Selenium [11]. In order to build a latent Dirichlet
allocation (LDA) model [10] as part of NLP [12], which uses the frequency of words to
generate topics to describe a large collection of documents [10], three components were
built into the model:

1. A corpus (or body of text, which in this case are the titles and abstracts of the articles);
2. A dictionary, associating each word to a unique numeric ID;
3. A number of topics to be extracted from our documents.

Using the mentioned corpus, the LDA process was used to extract words that fre-
quently appear together, along with the frequencies of these words in relation to broader
topics. The model output provided a statistical (parametric or otherwise) distribution of
topics in the corpus. The number of topics was arbitrary and was set prior to building the
model [8]. The LDA model also provided a measure of the level of similarity between a
document (one that the model used for training or a new one acquired from scraping) and
those in the corpus.

2.2. Part 2: Manual Labelling Text-Mining Model 1 Results

Labels for the topics generated by Model 1 were manually assigned based on the
30 most frequent and relevant terms which formed each topic. Labelling was done to
identify domains/groups for each topic based on the frequency and types of terms captured
within a particular topic. The terms within each topic were assessed to determine which
field or domain within DOHaD the terms broadly fell into.

2.3. Part 3: Manual Assessment of Model 1 Accuracy–Classifying Model 1 Articles

To refine our text-mining model to ensure it was capturing and assessing relevant
primary human DOHaD articles, we performed a manual screening of the 2469 article
results from Model 1 (Figure 2). The title and abstract for each of the 2469 articles were
exported as a .csv file and screened. The exclusion criteria included non-primary articles
(e.g., review articles and editorials), non-English language articles, and articles with miss-
ing/inaccessible abstract data (Table 1). Animal studies, whilst essential for understanding
the mechanisms linking early life exposures to later life health outcomes and for developing
pre-clinical interventions, were excluded from our model. We took this approach because
of remaining limitations on our ability to predict which exposure-outcome relationships in
animal models are predictive of human responses to the same exposures, and/or carry the
same influence (weight) on health risk and resiliency in humans. [13–16]. A reliable method
to evaluate the translatability of animal models to humans is necessary before animal stud-
ies can be included and effects weighted appropriately in a tool designed to predict human
health outcomes [15]. Further, because the primary goal of this tool is not to interrogate the
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mechanisms linking early-life environments and later health, but to synthesise the breadth
of knowledge on exposure-outcome associations in human populations, the inclusion of
animal studies in our analysis would have unnecessarily widened the scope of the study as
well as the amount of irrelevant latent topics that arise. After applying exclusion criteria to
the manual screening of the 2469 articles scraped from Model 1, 848 articles were classified
as “Related to our DOHaD focus” (Figure 2).
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Table 1. Manual Labelling Results for Model 1 of the Text-Mining Model.

Manual Labelling Results: Scraping Tool Articles Number of
Articles

Articles Scraped from Code That Were Found in PubMed Search of RER *
Articles (Out of a Sample of 100) 75

Animal Studies 392
Reviews/Lectures/Commentaries/Protocols 824

Systematic Reviews and Meta-Analyses 44
Not a Primary Study Article 72

No Access/Information 76
Different Language 52

Not Related to DOHaD 255
Included Articles (Related to DOHaD According to Abstract Judgement) 848

* RER, rapid evidence review.
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2.4. Part 4: Text-Mining Model 2

The first corpus for Model 2 was created using the titles and abstracts of the 848 articles
that were manually classified as “Related to DOHaD” from our manual screening results
of Model 1. To build a revised model based on articles “related to DOHaD”, PubMed
was scraped again using the 848-article corpus. From this, a total of 2098 articles were
obtained (Figure 2). Our final goal is to develop a model that would autonomously
identify new articles related to DOHaD, in this and other repositories, and to automate
the update process. For this reason, we further refined the model restricting the inclusion
criteria (i.e., relevance to DOHaD). This was achieved through incremental training cycles
that progressively refined and enlarged the underlying model. In each training cycle,
a batch of 100 sample articles were processed, passing through the corpus, undergoing
data transformation from raw format into readable format, fitting model parameters, and
testing the trained learning scheme against the reference corpus. To do this, we added a
similarity threshold filter (0.95) to assess the similarity of a new article to the 848 articles in
our database. This meant that to be retained in the corpus and used for future training of
the model, newly captured articles needed to be at least 95% similar in frequency of words
and topics similar to at least five articles already present in the accepted corpus.

The similarity threshold of 0.95 was identified, through exploratory analysis, as the
threshold at which relationships between candidate and already analysed and accepted
papers were visible. The 100-sample article limit was chosen to balance the desire for a
large number of articles in the training batches versus the capabilities of the computational
resources available.

2.5. Part 5: PyLDAvis Visualization

A principal component analysis (PCA) and plot was produced with the standard
pyLDAvis tool (v3.3.1) to visualise the results generated from the topic modelling and
better understand the relationships between the words and the created clusters. The plot
grouped the words extracted from articles into a predetermined number of topics based
on frequency of the words in the captured articles. A topic number would be considered
optimal if it produced an output with distinct topics (identified by the terms captured
within), minimal overlapping of topics, and a fairly even distribution of keywords across
the topics. To first explore the different topics and pick an optimal topic value into which
words would be clustered, a PC plot was generated for topic group values 20, 25, 30, 60, 90,
120 and 200. These values were chosen arbitrarily, where results were manually evaluated
and assessed based on general observations of keywords within topics, overlap, and overall
distribution of keywords. The 200-topic value was chosen as an excessive number of topics
to showcase the complexity of the model in which interpretation and subjective validation
of topics is difficult [17] (see Supplementary Table S2 for 200-topic output).

The PC plots can be interpreted as follows: Similar words that appear together most
frequently form a topic. The size of the circle represents the frequency of terms that the
topic spans over the entire corpus. The distance between circles (as measured from their
centre points) indicates the (dis)similarity between topics. That is, the closer two circles are
to each other, the more similar the contained words within each topic. Circles that overlap
or are separated by short distances described topics which were similar to each other. For
each topic, a histogram is produced that displays the top 30 most relevant terms within
that topic. The term frequency within that topic is represented by the horizontal red bars
and the blue bars represent the frequency of the term across the whole corpus (i.e., overall
term frequency).

2.6. Part 6: Consensus Evaluation of Model 2

Lastly, we sought to assess the quality of the topic labelling results from Model 2
against expert consensus. We asked 23 experts from different disciplines across the DOHaD
field, recruited through the DOHaD Canada membership, to propose a unique label for
each of the 30 topics identified by Model 2, based on their most relevant terms extracted
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by the latent information analysis. This group had expertise in development, maternal
health/obstetrics, fetal/placental development and health, child health/paediatrics, psy-
chology/psychiatry, neuroscience/neurodevelopment/neurological diseases, (epi)genet-
ics/molecular medicine, anthropology, nutrition, metabolism/metabolic disease, public
health/health policy, and social determinants of health. Where respondents used dif-
ferent terms to refer to the same latent topic, two authors (KLC and MW) reconciled
semantic agreement between topics (for example, classifying “allergies” and “allergy”,
or “endocrine” and “hormonal” as the same topic). We then calculated Cohen’s Kappa
coefficient to assess consensus between experts on the appropriate labels for each of the
30 topics. This coefficient is widely used to measure inter-rater classification consensus. It
is more robust than simple percent agreement since it considers agreements occurring by
chance. Thus, the Kappa statistic requires a qualitative interpretation, which commonly
regards values <0 as indicating no agreement, 0–0.20 as slight agreement, 0.21–0.40 as fair,
0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement [18].

3. Results
3.1. Determining Topic Number from Text-Mining Model 1 to Best Capture DOHaD Domains

The 2469 articles identified in Model 1 were extracted and scraped. Using LDA, topics
were generated based on the distribution and frequency of terms in the titles and abstracts.
High overlap between topics was observed for the 200-topic value (Figure 3), suggesting
that subjective validation of each of the topics would be difficult. For the 120-, 90- and 60-
topic values, there were several small topics with random terms and no evident DOHaD-
related themes across topics, making it difficult to decipher what the topics represented
(data not shown). For the 30-topic value, topics appeared better distributed based on
subjective validation of the terms within each topic, and with minimal overlap, suggesting
that the topics were more distinguishable from each other. For the 20- and 25-topic values,
groups appeared ambiguous as the terms in many of the topics were related to general
terminology (such as ‘offspring’, ‘fetal’, ‘maternal’, ‘disease’, and ‘developmental’) and
not related to a specific field within DOHaD. Ultimately, the number of topics that best
distinguishes the different domains within the captured DOHaD research was chosen to be
30. These 30-topic clusters contained broader and more inclusive groups of DOHaD related
domains, while still being adequately specific and distinct from each other (Figure 4A).

3.2. Labelling Topics from Text-Mining Model 1

The results of the manual labelling, done by five experts in DOHaD with broad exper-
tise, are listed in Table 2. Based on their assigned terms, topics were given labels such as
‘metabolic programming’, ‘drug-toxicant exposure’, ‘immunology’, ‘fetal development’,
and ‘stress-related,’ amongst many others. Although some topics overlapped, these topics
had different labels based on the frequency of terms making up the topics. This is because
some the most frequent terms that were common between overlapping topics were ambigu-
ous, and therefore were not used to create labels for these overlapping topics. For example,
topics 18 and 12 overlap (Figure 4A) because the terms ‘exposure’ and ‘development’ are
both amongst the most frequent terms in each of these topics. Nonetheless, topic 12 was
labelled as ‘respiratory disorders’ and topic 18 was labelled as ‘immunology (infection,
etc.)’ because the majority of the remaining relevant/frequent terms in these two topics
were distinct, thus distinguishing the topics from each other. For topics where subjective
validation was difficult because it was unclear what broad category the topic represented
(e.g., topic 11 and 25), no label was created.



J. Pers. Med. 2021, 11, 1064 7 of 13

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

psychology/psychiatry, neuroscience/neurodevelopment/neurological diseases, (epi)ge-
netics/molecular medicine, anthropology, nutrition, metabolism/metabolic disease, public 
health/health policy, and social determinants of health. Where respondents used different 
terms to refer to the same latent topic, two authors (KLC and MW) reconciled semantic 
agreement between topics (for example, classifying “allergies” and “allergy”, or “endo-
crine” and “hormonal” as the same topic). We then calculated Cohen’s Kappa coefficient 
to assess consensus between experts on the appropriate labels for each of the 30 topics. 
This coefficient is widely used to measure inter-rater classification consensus. It is more 
robust than simple percent agreement since it considers agreements occurring by chance. 
Thus, the Kappa statistic requires a qualitative interpretation, which commonly regards 
values <0 as indicating no agreement, 0–0.20 as slight agreement, 0.21–0.40 as fair, 0.41–
0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement [18]. 

3. Results 
3.1. Determining Topic Number from Text-Mining Model 1 to Best Capture DOHaD Domains 

The 2469 articles identified in Model 1 were extracted and scraped. Using LDA, topics 
were generated based on the distribution and frequency of terms in the titles and abstracts. 
High overlap between topics was observed for the 200-topic value (Figure 3), suggesting 
that subjective validation of each of the topics would be difficult. For the 120-, 90- and 60- 
topic values, there were several small topics with random terms and no evident DOHaD- 
related themes across topics, making it difficult to decipher what the topics represented 
(data not shown). For the 30-topic value, topics appeared better distributed based on sub-
jective validation of the terms within each topic, and with minimal overlap, suggesting 
that the topics were more distinguishable from each other. For the 20- and 25-topic values, 
groups appeared ambiguous as the terms in many of the topics were related to general 
terminology (such as ‘offspring’, ‘fetal’, ‘maternal’, ‘disease’, and ‘developmental’) and 
not related to a specific field within DOHaD. Ultimately, the number of topics that best 
distinguishes the different domains within the captured DOHaD research was chosen to 
be 30. These 30-topic clusters contained broader and more inclusive groups of DOHaD 
related domains, while still being adequately specific and distinct from each other (Figure 
4A). 

 

 
Figure 3. Results for text mining Model 1 for 200 topics via pyLDAvis. (A) PC plot and (B) histogram 
for 200-topic value from Model 1. (A) Each topic is represented as a circle (circle size = the frequency 
of terms that the topic spans over the entire corpus). The distance between circles (topics) indicates 

Figure 3. Results for text mining Model 1 for 200 topics via pyLDAvis. (A) PC plot and (B) histogram for 200-topic value
from Model 1. (A) Each topic is represented as a circle (circle size = the frequency of terms that the topic spans over the
entire corpus). The distance between circles (topics) indicates their (dis)similarity (closer = more similar). (B) The histogram
displays the top 30 most relevant terms for the selected topic (in this example, the red circle in panel A). The term frequency
within that topic is represented by the horizontal red bars. The blue bars represent the frequency of the term across the
whole corpus. PC1, principal component 1. PC2, principal component 2.

3.3. Determining Types and Relevance to DOHaD of Articles Scraped in Model 1

After manual abstract screening, 848 of the 2469 articles scraped in Model 1 were
classified as “related to DOHaD” and met our inclusion criteria (Figure 2). The remaining
1621 (65.7%) articles scraped by Model 1 were excluded from the pool of articles used in
subsequent steps, as they were: reviews, commentaries, protocols, or lectures (n = 824);
animal studies (n = 392); not related to DOHaD (n = 255); non-primary articles (n = 72);
non-English articles in a different language (n = 52); systematic reviews/meta-analyses
(n = 44%); or had no abstract access (n = 76). There was some overlap between the ar-
ticle types such that, for example, a non-primary study article may also have been an
animal study. Based on these results, we concluded that our initial model could be further
improved by creating more specific model parameters.

3.4. Topic Modelling of Text-Mining Model 2

A total of 2098 articles were obtained after scraping PubMed again with the revised
Model 2. The threshold similarity function was repeated for these 2098 articles, and a final
revised model containing 1013 articles was obtained (Figure 2). The PC plot for Model 2
showed that the size of the circles did not differ much from one another, suggesting that
topics had a somewhat even distribution of terms (Figure 4B). Additionally, the distances
between the circles (topics) on the PC plot were not large, suggesting that the topics were
similar to each other because the most frequent and relevant terms that made up these
topics were more related to each other. Less overlap between circles is seen in Model 2,
which indicates that topics may represent terms that can be grouped into distinct categories
within the DOHaD field.
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because some the most frequent terms that were common between overlapping topics 

Figure 4. Results for text mining Model 1 (A,B) and Model 2 (C,D) for 30 topics via pyLDAvis. (A,C) Each topic in the PC
plots are represented as a circle (circle size = the frequency of terms that the topic spans over the entire corpus). The distance
between circles (topics) indicates their (dis)similarity (closer = more similar). (B,C) The histograms display the top 30 most
relevant terms for the selected topic (in this example, the red circle in panels A,C). The term frequency within that topic is
represented by the horizontal red bars. The blue bars represent the frequency of the term across the whole corpus. PC1,
principal component 1. PC2, principal component 2.

3.5. Consensus Evaluation of Model 2

In 22 cases, there was only one clear mode, while eight cases were labelled with two
different topics (for instance topic 4 was interpreted either as “growth” or as “metabolic”).
Whether these two labels indeed refer to different underlying topics or to different un-
derlying aspects of the same topic may be the subject of debate. It is likely that this was
attributable not to the NLP analysis but to the nature of the actual papers, which may span
two topics within the DOHaD field. Thus, for these cases we performed two different
analyses: one “stringent,” in which the consensus was evaluated regarding how many
labels were coincident with only the most labelled of the modes (Figure 5A); and a more
“lenient” analysis in which we regarded how many labels pertained to any of the two
modes (Figure 5C). The distribution of topics across consensus measures are shown in
Figure 5B,D.
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Figure 5. Consensus evaluation results comparing the topic labelling results from Model 2 against experts in the DOHaD
field. Analysis of Cohen’s Kappa agreement statistics per topic (A) and by distribution (B) reveal that consensus among
experts was substantial (n = 5), moderate (n = 18), fair (n = 6), and slight (n = 1) for the 30 topics. In eight topics (4, 13, 17, 21,
23, 24, 26 and 27), bimodal labelling was also considered (C), yielding better consensus measures (D).

Table 2. Suggested labels for results for Model 1 of the text-mining model for 30 topics via pyLDAvis.

Topic Number Suggested Label

1 Brain/Neuro Dysfunction
2 Health Research
3 Parent-Child Relationship
4 Global/Rural Socioeconomic Status
5 Auto-Immune Disorders (Allergies, Asthma, Wheeze, Eczema, etc.)
6 Metabolic Programming (Cardiovascular, Hypertension, Programming, etc.)
7 Blood/Hormone Levels (Serum Properties)
8 Infection/Inflammation (Cellular Level)
9 Pathogens

10 Hepatogenic secretions
11 None
12 Respiratory Disorders
13 Fatty Acids/Diet
14 Metabolic/Supplementation
15 Diabetes
16 Hospitalization
17 Development (Mutation, Underdeveloped)
18 Immunology (Infection, etc.)
19 Time Periods (Prenatal, Neonatal, Birth) (Possibly as n Exposure)
20 Steroids



J. Pers. Med. 2021, 11, 1064 10 of 13

Table 2. Cont.

Topic Number Suggested Label

21 Fetal Development
22 Drug/Toxicant Exposure
23 Cardiovascular Dysfunction
24 Stress-Related
25 None
26 Microbiome-related
27 Alcohol
28 Toxicants
29 Environmental
30 Childhood Disorders

4. Discussion

Here, we report on the development of a novel tool that uses text mining, ML, and
NLP procedures to gather papers on topics relevant to a wide variety of DOHaD-related
research articles. This is the first step towards mining data from primary research to aid in
the development of a prediction tool that can identify early life health risk and resiliency
factors. This proof-of-concept approach demonstrated that our trained model can scrape
a large research database (PubMed) for primary human studies related to DOHaD, and
identify and cluster key terms, based on their frequency, from the article titles and abstracts
to create groups of topics.

Our first model (Model 1) was based on text mining only and had several drawbacks.
Among them, studies unrelated to the broad DOHaD topic had to be manually screened out.
Analysis of the clustering of latent topics in PCA space (in the top and bottom right-hand
quadrants of Figure 4A) and the high overlap of topics indicate an uneven distribution of
words across the topics constituting the corpus. This uneven distribution also suggests that
Model 1 captured articles that were not related to DOHaD research, as illustrated by the
small circles arising in the bottom left quadrant in Figure 4A. These circles represent topics
that contain low-frequency words which differ vastly from most of the terms in the rest of
the corpus.

In comparison, the more refined Model 2 narrowed down the scope of the search to
focus on primary articles from human studies related to DOHaD, which were clearly and
distinctly represented. This is rendered in the more evenly distributed circles in PCA space.
Moreover, there was less overlap among the circles, and the circles were fairly centred,
suggesting that terms were grouped into distinguishable topics. Lastly, there was less
distance between circles, especially those at the far ends of the plot, indicating that these
topics were more similar to each other, and the scope of the Model 2 search was narrowed
down to more relevant studies (i.e., primary articles related to DOHaD).

After training the second model to have stricter similarity inclusion parameters,
articles with a high degree of similarity in frequency of words and key terms to the training
corpus could be retrieved. For example, as seen by the closer proximity of the topics,
many of the prominent topics obtained were related to metabolic and physiologic health, a
commonly studied exposure domain [3]. These findings indicate that the developed model
could be tailored to focus on a specific field of research based on the types of articles that
are fed into it, and in turn, extract meaningful data from that field.

Across clinical and academic settings, text mining strategies are emerging as a means
to meet the growing need to remain up to date on the increasingly vast amount of re-
search published across many scientific and clinical fields [17,19]. To date, there has only
been one other study exploring machine learning techniques in the prenatal environmen-
tal exposures context, which mainly explored extracting and grouping studies based on
methodology type [20]. Our study thus contributes another aspect to this field by intro-
ducing a proof-of-concept model for collating and discriminating studies based on specific
topics within the DOHaD landscape. The steps of our proof-of-concept model follow
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a similar process used in studies that have also used LDA analysis and pyLDAvis for
text-mining topic-distribution analysis in various fields [21–24]. Our findings are in line
with the goals of other studies that aim to use LDA and topic-distribution analysis with
different clustering visualisation methods [25–27]. These studies have emphasised the
importance of having data visualisation models that interpret and synthesise extracted data
from research articles for creation of quick-reference tools for clinicians or policy analysts.
From a health policy perspective, developing unbiased and data-driven models for health
prediction and promotion, such as the one we are proposing, can aid in decision-making
processes while being accessible to a wide array of users. These models can consequently,
provide quick synthesis of large datasets, and are cost-efficient [28].

There are important caveats to the application of our model that should be highlighted.
Firstly, our revised model (Model 2) remains preliminary, and serves as a proof-of-concept
that can function as a scraping tool to gather relevant and focused information. As multiple
topics in the revised model were related to specific domains within DOHaD (such as the
metabolic and physiologic health domain), our model requires further refinement of its
parameters to filter and optimise the search strategy to ensure it is capturing a relevant and
balanced representation of articles across all research domains in the field (including the
nutrition, genetics, neurocognitive, and psychological health domains). Secondly, due to
coding limitations, our model was designed to only scrape information from one database
(PubMed) and, thus, applying this model to other databases (including those that have
greater focus on research studies in sociological and psychological fields) is a necessary next
step to ensure retrieval of relevant DOHaD articles across the breadth of health research
fields. Lastly, extending the model to allow full text extraction, beyond the title and abstract
scraping we have performed here, would allow us to more comprehensively capture
methodology, results and statistical data [29], a requirement for identifying important
variables related to health risk/resilience trajectories. It is worth mentioning that our
methodology is fully adaptable to other domains, requiring only to determine an initial
seed corpus (Model 1) and a manual screening out of undesired entries in this corpus, after
which the same Model 2 automated building procedure can be performed.

Whilst our method can also be used to capture model organism literature related to
DOHaD, the purpose of this study was to synthesise the breadth of DOHaD research in
human populations. We envision our approach can facilitate researchers who aim to com-
prehensively capture and better understand the mechanisms underlying developmental
programming, for the development of pre-clinical interventions based on data-driven mod-
els, and to better understand existing pre-clinical interventions aimed to prevent adverse
outcomes or to optimise development and health trajectories. Of course, in doing so, one
must be mindful of the variations in species, strain, study design and reporting, laboratory
techniques, and timing/dosage of exposures and interventions in animal models, as these
will influence the translatability of the findings to human populations [13,14,30]. This is of
particular importance when considering the influence of early environments and exposures
on later health, given the differences in pregnancy and developmental milestones between
species that may determine the resulting phenotype. Although a ML tool like the one we
present here can provide up-to-date topic modelling on both human and animal model
studies, the results are complex and difficult to comprehend. Therefore, our strategy is to
first focus on human studies, thoroughly understand the meaning of the results, and then
in future research, widen the scope of the corpus to be analysed so that it includes animal
models.

Moving forward, using keywords specific to different DOHaD domains and developed
through field-expert consensus, multiple ML models can be developed to specifically target
diverse research areas within DOHaD, building upon the same approach used here. This
would ensure the capture of articles from research domains that are underrepresented
in the DOHaD field, as we have previously identified [3]. It would also facilitate the
construction of a database of primary DOHaD studies and enable easier assessment and
synthesis of important data on risk and resiliency factors in the large body of DOHaD
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literature. The mined data could then be included in a repository for the development
of a prediction tool based on early life environments. Such an approach will help to fill
the unmet need of integrating risk and resiliency factors across social, environmental,
and biomedical perspectives, to better understand early life exposures and subsequent
health-outcome relationships. Further, the creation of a predictive tool will help inform
the development of clinical and public health interventions in early life that can prevent
adverse health outcomes and optimise health trajectories.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11111064/s1, Table S1: Model development and evaluation reporting, Table S2: 200-topic
Model 2 output.
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