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Abstract: Carbon quantum dots (CQDs), with their excellent photoluminescence, tunable
surface chemistry, and low toxicity, have emerged as versatile nanomaterials in sensing
technologies. Meanwhile, metal–organic frameworks (MOFs) possess exceptionally porous
architectures and extensive surface areas, and tunable functionalities ideal for molecular
recognition and analyte enrichment. The synergistic integration of CQDs and MOFs has
significantly expanded the potential of hybrid materials with enhanced selectivity, sensi-
tivity, and multifunctionality. While several reviews have addressed QD/MOF systems
broadly, this review offers a focused and updated perspective on CQDs@MOFs composites
specifically tailored for food safety and environmental sensing applications. This review
provides a comprehensive analysis of recent advances in the design, synthesis, and surface
functionalization of these hybrids, emphasizing the mechanisms of interaction, photophys-
ical behavior, and performance advantages over conventional sensors. Special attention
is given to their use in detecting food contaminants such as heavy metals, pesticides, an-
tibiotics, mycotoxins, pathogens, and aromatic compounds. Key strategies to enhance
stability, selectivity, and detection limits are highlighted, and current challenges and future
directions for practical deployment are critically discussed.

Keywords: CQDs@MOFs; heavy metals; pesticides; antibiotics; mycotoxins; pathogens;
aromatic compounds

1. Introduction
Functionalized carbon quantum dots (CQDs) incorporated into metal–organic frame-

works (MOFs) represent an innovative hybrid material with significant potential in sensing
and food detection applications [1,2]. Carbon quantum dots, known for their remarkable
photoluminescent properties, low toxicity, and biocompatibility, have been increasingly
functionalized to enhance their interaction with target analytes [3]. When integrated with
MOFs (crystalline materials characterized by their high porosity and made up of metal ions
linked to organic ligands), functionalized CQDs enhance the system by providing features
such as increased surface area, adjustable pore dimensions, and precise chemical reactiv-
ity [4]. The integration of CQDs with MOFs creates highly adaptable systems capable of
detecting a wide range of food contaminants, such as heavy metals, pesticides, antibiotics,
mycotoxins, microbial pathogens, and toxic aromatic compounds [5–10]. MOFs offer a
stable support structure that helps preserve the integrity of CQDs while improving their
sensitivity and selectivity by anchoring ligands that are specific to target molecules [11].
The resulting hybrid materials demonstrate enhanced luminescent properties, structural
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stability, and reusability, making them ideal candidates for sustainable, rapid, and non-
destructive food analysis [12–16].

The synthesis methods for functionalized CQDs@MOFs composites can generally be
categorized into in situ and post-synthetic approaches [17]. The in situ methods focus
on simultaneously synthesizing MOFs and incorporating CQDs during the MOF crys-
tallization process, ensuring strong integration [18]. In contrast, post-synthetic methods
involve the modification of pre-synthesized MOFs by embedding functionalized CQDs,
providing better control over the hybrid structure [19]. Recent advances in the field high-
light innovative strategies such as solvothermal synthesis, microwave-assisted processes,
and template-driven assembly, which optimize the integration of CQDs into MOF matri-
ces [20–23]. These approaches improve the functional integration of CQDs with MOFs and
allow for fine-tuning of the composites’ physical and chemical characteristics [24].

The structure and modification of these hybrid materials are crucial factors influenc-
ing their overall performance. Functionalization strategies can optimize the interaction
between CQDs and MOF’s, improve charge transfer dynamics, and introduce specific
binding sites for target molecules [25]. These hybrid systems have demonstrated potential
in diverse sensing modalities, including fluorescence, electrochemical, and optical sensing,
positioning them as strong contenders for swift, highly sensitive, and precise detection
in intricate matrices [26]. These functionalized CQD-based MOFs exhibit enhanced opti-
cal and catalytic capabilities, along with strong adsorption capabilities, rendering them
highly suitable for food safety-related applications [27]. Their function is to target a broad
spectrum of contaminants including heavy metals, pesticides, antibiotics, toxins, microbial
pathogens, and aromatic compounds using mechanisms such as fluorescence quenching,
electrochemical detection, and adsorption-based removal [5,28–32]. Although several re-
cent reviews have explored QD/MOF hybrids in diverse applications including the sensing
of biomarkers, drugs, bioactive compounds, food additives, energy, optoelectronics, and
biomedicine and have summarized their synthesis strategies, characterization methods,
and progress across various fields [4,16,22,26], comprehensive analysis focusing specifi-
cally on functionalized carbon quantum dots (CQDs) being incorporated into MOFs for
food safety and contaminant detection remains scarce. This review aims to fill that gap
by providing a focused perspective on the design, synthesis strategies, functionalization
approaches, and application-specific performance of CQDs@MOFs in food analysis. It
highlights how the functionalization of CQDs enhances their synergistic interaction with
MOFs, thereby improving selectivity, sensitivity, and stability in detecting a wide range of
food-related contaminants.

This review comprehensively examines the preparation, modification, and uses of
CQDs@MOFs composites, highlighting the distinct characteristics that enable them to be
effective in advanced sensing technologies. The discussion will highlight recent progress
in developing these nanocomposites, including key advancements in fabrication tech-
niques and their applications in the swift and precise identification of food contaminants,
safeguarding food safety, and maintaining quality control. Timeline history of summary
(2010–2024): The functionalization of CQDs with MOFs for sensing applications, particu-
larly in food contaminant detection, has evolved significantly from early development to
present-day innovations. With ongoing advancements in materials science and engineering,
research continues to refine these hybrid materials for practical applications in food safety
and quality control, as illustrated in Figure 1.
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Figure 1. Timeline of CQDs@MOFs in sensing and food detection applications.

2. Synthesis Methods and Optimal Conditions for CQD–MOF for Food
Safety Applications

The integration of functionalized CQDs with MOFs has become a key area of in-
terest due to their potential in sensor development and food detection. The commonly
employed methods for synthesizing CQDs@MOFs composites include encapsulation [33],
post-synthetic modification [34], and in situ synthesis [24]. Recent advancements have also
introduced additional synthesis approaches, such as top-down and bottom-up methods, to
create these functional composites.

2.1. Top-Down Methods

Top-down approaches produce carbon quantum dots (CQDs) by breaking down bulk
carbon materials, such as graphite or graphene, using techniques like chemical oxidation or
laser ablation [23,35]. These techniques are cost-effective due to the use of abundant carbon
materials and are scalable for industrial applications. They enable exact tuning of the surface
characteristics of CQDs, which is crucial for integration with MOFs. Functionalization
can occur during or after synthesis, improving CQDs@MOFs compatibility [4,36]. The
resulting CQDs often carry diverse functional groups, enabling strong interactions with
MOF structures. These interactions enhance the hybrid material’s optical, electronic, and
catalytic behaviors [37–39]. Moreover, the top-down synthesis is a practical and effective
strategy for CQDs@MOFs hybrid systems [40]. This approach supports the creation of
advanced hybrid materials for sensing, catalysis, and energy storage. The versatility of
CQDs combined with MOF modularity enables broad functional potential [41,42]. Top-
down methods provide a flexible route to tailor CQDs for specific MOF-based applications.

Electrochemical Synthesis

Electrochemical synthesis is a highly efficient strategy for integrating functionalized
CQDs with MOFs, effectively merging the photoluminescence, conductivity, and biocom-
patibility of CQDs with the modularity and large surface area of MOFs [43,44]. By applying
a potential in a suitable electrolyte, this method facilitates the formation or functional-
ization of CQDs [45]. These CQDs can then be co-synthesized with or embedded into
MOFs, forming composites with enhanced properties. MOFs act as scaffolds to anchor or
encapsulate CQDs, while functional groups like -COOH and -NH2 promote stable bind-
ing. Moreover, electrochemical synthesis allows in situ growth of MOFs on CQDs and
vice versa, ensuring strong adhesion [46]. Also, this method highlights their respective
advantages and limitations in terms of particle size control, composite stability, and ease of
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functionalization for CQDs@MOFs, as illustrated in Table 1. Consequently, this approach
ensures efficient integration and improved interaction, stability, and overall performance
of the resulting materials.

Table 1. A concise comparison of synthesis methods in terms of particle size control, composite
stability, advantages, and limitations, of CQDs@MOFs.

Method Advantages Limitations Particle Size
Control

Composite
Stability

CQD@MOF
Integration

Electrochemical - Fast deposition
- Good for thin films

- Needs conductive
substrate

- Limited MOF options

Moderate
(~50–300 nm)

High
(film-based)

CQDs co-deposited
or anchored on MOF

films

Hydrothermal/
Solvothermal

- Strong interaction
- Uniform embedding
- One-pot synthesis

- Requires precise
control of conditions

- May damage CQDs
at high temp

Moderate
(100–500 nm)

Moderate to
high

CQDs embedded
during MOF crystal

growth

Mechanochemical
- Solvent-free
- Fast
- Green and scalable

- Poor crystallinity
- Irregular

morphology
- Limited size control

Nanocrystals
to ~10 µm

Low (broad,
irregular)

MOF crystals form
around/with

embedded CQDs

Microwave-Assisted
Synthesis

- Rapid and uniform
heating

- Smaller MOF
particles

- Risk of CQD damage
if not optimized

Good (CQDs
<10 nm; MOFs

~100 nm)
High

CQDs embedded or
trapped in MOF

matrix

Ultrasound-Assisted
Synthesis

- Enhanced dispersion
- Smaller particle size
- Effective for hybrids

- CQD damage at high
power

- Scale-up is harder

Good (<100 nm
CQDs; MOF

~100–300 nm)
High

CQDs mixed with
MOF under

cavitation-assisted
nucleation

Layer-by-Layer (LbL)
Assembly

- Precise placement
- Thin film control
- Multilayer structures

- Labor-intensive
- Thin-film only

Excellent
(nm-scale film

thickness)
Very high

Alternating
CQD/MOF layers or

CQDs intercalated

Template-Assisted
Synthesis

- Controlled
morphology

- Pore size tunable

- Template removal
complexity

- Limited CQD
penetration

Variable
(20 nm–µm

range)
High

CQDs confined in
templated cavities or

structures

2.2. Bottom-Up Methods

Bottom-up methods involve assembling smaller building blocks into complex
structures, and are widely applied in nanotechnology, materials science, and self-
assembly [23,47–49]. In the context of functionalized MOFs incorporating CQDs, these
approaches involve carefully assembling organic linkers with metal ions or clusters to
create well-ordered crystalline structures [26,36]. Commonly used techniques include
hydrothermal or solvothermal synthesis, solvent-free approaches, and mechanochemical
methods, as well as microwave- and ultrasound-assisted synthesis [23,26,36,50,51]. These
approaches allow precise control over CQD size, morphology, and surface properties,
enabling effective integration into MOFs for specific functionalities [26,36]. They also
ensure uniform CQD dispersion, essential for use in areas such as sensing, catalysis, and
targeted drug delivery. A key advantage is the ability to introduce functional groups
during synthesis, enhancing interactions between CQDs and MOFs [37]. This results in
improved luminescence, conductivity, and catalytic performance. Additionally, the use of
simple, scalable techniques supports large-scale production [38]. By adjusting precursors,
conditions, and dopants, researchers can fine-tune optical and electronic properties [36–39].
Finally, the cost-effectiveness and compatibility of these methods make them ideal for
developing robust CQD–MOF hybrids.

2.2.1. Hydrothermal/Solvothermal Synthesis

Hydrothermal and solvothermal methods are common for synthesizing nanomaterials
like CQD-integrated MOFs [23,36]. These techniques use water or organic solvents (e.g.,
ethanol or DMF) to dissolve precursors [33,52], enabling reactions in sealed reactors at
100–300 ◦C under pressure. This setup supports uniform crystal growth, high purity,
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and in situ functionalization [53,54]. It also underscores the respective advantages and
limitations of the method in terms of particle size control, composite stability, and ease of
functionalization for CQDs@MOFs, as summarized in Table 1. In CQDs@MOFs synthesis,
CQDs or carbon sources (e.g., glucose and citric acid), metal salts (e.g., Zn2+ and Cu2+),
and organic linkers (e.g., terephthalic acid and imidazole) are mixed in solution, heated to
initiate growth, then filtered, washed, and dried [43,55]. The comprehensive summary of
the reaction conditions, emission range, and size of quantum dots is presented in Table 2.
These approaches ensure uniformity, high purity, and in situ functionalization by dissolving
metal salts, organic linkers, and CQDs precursors in suitable solvents before heating in
sealed reactors.

Table 2. Overview of synthesis methods and conditions for CQDs@MOFs composites.

S. No CQDs@MOFs Synthesis Methods Emission
Range (nm) Size (nm) Reference

1 BNCDs@Tb-MOF Hydrothermal 450, 490 and 544 3 [38]
2 CQDs@ZIF-8 Hydrothermal - - [56]
3 CDs@Eu-MOFs Hydrothermal 365 3 [57]
4 CuO/Cu2O-CdS/HgS Hydrothermal - - [5]
5 MOF/CdTe QDs Hydrothermal 425, 605 - [58]
6 CDs@ZIF-90 Hydrothermal 453 - [59]
7 E-CDs@ZIF-8 Hydrothermal 399 to 405 - [60]
8 PEG-ZnSQD@ZIF-67 Green synthesis 420 - [61]
9 CsPbBr3/HZIF-8 Room temperature 510 25 [62]

10 CDs@ZIF-8@SMIP Hydrothermal 410–600 20 [6]
11 CDs@Cu-MOFs Room temperature 430–600 - [13]
12 CdTe QDs@ZIF-8 Room temperature 524–650 - [63]
13 NH2-MIL-53 & N, P-CDs@MIP Room temperature 360–438 - [64]

14 MB@PApt-SP DNA@AZIS
QDs@Ag-Pt NPs Room temperature - - [65]

15 M-TiO2-CdTe QDs/CdS QDs PEC Room temperature 390 - [66]
16 N-CDs@Eu-MOF@MIP Room temperature 430–616 3 [67]

17 Fe-CDs/MOF-808 and
Fe-CDs@MOF-808 Room temperature ~425 - [11]

18 CD@UIO-66-NH2 Hydrothermal 425 5 [12]
19 N-CQDs@UiO-66-NH2 heated at 90 ◦C for 24 h - - [27]
20 CdS-Sm-BDC-g-C3N4-5 Room temperature - - [28]
21 CDs@Eu/UiO-67b Hydrothermal 442–612 - [20]
22 CdTe QDs@ZIF-8 Room temperature 521–672 - [29]
23 CDs@UiO-66-NH2 Ultrasound 328 - [68]
24 CD@MIP Kettle Reflux 450 5 [69]
25 Ce, N-CDs@ZIF-67@MIP Room temperature 445 - [70]
26 His-GQDs-Ser@MOF Room temperature 460–618 5 [71]
27 g-CDs@UiO-66 Stirred for 12 h at 60 ◦C 446–530 - [72]
28 Co-CD/PMOF Hydrothermal 350–450 - [30]
29 MP QDs@ZIF-8 Room temperature 528 21 [8]

30 Antibody/MoS2/UiO-66-NH2
Microwave-assisted

synthesis - - [21]

31 NU66@QD-ICA Room temperature 400–670 - [73]
32 SQDs@MOF-5-NH2 Solvothermal method 645–755 - [74]
33 N-GQDs/Au@Cu-MOF Hydrothermal - - [75]
34 GQDs/Cu-MOF Ultrasonication - - [76]
35 rGO-MWCNT/CS/CQD Room temperature - - [77]
36 DP-CDs/TiO2 Hydrothermal 520–420 - [78]
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Table 2. Cont.

S. No CQDs@MOFs Synthesis Methods Emission
Range (nm) Size (nm) Reference

37 [Zn(HCOO)3][C2H8N]/PEG and N-
CQDs@[Zn(HCOO)3][C2H8N]/PEG

Hydrothermal and
Room temperature - - [31]

38 CD-Ab-COF Room temperature 365 - [9]

39 CDs@MIL-53(Fe)-NO2
Microwave-assisted

synthesis 453 - [79]

40 CDs-MFMIPs Room temperature 400–600 - [80]
41 CDs@ZIF-7 Room temperature - - [81]
42 CDs@HKUST-1 Hydrothermal - - [82]
43 CDs@MOF-5@Rh-6G Hydrothermal 365, 435–560 - [10]
44 BYCDs@ZIF-8 Room temperature 365, 440–565 - [83]
45 CDs&ZIF-8@MIPs Room temperature - - [84]
46 N-GQDs@IRMOF-1@MIP Room temperature - - [85]
47 AgMOF@N-CD Room temperature - - [86]
48 B-CDs/P-CDs@ZIF-8 Room temperature 440–510 - [87]

Abbreviations: BNCDs—boron and nitrogen carbon dots; Tb—terbium; MOF—metal–organic framework;
PEG—polyethylene glycol; QDs—quantum dots; ZIF—zeolitic imidazolate framework; CDs—carbon
dots; SMIP—surface molecularly imprinted polymer; Ag-Pt NPs—silver–platinum nanoparticles;
PEC—photoelectrochemical; M-TiO2—metal-doped titanium dioxide; BDC—benzene-1,4-dicarboxylate;
Sm—samarium; CD—carbon dot; MIP—molecularly imprinted polymer; Ce, N-CDs—cerium, nitro-
gen co-doped carbon quantum dots; His-GQDs—ser-histidine and serine-functionalized graphene
quantum dots; g-CDs—green carbon dots; Co-CD—cobalt-doped carbon dots; PMOF—peroxidase metal–
organic framework; MP QDs—methylamine perovskite quantum dots; MoS2—molybdenum disulfide;
ICA—immunochromatographic assay; SQDs—sulfur quantum dots; N-GQDs—nitrogen doped graphene
quantum dots; GQDs—graphene quantum dots; MWCNTs—multi-walled carbon nanotubes; rGO—reduced
graphene oxide; CS—chitosan; CQD—carbon quantum dot; DP-CDs—Diplocyclos palmatus leaf extract-derived
green-fluorescence carbon dots; N-CQDs—nitrogen-doped carbon quantum dots; COFs—covalent organic
frameworks; Ab—antibody; MFMIPs—magnetic covalent organic frameworks molecularly imprinted polymers;
Rh-6G—rhodamine 6G; BYCDs—blue and yellow emitting carbon dots; IRMOF-1—zinc metal–organic
framework; AgMOFs—silver metal–organic frameworks; N-CDs—nitrogen-doped carbon quantum dots;
B-CDs—boron-doped carbon dots; and P-CDs—phosphorous-doped green emitting carbon dots.

2.2.2. Mechanochemical Synthesis

Mechanochemical synthesis is an environmentally friendly, solvent-free approach that
relies on mechanical actions such as grinding or milling to initiate and promote chemi-
cal reactions. It is well-suited for producing carbon quantum dot (CQD)/metal–organic
framework (MOF) composites due to its simplicity and ability to create unique materi-
als [34,54,88]. Mechanical energy breaks and reforms chemical bonds without solvents [89],
though small liquid additives (LAG) can enhance reactivity. Unlike traditional methods,
it allows rapid, room-temperature synthesis with lower environmental impact [90–93].
Typically, CQD precursors like citric acid or glucose are combined with metal salts (e.g.,
ZnO or CuO) and organic linkers in a ball mill to form CQDs@MOFs, followed by washing
and drying [94,95]. This technique is simple, energy-efficient, and capable of producing
tailored functionalized materials, making it a promising strategy for advanced material syn-
thesis. It also highlights the respective advantages and limitations in terms of particle size
control, composite stability, and ease of functionalization for CQDs@MOFs, as summarized
in Table 1.

2.2.3. Microwave-Assisted Synthesis

Microwave-assisted synthesis involves the use of microwave radiation to quickly heat
polar and ionic compounds by transforming electromagnetic energy into evenly distributed
thermal energy [26,33,34,36,37]. This accelerates nucleation and growth, making it ideal
for fabricating CQDs@MOFs with high energy efficiency, reduced synthesis time, and
precise control over key parameters [94,95]. To prepare CQDs@MOFs, pre-synthesized
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CQDs and precursors like glucose or citric acid are dissolved in a solvent, followed by
metal salts and organic linkers [33,36,43,96]. A comparative analysis of microwave- and
ultrasound-assisted synthesis methods (Tables 1 and 3) reveals their respective strengths
and limitations in terms of particle size control, composite stability, and ease of functional-
ization. Microwave heating rapidly promotes crystallization and facilitates the uniform
integration of CQDs, as demonstrated by Liu et al. in the formation of MIL-53(Fe)-NO2

using citric acid and ethylenediamine. Once the process is complete, the mixture is cooled,
and the product is isolated via filtration and centrifugation, followed by washing and
drying to yield a pure CQDs@MIL-53(Fe)-NO2 composite [79]. As summarized in Table 2,
this microwave-assisted method offers a fast, energy-efficient route with fine control over
material properties and crystallinity.

Table 3. Comparison of Microwave-Assisted vs. Ultrasound-Assisted Synthesis Methods.

Feature Microwave-Assisted Synthesis Ultrasound-Assisted Synthesis

Mechanism Dielectric heating → rapid and
uniform heating of reaction mixture

Acoustic cavitation → formation,
growth, and implosion of bubbles that

generate local hotspots
Reaction Time Very short (minutes) Short to moderate
Energy Input Volumetric and uniform Localized (at cavitation sites)

MOF Crystal Size Control Good; can tune size by adjusting
power/time

Moderate; harder to control due to
stochastic cavitation

Quantum Dot (QD) Size Range ~2–10 nm (depending on precursor
and time)

~3–15 nm, wider size distribution
often observed

Product Homogeneity Typically, high Often lower (depends on sonication
uniformity)

MOF Distribution on Substrate More uniform coating possible Can cause partial aggregation or
uneven loading

Scalability Moderate scalability (needs special
equipment for large scale)

Easier to scale but uniformity
issues persist

Advantages

- Rapid synthesis
- High crystallinity
- Narrow QD size distribution
- Better control of morphology

- Simple setup
- Can enhance porosity
- Facilitates in situ functionalization
- Green solvent-friendly

Limitations
- Expensive equipment
- Risk of hot spots if not controlled
- Limited to polar solvents

- Broader size distribution
- Possible structural damage
- Less efficient for crystalline MOFs

2.2.4. Ultrasound Synthesis

Ultrasound-assisted synthesis uses high-frequency sound waves to trigger chemical
reactions, offering rapid processing, low energy use, and the nanoscale precision ideal for
integrating CQDs into MOFs [26,33]. Cavitation, caused by collapsing bubbles, generates
extreme conditions (~5000 K, ~1000 atm) [34,97], enhancing molecular interactions and
accelerating reaction rates, typically under ambient temperature and pressure conditions.
Microwave- and ultrasound-assisted synthesis methods each offer distinct advantages and
limitations [36]. A comparative analysis of these approaches, summarized in Tables 1 and 3,
highlights differences in particle size control, composite stability, and ease of functional-
ization for CQDs@MOFs. For instance, Lin et al. used ultrasonication to embed GQDs
into Cu-MOFs by sonicating graphene oxide mixtures and combining the GQDs with Cu
precursors [76]. Similarly, Liu et al. synthesized CDs@UiO-66-NH2 by ultrasonically mixing
carbon dots with MOFs [68], as summarized in Table 2. These methods enable efficient
CQDs@MOFs integration with precise control and reduced energy demand.
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2.2.5. Layer-by-Layer (LbL) Assembly

Layer-by-layer (LbL) assembly is a bottom-up technique for creating multifunctional
composite materials by layering materials with opposite charges and complementary
properties. This method allows precise control over thickness, composition, and functional-
ity [98–100], particularly when integrating CQDs and MOFs [33]. CQDs are synthesized
through processes like hydrothermal or electrochemical methods and functionalized to fa-
cilitate interaction. MOFs, selected based on application, serve as complementary building
blocks [34,54,68,76,79]. The LbL process involves immersing a substrate in a CQD solution,
followed by a MOF precursor solution to promote MOF growth. Crosslinking agents can
enhance stability and interactions, resulting in robust hybrid materials for sensing, catalysis,
and environmental remediation [100–102]. This technique paves the way for the develop-
ment of advanced materials for a wide range of applications, including sensing, catalysis,
and environmental remediation. As summarized in Table 1, this method also highlights the
respective advantages and limitations of CQDs@MOFs, particularly regarding particle size
control, composite stability, and ease of functionalization.

2.2.6. Template-Assisted Synthesis

Template-assisted synthesis is a controlled fabrication method that uses a pre-defined
template to direct material growth and morphology, making it ideal for synthesizing
CQDs@MOFs. This approach allows precise control over the size, shape, and distribution
of CQDs within the MOF matrix [103,104]. It also underscores the respective advantages
and limitations of various synthesis strategies in terms of particle size regulation, composite
stability, and ease of functionalization for CQDs@MOFs, as summarized in Table 1. Tem-
plates made from solid materials like silica and polymers are later removed, creating pores
and specific morphologies, while surfactants, micelles, and polymers guide the assembly
and decompose post-synthesis [19,105–107]. Typically, nanoparticles, nanofibers, or hollow
spheres are used as templates, and CQDs are deposited onto or within them via physical
adsorption, chemical bonding, or in situ growth [108–111]. Functionalized CQDs with
MOF precursors, such as metal salts and organic linkers, are introduced to allow the MOF
to crystallize around or within the CQD-template complex. Afterward, the template is
removed, resulting in a well-defined CQDs@MOFs composite [112,113]. All the synthesis
methods for various CQDs@MOFs under different techniques and conditions are summa-
rized in Table 2. This approach enables accurate manipulation of both morphology and
structure, facilitating the creation of high-performance materials with tailored properties
and clearly defined architectures.

3. The Use and Properties of CQDs@MOFs
Carbon quantum dots (CQDs) are extensively studied in research owing to their

remarkable photoluminescent characteristics, inherent biocompatibility, and adaptable
surface functionalization potential. Their strong fluorescence, high quantum yields, and
excellent photostability make them especially suitable for use in optical sensing appli-
cations [23,114–117]. Additionally, their non-toxic and environmentally friendly nature
aligns with food safety requirements. By modifying functional groups, CQDs can achieve
enhanced selectivity and stronger interactions with target molecules [35,118–121]. Similarly,
MOFs offer high porosity, large surface areas, and tunable structures, enabling efficient
and selective analyte capture [103,122]. Furthermore, the structures and properties of
MOFs can be customized by modifying their metal nodes and organic linkers, allowing
for precise tailoring to specific applications [104,112,123–128]. The integration of CQDs
with MOFs has attracted growing interest for sensing and food detection, leveraging the
complementary strengths of both materials [79]. This synergy results in composites with
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improved sensitivity and performance across diverse analytical applications [96]. The
resulting CQDs@MOFs composites exhibit synergistic properties, further enhancing their
effectiveness in sensing and food detection.

3.1. Enhanced Sensitivity and Selectivity

The integration results in enhanced sensing capabilities, attributed to the combined
fluorescence of CQDs and the adsorption properties of MOFs. For instance, Jain et al.
demonstrated the application of BNCDs@Tb-MOF as a fluorescent sensor for the highly
sensitive and selective detection of Pd2+, utilizing a DNAzyme-based system [38]. Sim-
ilarly, the use of an electrochemical sensor incorporating CQDs@ZIF-8 was reported for
the detection of Cd2+, Cu2+, and Pb2+ ions, demonstrating excellent sensitivity and selec-
tivity [56]. In addition, Guo et al. established a multifunctional fluorescent sensor using
CDs@Eu-MOFs for the selective and sensitive detection of Hg2+ in water samples [57].
Furthermore, a MOF/CdTeQDs fluorescent sensor was designed for detecting Hg2+ and
Cu2+, and showed excellent sensitivity and specificity toward different metal ions in actual
sample analyses [58]. Moreover, Peng et al. reported a dual-functional fluorescent probe,
CDs@ZIF-90, which exhibited highly sensitive and selective detection of Hg2+ and Al3+ [59].

As another example, Zhang et al. described that the composite carbon fiber membrane,
NFE-CDs, exhibited strong blue fluorescence, contributing to its high sensitivity and
selectivity. As a result, NFE-CDs were utilized as a fluorescent sensing platform for the
detection of Cu2+ [60]. Similarly, Asadi et al. developed a PEG-ZnS QD@ZIF-67 composite
that functions as a fluorescent sensor, allowing for the highly sensitive and selective
detection of Cu2+ ions in aqueous samples [61]. Additionally, Ahmed et al. designed
a CsPbBr3/HZIF-8 on–off–on fluorescence assay for the highly sensitive and selective
detection of Cu2+ in melamine food samples [62]. Integrating CQDs with MOFs enhances
metal ion sensing through improved fluorescence and detection, offering high selectivity
and sensitivity for food safety applications.

3.2. Stability

MOFs provide a stable host for CQDs, enhancing composite robustness. For example,
Liu et al. reported minimal signal fluctuation with a low RSD of 7.79%, confirming the
CQDs@ZIF-8-modified electrode’s reliable performance in heavy metal detection [56].
Similarly, Zhang et al.’s investigation demonstrated high stability in zebrafish embryos
over 0–5 h when detecting Cu2+ ions [60]. Furthermore, Asadi et al. developed a PEG-ZnS
QD@ZIF-67 composite, which demonstrated long-term fluorescence stability for nearly
30 days while maintaining reliable detection of Cu2+ ions in water samples [61]. The
fluorescent nanosensor showed good reproducibility, with intra- and inter-assay RSDs
of 2.4% and 4.6% for detecting 420 nM Cu2+. In addition, Ahmed et al. developed a
CsPbBr3/HZIF-8 composite stable under long-term open-air storage (~70% humidity).
Ensuring long-term stability of CQDs and MOFs requires optimizing their composition,
structure, and synthesis. Such optimization enhances reliable performance over time and
under varying conditions [62]. These findings emphasize the role of composition, structure,
and synthesis optimization in enhancing CQDs@MOFs stability, ensuring their long-term
reliability for food safety monitoring.

3.3. Signal Amplification

The ability of MOFs to selectively accumulate target molecules significantly improves
the sensitivity and specificity of nanoscale fluorescent sensors. For instance, Guo et al.
developed a multifunctional fluorescent sensor, CDs@Eu-MOFs, which showed a fluores-
cence intensity shift from 430 nm to 614 nm when exposed to different concentrations of
Hg2+ [57]. Similarly, the MOF/CdTeQDs sensor exhibited a color change at 605 nm under
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a 365 nm signal in response to varying concentrations of Hg2+ and Cu2+ [58]. Furthermore,
Peng et al. reported a dual-mode signal using the CDs@ZIF-90 probe, with fluorescence
intensity at 450 nm [59]. For example, Zhang et al. reported that the fluorescence intensity
of NFE-CDs shifted from 390 nm to 405 nm in zebrafish embryos, and the fluorescence
signal increased significantly upon the addition of Cu2+ ions [60]. Additionally, Asadi
et al. demonstrated that the PEG-ZnS QD@ZIF-67 fluorescence probe had high adsorp-
tion capability, with its fluorescence at 420 nm being strongly quenched when Cu2+ ions
were introduced, though the emission wavelength remained the same [61]. CQDs@MOFs
composites offer a sensitive and selective platform for detecting food contaminants by
combining CQD signal amplification with the MOFs tunable porosity. By integrating CQDs
with MOFs, this platform leverages fluorescence, electrochemical, and colorimetric signals
to enable rapid and sensitive detection of food hazards including heavy metals, pesticides,
antibiotics, mycotoxins, pathogens, and aromatic organic compounds, thereby enhancing
food safety monitoring.

4. Recent Progress in CQDs@MOFs-Based Sensing Applications
CQDs@MOFs composites have become innovative materials applied in sensor systems

due to their synergistic properties, combining the optical advantages of CQDs and the
structural versatility of MOFs. These composites enable highly sensitive, selective, and
versatile sensing platforms suitable for food safety applications [6,13,129–136]. This review
explores the development of CQDs@MOFs as advanced fluorescent probes for detecting
food contaminants. By leveraging dual-mode sensing, these hybrid materials enhance
detection sensitivity and selectivity through complementary fluorescence and colorimetric
responses. Additionally, the enzyme-mimicking activity of CQDs@MOFs further improves
detection capabilities by catalyzing reactions that amplify signal outputs. This multifunc-
tional approach provides a rapid, reliable, and highly efficient method for identifying
foodborne pollutants, ensuring improved food safety and quality control.

4.1. Enhanced Fluorescent Probes

Advances in CQDs@MOFs composites have significantly enhanced the performance of
fluorescent probes in food detection applications. These composite materials integrate the
strong photoluminescent properties and customizable nature of CQDs with the structural
and functional advantages of MOFs, resulting in highly sensitive and selective sensing
platforms [33,38,43,54]. For example, Pan and colleagues introduced a straightforward ap-
proach to fabricate a fluorescent probe, CDs@MOF@SMIP, for identifying chloramphenicol
(CAP) in food samples. The probe demonstrated excellent sensitivity, achieving a low limit
of detection (LOD) 0.0022 nM, and a linear fluorescence quenching response across CAP
concentrations ranging from 0.323 µg L−1 to 8075.0 µg L−1. It showed excellent selectivity,
sensitivity, and recovery rates (95.5–101.0%) in spiked food samples, with an RSD under
4.4%. This approach successfully detected trace amounts of CAP in food samples like milk,
honey, and pork, demonstrating its strong potential for widespread use in food safety mon-
itoring [6], as summarized in Table 4. In a similar vein, Yu et al. developed dual-emission
fluorescent CDs@Cu-MOFs for detecting the pesticide thiophanate-methyl (TM) in food.
The fluorescence intensity ratio (430 to 600 nm) showed a strong linear correlation with
TM concentrations ranging from 0.0307 to 0.769 µmol L−1, with a low LOD of ~3.67 nM.
The sensor effectively identified TM in fortified food samples recovery (93.1–113%) and
real samples like apples, pears, and tomatoes, as summarized in Table 4 [13]. It allowed for
visual detection by exhibiting a fluorescence color shift from blue to carmine, showcasing
excellent sensitivity, selectivity, and suitability for practical food safety monitoring.
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Table 4. Summary of CQDs@MOFs for detection of food contaminants including metal ions, pesticides, and antibiotics.

Contaminates Food Samples CQDs@MOFs Sensors Liner Range LOD Reference

Heavy Metals/ions

Pb2+

Handpump water,
Blue bird lake,

Tap water,
Chandigarh,

NABI (Mohali),
Manoli village water.

BNCDs@Tb-MOF Fluorescent 0–1000 nM 5.97 nM [38]

Pb2+, Cd2+ and Cu2+,
Tap water

River water CQDs@ZIF-8 Electrochemical 50 nM−1 µM 0.04 nM [56]

Hg2+ Water CDs@Eu-MOFs Fluorescent 0–300 µM 0.12 nM [57]

Hg2+ Rice, Peanuts and
Water CuO/Cu2O-CdS/HgS Photoelectrochemical 0.5 pM to 2 µM 0.00011 nM [5]

Hg2+ and cu2+ Lake water, Fruit juice and
red wine MOF/CdTe QDs Fluorescence - 0.6996 nM and

0.8268 nM [58]

Al3+ and Hg2+ Yellow river water CDs@ZIF-90 Fluorescent 1–200 µM for Al3+ and
0.05–240 µM for Hg2+ 810 nM and 19.6 nM [59]

Cu2+
School lake,

Xuanwu lake, and Yangtze
River waters

E-CDs@ZIF-8 Fluorescent 3.48 nM [60]

Cu2+ Tap water PEG-ZnSQDs@ZIF-67 Fluorescent 3 to 500 nM 0.96 nM [61]

Cu2+ Tap water CsPbBr3/HZIF-8 Fluorescent 3–500 nM for Cu2+ and
30–1500 nM for melamine

4.66 nM and 2.64 nM [62]

Pesticides

Chloramphenicol Milk, Honey, and Pork CDs@ZIF-8@SMIP Fluorescent 0.323 µg L−1 (0.001 µM) to
8075.0 µg L−1 (25.0 µM),

0.0022 nM [6]

Pesticide thiophanate-methyl Apple, Pear, and Tomato CDs@Cu-MOFs Fluorescence 0.0307 to 0.769 µmol L−1 ~ 3.67 nM [13]
Chloramphenicol Milk samples M-TiO2-CdTe QDs/CdS QDs Photoelectrochemical 1 to 140 nmol L−1 0.14 nM [66]

Malathion Tap water, and Soil samples N-CDs@Eu-MOF@MIP Fluorescent 1–10 µM 50 nM [67]

Organophosphorus pesticides Pakchoi and Water sample Fe-CDs/MOF-808 and
Fe-CDs@MOF-808 Fluorescent 0.001–360 µM and 0.01–100 µM 3.3 nM [11]

Organophosphorus pesticide
quinalphos Tomato juice and Rice OPCD@UiO-66-NH2 Fluorescent 0–16 µM 0.3 nM [12]

carbendazim Vegetables and
Environmental samples N-CQDs@UiO-66-NH2 Electrochemical 0.02–126 µM 20–126,000 nM and

5.8 nM [27]

Malathion Cabbage CdS/g-C3N4/Sm-BDC MOF Electrochemical
(DPV) 3.0 × 10−8 to 15.0 × 10−8 M 7.4 nM [28]

Antibiotics

Tetracycline Animal feeds CdTe QDs@ZIF-8 Fluorescent/Colorimetry 0–70 µM and 0–1000 µM 15.5 nM
24.9 nM [63]
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Table 4. Cont.

Contaminates Food Samples CQDs@MOFs Sensors Liner Range LOD Reference

Chlortetracycline Milk NH2-MIL-53 & N, P-CDs@MIP Fluorescent and
smartphone-integrated 0.06–30 µg·mL−1 28,787.88 nM

50,000.00 nM [64]

Penicillin Milk samples MB@PApt-SP DNA@AZIS
QDs@Ag-Pt NPs

Photoelectrochemistry,
Electrochemiluminescence,
and Fluorescence signals.

0.01 pg/mL−1 µg/mL (PEC),
1 pg/mL−1 µg/mL (ECL), and

1 pg/mL−1 µg/mL (FL),

0.0000034 nM,
0.00029 nM and

0.00047 nM
[65]

Ofloxacin and Tetracycline Tap water and Chicken Eu3+/CDs-modified UiO-67b Fluorescent 0–60 µM and 0–10 µM 22/27 nM [20]
Chlortetracycline Basa fish and Pure milk CdTe QDs@ZIF-8 Fluorescent - 37 nM [29]

Tetracycline and norfloxacin Water, Milk and Soil samples CDs@UiO-66-NH2 Fluorescent - 150 nM and 870 nM, [68]

Tetracycline Milk samples CD@MIP Fluorescence 0–400 µmol L−1 590 nM [69]
oxytetracycline Milk Ce, N-CDs@ZIF-67@MIP Fluorescent 0.05–20 µg mL−1 15.13 nM [70]

doxycycline Milk His-GQDs-Ser@MOF Fluorescent 0.003–6.25 µM and 6.25–25 µM 1.8 nM [71]
norfloxacin Milk and Pork g-CDs@UiO-66 fluorescent 1–8 µM 82 nM [72]

Abbreviations: BNCDs—boron and nitrogen carbon dots; Tb—terbium; MOF—metal–organic framework; PEG—polyethylene glycol; QDs—quantum dots; ZIF—zeolitic imidazolate
framework; CDs—carbon dots; SMIP-surface molecularly imprinted polymer; Ag-Pt NPs—silver–platinum nanoparticles; PEC—photoelectrochemical; M-TiO2—metal-doped titanium
dioxide; BDC—benzene-1,4-dicarboxylate; Sm—samarium; CD—carbon dot; MIP-molecularly imprinted polymer; Ce, N-CDs—cerium, nitrogen co-doped carbon quantum dots;
His-GQDs-ser-histidine and serine-functionalized graphene quantum dots; g-CDs—green carbon dots; nM—nanomole; ng/mL—nanogram/milliliter; LOD—limit of detection; and
µM—micromolar.
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4.2. Dual-Mode Sensing

CQDs@MOFs composites have emerged as promising materials for dual-mode sens-
ing, combining fluorescence, electrochemical, and colorimetric techniques for more robust
and reliable food safety monitoring [137–139]. These materials utilize the combined advan-
tages of CQDs and MOFs, allowing for highly sensitive, selective, and versatile detection
techniques capable of handling the intricate nature of food matrices [63–65]. For instance,
Hui et.al. established a dual-mode sensing strategy using CdTe QDs@ZIF-8 for tetracycline
detection, combining fluorescent and smartphone-based colorimetric sensors. The ZIF-8
framework inhibits the aggregation of quantum dots and produces a distinct green fluo-
rescence at 524 nm; however, the presence of tetracycline suppresses the red fluorescence
observed at 650 nm. This results in a distinctive butterfly-shaped spectrum, enabling ratio-
metric fluorescence detection with a linear range of 0–70 µM and an LOD of 15.5 nM. In
addition, the smartphone-based colorimetric sensor leverages a red-to-green color change
under UV light, achieving real-time detection over a broader range of 0–1000 µM with an
LOD of 24.9 nM [63]. As a result, the constructed sensor demonstrated excellent practicality
and significant potential for food safety applications, as summarized in Table 4.

Similarly, Zhang et al. established a dual-mode sensor, NH2-MIL-53 & N and P-
CDs@MIP, for detecting chlortetracycline (CTC) in milk. The fluorescence-based sensor
displayed a linear response to CTC ranging from 0.06 to 30 µg·mL−1, with an LOD of
28,787.88 nM. Applied to milk, it achieved a recovery rate of 88.73–96.28%. A smartphone-
compatible device developed for sensing offered a cost-effective alternative to traditional
spectrophotometers, with an LOD of 50,000.00 nM. The sensor demonstrated high selectiv-
ity, stability, and rapid detection, making it ideal for trace CTC detection in real samples, as
summarized in Table 4 [64].

Furthermore, Li et al. induced a flexible multi-modal biosensor using a unique Ag-
ZnIn2S4@Ag-Pt probe combined with a UiO-66 MOF for ultrasensitive penicillin detec-
tion. The probe, AZIS QDs@Ag-Pt NPs, exhibited excellent photoelectrochemical (PEC),
electrochemiluminescence (ECL), and fluorescence (FL) properties. Upon binding to
penicillin, the system generated strong multi-signal outputs. The detection platform
showed wide linear ranges of 0.01 pg/mL−1 µg/mL (PEC), 1 pg/mL−1 µg/mL (ECL), and
1 pg/mL−1 µg/mL (FL), and LOD values of 0.0000034 nM, 0.00029 nM, and 0.00047 nM,
respectively. It successfully detected penicillin in milk samples, highlighting its practical
use, as summarized in Table 4. This innovative approach improves accuracy in food safety
testing and health monitoring. Despite some fabrication challenges, such biosensors show
great promise for real-time, sensitive contamination detection [65].

4.3. Enzyme Mimicry

The integration of CQDs with MOFs has paved the way for developing robust enzyme-
mimicking systems (nanozymes) [140]. These composites replicate the catalytic activity
of natural enzymes while offering superior stability, cost-effectiveness, and adaptability.
CQDs@MOFs-based enzyme mimics are revolutionizing food detection applications by
enabling precise, efficient, and sensitive analyses of contaminants and other food-related
targets [30,79]. For instance, Yi et al. developed a dual-mode sensing strategy combin-
ing chemiluminescence and fluorescence using a Co-CD/PMOF nanozyme with strong
peroxidase-like activity for detecting AFB1. This system demonstrated high sensitivity and
was effective in real samples like canal water and milk. In the chemiluminescence mode,
it achieved a detection range of 0.63–69.36 ng/mL and an LOD value of 0.217 ng/mL. In
the fluorescence mode, with antibody-functionalized Co-CD/PMOF, it achieved a range of
0.54–51.91 ng/mL and an LOD value of 0.027 ng/mL. The study presents a rapid, sensitive,
and reliable approach for environmental and food safety monitoring, as summarized in
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Table 5 [30]. Similarly, Liu et al. designed a dual-mode biosensor using CDs@MIL-53(Fe)-
NO2, synthesized via a rapid microwave method. The carbon dots enhanced fluorescence
and provided oxidase-like activity, enabling TMB oxidation without H2O2 and subsequent
fluorescence quenching. This bifunctional nanozyme enabled sensitive detection of gallic
acid, l-cysteine, and homocysteine, with LOD values of 17, 16, and 27 nM (fluorescence) and
62, 65, and 124 nM (colorimetric). The system was validated with green tea samples using
a smartphone-based platform. Unlike typical CQDs@MOFs, it works without external
stimuli [79]. This study highlights a new direction for efficient, dual-mode food safety
biosensors, as summarized in Table 5.



Foods 2025, 14, 2060 15 of 39

Table 5. Summary of CQDs@MOFs for the detection of food contaminants, including mycotoxins, bacteria, and aromatic compounds.

Contaminates Food Samples CQDs@MOFs Sensors Liner Range LOD Reference

Mycotoxins

Aflatoxin B1 (AFB1) Canal water and liquid milk
samples Co-CD/PMOF Chemiluminescence/

Fluorescence 0.63–69.36 ng/mL 0.217 ng/mL and
0.027 ng/mL [30]

Aflatoxin B1 Corn MP QDs@ZIF-8 Electrochemiluminescence 11.55 fg/mL to
20 ng/mL 0.0000035 nM [8]

Aflatoxin M1 Milk samples Antibody/MoS2/
UiO-66-NH2

Electrochemical 0.2–10 ng/mL 0.06 ng/mL [21]

Aflatoxin B1, Fumonisin
B1, Deoxynivalenol, T-2
toxins, and Zearalenone

Cereals and Feed NU66@QD-ICA Fluorescent - 0.04, 0.28, 0.25, 0.09,
and 0.08 µg/kg. [73]

Patulin (PAT) Apple juice samples SQDs@MOF-5-NH2 Fluorescent - 0.000753 ng/mL [74]
Patulin (PAT) Apple juices N-GQDs/Au@Cu-MOF Electrochemical 0.001 to 70.0 ng/mL 0.0007 ng/mL [75]

Bacteria

Staphylococcus aureus
Tap water, Milk, Lonicera

japonica, Urine, and
Zhangjiang River.

GQDs/Cu-MOF Electrochemical
aptasensor

5.0 × 100 to
5.0 × 108 CFU·mL−1 0.97 CFU/mL [76]

Acinetobacter baumannii Skim milk powder rGO-MWCNT/CS/CQD Electrochemical aptasensor 10 to
1 × 107 CFU/mL 1 CFU/mL [77]

Vibrio harveyi Shrimps DP-CDs/TiO2 Fluorescent - - [78]

Escherichia coli -
[Zn(HCOO)3][C2H8N]/PEG
and N-CQDs@[Zn(HCOO)3]

[C2H8N]/PEG
Fluorescent - - [31]

E. coli O157:H7 Milk CD-Ab-COF Fluorescent 0 to 106 CFU/mL 7 CFU/mL [9]
Aromatic compounds

Gallic acid (GA) Green tea drink samples CDs@MIL-53(Fe)-NO2 Colorimetric/Fluorescent 17, 16 and 27 nM [79]

4-nitrophenol Tap water, Fish and Shrimp
meat CDs-MFMIPs Fluorescent 0.05–50 µM 17.44 nM. [80]

Allura Red AC (AR)

Candy, Jelly, Strawberry
flavored syrup, Pomegranate
flavored drink, Energy drinks,
Drink water, Commercial food

colorant solution, and
Carbonated beverages

were determined.

CDs@ZIF-7 Fluorescent 0.30–7.00 nM 0.60 nM [81]
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Table 5. Cont.

Contaminates Food Samples CQDs@MOFs Sensors Liner Range LOD Reference

Catechol Tea samples CDs@HKUST-1 Electrochemiluminescence 5.0 × 10−9 to
2.5 × 10−5 mol/L

3.8 nM [82]

Curcumin Cur in mustard, Curry, and red
pepper powders. CDs@MOF-5@Rh-6G Fluorescent 0.1–5 µmol/L 15 nM [10]

Glutathione Grape and Cucumber BYCDs@ZIF-8 Fluorescent 3–25 nM 0.90 nM [83]

Malachite green (MG)
River water, Tap water,
Deionized water and
Aquaculture water

CDs&ZIF-8@MIPs Fluorescent 20–180 nM 2.93 nM [84]

Phenylureas Tomato, Cucumber, Radish and
Soybean milk N-GQDs@IRMOF-1@MIP Adsorbent 1.0–150 µg L−1 1.0 µg L−1 [85]

Trilobatin Lithocarpus polystachyus
Rehd AgMOF@N-CD Electrochemiluminescence 1.0 × 10−7 M to

1.0 × 10−3 M
5.99 nM [86]

Triticonazole Water and fruit juice samples B-CDs/P-CDs@ZIF-8 Fluorescence 10–400 nM 4.0 nM [87]

Abbreviations: Co-CD—cobalt-doped carbon dots; PMOF—peroxidase metal–organic framework; MP QDs—methylamine perovskite quantum dots; MoS2—molybdenum disulfide;
ICA—immunochromatographic assay; SQDs—sulfur quantum dots; N-GQDs—nitrogen doped graphene quantum dots; GQDs—graphene quantum dots; MWCNTs—multi-walled
carbon nanotubes; rGO—reduced graphene oxide; CS—chitosan; CQD—carbon quantum dot; DP-CDs—Diplocyclos palmatus leaf extract-derived green-fluorescence carbon dots; N-
CQDs—nitrogen-doped carbon quantum dots; COFs—covalent organic frameworks; Ab—antibody; MFMIPs—magnetic covalent organic frameworks molecularly imprinted polymers;
Rh-6G—rhodamine 6G; BYCDs—blue and yellow emitting carbon dots; IRMOF-1—zinc metal–organic framework; AgMOFs—silver metal–organic frameworks; N-CDs—nitrogen-
doped carbon quantum dots; B-CDs—boron-doped carbon dots; P-CDs—phosphorous-doped green emitting carbon dots; nM—nanomole; ng/mL—nanogram/milliliter; LOD—limit of
detection; and CFU/mL—colony-forming units per milliliter.
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5. Recent Advances in CQDs@MOFs for Detection Applications of
Food Contaminates

Advances in food detection applications have been fueled by innovations in chem-
istry, materials science, and technology, focusing on improving food safety, quality, and
authenticity. Techniques including fluorescent, electrochemical, and optical sensors are
increasingly utilized to detect contaminants, including heavy metals, pesticides, antibiotics,
toxins, pathogens, and aromatic compounds, all of which are harmful substances in food
samples, allowing for increased sensitivity and the detection of trace analyte concentrations.
This review focuses on CQDs@MOFs composites for food detection applications concerning
food safety.

5.1. Metal Ions

Metal ions play a vital role in food detection by serving as key components in sensing
systems to identify contaminants, nutrients, and other quality indicators [141–145]. Their
interactions with food analytes can result in visible color changes, influence fluorescence
properties, and act as catalysts in electrodes. These properties are harnessed to detect
harmful substances and nutrients in food [146–155]. For instance, Jain and colleagues
created a fluorescent nano-biosensor composite named BNCD/TbMOF@GR5 DNAzyme,
which exhibited dual blue–green emissions at 450, 490, and 544 nm, with a sharp peak
width of just 3 nm. The material was produced by incorporating water-soluble BNCDs
into a luminescent terbium-based metal–organic framework (Tb-MOF) using an in situ
hydrothermal synthesis approach. This composite showed excellent fluorescence for de-
tecting lead in water, with a linear range of 0–1000 nM and and LOD value of 5.97 nM [38].
Similarly, the hydrothermal method was used to synthesize and characterize CQDs@ZIF-
8 for use in an electrochemical sensor designed to detect multiple metal ions, such as
Pb2+, Cd2+, and Cu2+, in tap and river water. The linear detection range was 50 nM−1

µM, and the LOD value was 0.04 nM [56]. Additionally, a dual-emission fluorescent sen-
sor, referred to as CDs@Eu-MOFs, was prepared via a hydrothermal synthesis approach.
This sensor displayed a sharp emission peak centered at 365 nm with a bandwidth of
approximately 3 nm. It was utilized for detecting mercury ions (Hg2+) in aqueous samples,
demonstrated with a range of 0 to 300 µM and an LOD value of 0.12 nM [57]. Similarly,
CuO/Cu2O-CdS/HgS photoelectrochemical sensors were fabricated via hydrothermal
methods for mercury (Hg2+) ion detection in rice, peanuts, and water samples, as illus-
trated in Figure 2I,III. The structure and morphology of the material were examined using
a range of spectroscopic methods, including SEM images (A–B), a histogram depicting
statistical size distribution (C), a TEM image (D), an HRTEM image (E), lattice spacing
images (F), and corresponding elemental mapping images of CuO/Cu2O-CdS QDs (G),
as presented in Figure 2II. The charge transfer mechanisms at the ITO/CuO/Cu2O-CdS
and ITO/CuO/Cu2O-CdS/HgS electrodes were proposed for real sample detection, as
depicted in Figure 2IV. These sensors exhibited a linear detection range of 0.5 pM to 2 µM
with an LOD of 0.00011 nM [5]. In another study, a hydrothermal synthesis approach was
employed to create a MOF/CdTe quantum dot composite designed for the fluorescent
detection of Hg2+ and Cu2+ ions. The material exhibited a fluorescence emission shift
from the orange–red to the blue region, covering a range of 425 to 605 nm. This composite
effectively combines the tunable photoluminescence and adaptable characteristics of CdTe
QDs with the structural and functional benefits offered by the MOF framework. The sensor
achieved LOD values of 0.6996 nM for Hg2+ and 0.8268 nM for Cu2+ in real samples like
lake water, fruit juice, and red wine. Notably, the red wine detection showed promising
results [58].
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Figure 2. (I) Synthesis of CuO/Cu2O-CdS/HgS and PEC sensor for Hg2+ detection. (II) SEM images
(A,B), histogram showing the statistical size distribution (C), TEM image (D), HRTEM image (E),
lattice spacing images (F), and corresponding elemental mapping images of CuO/Cu2O-CdS QDs (G).
(III) Real sample analysis using the PEC sensor for Hg2+ detection. (IV) Proposed charge transfer
mechanisms at ITO/CuO/Cu2O-CdS and ITO/CuO/Cu2O-CdS/HgS electrodes. Reprinted with
permission from [5]. Copyright @2024 Elsevier Ltd.

Furthermore, a dual-mode “turn-on/off” fluorescent sensor, CDs@ZIF-90, was de-
veloped, showing enhanced emission at 453 nm with Al3+ and quenching with Hg2+. It
enabled sensitive detection of both ions in Yellow River water, with wide linear ranges
(1–200 µM for Al3+ and 0.05–240 µM for Hg2+) and LOD values of (810 nM for Al3+ and
19.6 nM for Hg2+) [59]. For example, E-CDs@ZIF-8, synthesized hydrothermally, enables
rapid (>1s) “turn-on” fluorescence detection of Cu2+ (399–405 nm) with a 3.48 nM LOD
well below U.S. EPA limits. The method was validated in zebrafish and water samples,
showing 97–112% recovery [60]. Asadi et al. also introduced an environmentally friendly
synthesis approach for PEG-ZnS QDs@ZIF-67, which was later utilized as a fluorescent
sensor to detect Cu2+ ions in aqueous samples. The sensor exhibited an emission intensity
at 420 nm, a detection range of 3 to 500 nM, and an impressive LOD value of 0.96 nM [61].
Furthermore, the CsPbBr3/HZIF-8 composite was synthesized via in situ growth at room
temperature and showed green emission at 510 nm with a width of 25 nm. It served as
an on–off–on luminescent sensor for detecting Cu2+ and melamine in water. Detection
was linear from 3 to 500 nM (Cu2+) and 30 to 1500 nM (melamine), and the LOD values
were 4.66 nM and 2.64 nM, respectively [62]. The overall results are summarized in Table 4.
Integrating CQDs@MOFs hybrids into sensing platforms has transformed metal ion detec-
tion with enhanced sensitivity, selectivity, and speed. These innovations enable real-time,
precise food safety monitoring. Future sensors will focus on miniaturization, wearable
integration, and AI-driven analysis for broader use in healthcare and environmental fields.

While the reviewed studies demonstrate remarkable advancements in the develop-
ment of CQDs@MOFs-based sensors for metal ion detection, their practical implementation
in real-world food systems remains underexplored. Most investigations focus on aqueous
environments such as tap water, river water, or model solutions. However, real food
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matrices such as dairy, meat, or processed foods introduce complex interferences (e.g.,
fats, proteins and varying pH levels) that can affect sensor sensitivity, stability, and selec-
tivity. Matrix effects, sample preparation challenges, and sensor reproducibility must be
addressed for reliable deployment in the food industry. For instance, sensors that showed
excellent performance in wine or fruit juice still require validation across a broader range
of food types. Therefore, future work should emphasize sensor robustness in diverse and
complex food matrices, regulatory compliance, and integration into user-friendly, portable,
or even wearable formats for field or in-line use in food quality monitoring systems.

5.2. Pesticides

Innovations in pesticide detection in food have been groundbreaking, primarily driven
by innovations in analytical techniques [156–158]. Among these, CQDs and MOFs have
played a pivotal role by significantly enhancing signal sensitivity and enabling the devel-
opment of portable detection devices with high selectivity for specific pesticides [159,160].
For example, emerging technologies are advancing detection methods, such as a room-
temperature-fabricated PEC sensor based on M-TiO2-CdTe QDs/CdSQDs for CAP monitor-
ing. It offers a 1–140 nmol L−1 linear range, 0.14 nM detection limit, and 390 nm emission.
The sensor accurately quantified CAP in milk, with recoveries of 96.3–106% [66]. Another
example is the room-temperature synthesized N-CDs@Eu-MOF@MIP composite, which
enabled sensitive fluorescence detection of malathion (LOD: 50 nM, range: 1–10 µM, λ-em:
430–616 nm, and 3 nm bandwidth). It obtained recoveries ranging from 93.0% to 99.3%
in samples of lettuce, tap water, and soil. A smartphone-based method detected 2–7 µM
malathion with an LOD value of 1.45 µM and a linear response (y = 0.1882x + 0.3166,
R2 = 0.984). A visible fluorescent shift from red to blue confirmed malathion’s presence [67].
For instance, Ma et al. (2023) synthesized two composite materials, Fe-CDs/MOF-808
and Fe-CDs@MOF-808, at room temperature and applied this for detecting the pesticides
paraoxon and parathion, as shown Figure 3I. These nanocomposites exhibited selective
and sensitive fluorescence quenching, caused due to the internal filtering effect, with
the 4-nitrophenol (4-NP) emission range peaking at 425 nm, as depicted in Figure 3II.
Specifically, Fe-CDs/MOF-808 demonstrated a wide linear detection range for paraoxon
(0.001–360 µM) and an LOD value of 0.3 nM. In contrast, Fe-CDs@MOF-808 exhibited a lin-
ear range of 0.01–100 µM for parathion with an LOD value of 3.3 nM. These materials were
successfully tested on real samples of pakchoi and water, underscoring their potential for
nanocomposite-based detection and detoxification applications in food safety, as illustrated
in Figure 3III [11].

Furthermore, the fluorescent OPCD@UiO-66-NH2 composite, synthesized hydrother-
mally, detected quinalphos with high sensitivity (LOD: 0.3 nM) across 0–16 µM, showing
a 425 nm emission peak. Cu2+-induced fluorescence quenching, and real sample tests in
tomato juice and rice confirmed its effectiveness [12]. For instance, an electrochemical
sensor was constructed on a screen-printed electrode using a N-CQDs@UiO-66-NH2 com-
posite synthesized via a reflux method. It enabled a highly selective carbendazim detection
range and an LOD value of (0.02–126 µM, 5.8 nM), with over 95% selectivity. Recovery
rates reached 96% in vegetables and 97% in water samples [27].

Additionally, the CdS-Sm-BDC-g-C3N4-5 composite was synthesized at room temper-
ature for malathion sensing. The sensor demonstrated excellent sensitivity at 25 µA µM−1,
with an LOD value of 7.4 nM and a linear response range from 3.0 to 15.0 × 10−8 M, exhibit-
ing a strong correlation coefficient (R2 = 0.996). It performed well in real cabbage sample
tests with recovery rates of 86.4–107.6%. The modified electrode offered good stability,
reproducibility, and cost-effectiveness [28]. The overall results are summarized in Table 4.
New technologies offer the potential of hybrid CQDs and MOFs to enable real-time, on-site
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pesticide detection, improving food safety. These nanotech innovations support faster
decisions and stricter regulatory compliance. Portable, multi-analyte sensors offer accurate,
rapid, and cost-effective monitoring. As these technologies evolve, they will integrate into
everyday food safety practices, empowering consumers and regulators with better tools for
ensuring safe food. While many CQD–MOF-based sensors have demonstrated impressive
analytical performance under laboratory conditions, their practical application in real food
matrices remains a key challenge. Food samples often present complex environments with
multiple interfering substances that may affect sensor sensitivity, selectivity, and stability.
Sample preparation steps such as extraction, filtration, or dilution are often necessary to
maintain accuracy, which can limit the sensor’s portability and on-site usability. Moreover,
matrix effects such as pH variation, presence of proteins or fats, and natural fluorescence
can complicate the interpretation of results. Despite these challenges, some studies have
shown promising recoveries in diverse matrices such as milk, lettuce, cabbage, tomato juice,
and rice. Continued research should focus on enhancing matrix tolerance, simplifying
sample processing, and validating sensors under field conditions to support real-world
integration of these innovative sensing platforms.

Figure 3. (I) Schematic illustration of paraoxon degradation and detection by Fe-CD/MOF-808 (Route
1) and parathion by Fe-CD@MOF-808 (Route 2). (II) (a) Fluorescence spectra of Fe-CDs@MOF-808
before and after incubation with parathion in the dark and under 365 nm LED irradiation. (b) Degra-
dation rate of parathion catalyzed by Fe-CDs@MOF-808 in the presence of different reactive oxygen
species (ROS) scavengers. (c) GC-MS analysis of degradation products of parathion. (d) Fluorescence
spectra of Fe-CDs@MOF-808 incubated with varying concentrations of parathion under 365 nm LED
irradiation. (e) Calibration plot of (F0-F)/F0 at 425 nm versus parathion concentration. (f) Selec-
tivity and anti-interference study of Fe-CDs@MOF-808 for parathion detection. (III) (a) Schematic
representation of organophosphate (OP) detection in pakchoi. (b) Fluorescence images showing
Fe-CDs/MOF-808 with pakchoi in the absence (left) and presence (right) of paraoxon, confirming
the complete degradation of paraoxon in pakchoi. (c) Fluorescence spectra of Fe-CDs/MOF-808
with pakchoi in the presence of paraoxon at different time intervals. (d) Fluorescence spectra of
Fe-CDs/MOF-808 with pakchoi after being removed from the solution for 5 min. Reproduced with
permission from [11]. Copyright@ 2023 Elsevier B.V.
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5.3. Antibiotic

Advancements in antibiotic detection in food have become crucial in addressing
growing food safety concerns and combating the misuse of antibiotics in food production.
Modern techniques now emphasize rapid, accurate, and sensitive detection of antibiotic
residues, employing methods such as electrochemical, fluorescence, and colorimetric sen-
sors for real-time monitoring [161–171]. Building on this, dual-functional fluoroprobes
(CDs@Eu/UiO-67b) were synthesized hydrothermally, enabling tunable red-to-blue emis-
sions (442–612 nm) for detecting ofloxacin and tetracycline via an internal filtering effect.
This ratiometric assay achieved detection limits of 22 nM and 27 nM across 0–60 µM and
0–10 µM ranges, respectively. It showed strong performance in tap water and chicken
feed, with recoveries of 98.5–103.7%, demonstrating its potential for real-world antibiotic
residue monitoring (Figure 4A–F) [20]. The CdTeQDs@ZIF-8 composite, synthesized at
room temperature, enables the ratiometric fluorescent detection of chlortetracycline (CTC)
via green and red emissions (521–672 nm) through the inner filtration effect. It offers an
LOD value of 37 nM, which is 17 times below the CTC residue limit in animal food (626 nM).
The sensor worked effectively, and CTC was detected in basa fish and milk, with recovery
rates of 91.0–110.0% being observed, demonstrating its speed, sensitivity, and recyclability
for food safety monitoring [29].

Figure 4. (A) Schematic representation of the preparation process for Eu/UiO-67b and CDs@Eu/UiO-
67b, (B) sensing mechanism for OFL and TC detection, and (C) visual detection application using a
smartphone. (D) XPS survey spectra with inset images showing corresponding photographs. (E) and
(F) display the fitting curves correlating OFL concentration with the color change ratio (R + G)/2B
in solution and hydrogel, respectively. Reproduced with permission from [20]. Copyright@ 2024
Elsevier B.V.

Similarly, Liu et al. synthesized a CDs@UiO-66-NH2 composite by ultrasound-assisted
functionalization of CQDs from fragrans with MOFs. The material enabled simultaneous
detection of tetracycline (150 nM) and norfloxacin (870 nM), with emission at 328 nm.
It performed well on real samples of water, milk, and soil [68]. In another example, a
CD@MIP composite was synthesized under reflux conditions and applied for the detection
of tetracycline in milk samples. The material exhibited fluorescence quenching with an
emission peak at 450 nm and a width of 5 nm. Importantly, the detection was effective over
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a concentration range of 0–400 µmol L−1. Furthermore, the quantum yield of the CD@MIP
composite was found to be 12.75%, with a 3σ LOD value of 590 nM [69]. Another notewor-
thy example is the Ce, N-CDs@ZIF-67@MIP composite, synthesized at room temperature,
which acts as a fluorescent sensor for oxytetracycline with bright blue fluorescence (445 nm)
and a high quantum yield (33.69%). It offers sensitive detection within a 0.05–20 µg/mL
range and a low limit of 15.13 nM, enabling effective oxytetracycline analysis in milk
samples [70]. Similarly, the His-GQDs-Ser@MOF composite was synthesized at room
temperature and showed high selectivity and sensitivity for doxycycline detection using
a fluorescence sensor (460–618 nm, 5 nm bandwidth). It exhibited two linear detection
ranges (0.003–6.25 µM and 6.25–25 µM) with an LOD value of 1.8 nM. The probe’s practical
application was validated by analyzing spiked milk samples, with recoveries between
97.39% and 103.61% and RSDs ranging from 0.62% to 1.42% [71].

In addition, the g-CDs@UiO-66 composite, prepared through stirring, exhibits excel-
lent optical properties, fluorescence stability, and structural robustness in aqueous solutions.
Combining the optical features of g-CDs and UiO-66, it serves as an effective probe for
detecting norfloxacin with an emission range of 446–530 nm, detection range of 1–8 µM, and
LOD value of 82 nM. The composite exhibits excellent selectivity and sensitivity, making
it suitable for detecting norfloxacin in food samples such as milk and pork. This study
highlights advancements in CD-MOF-composite sensing for pesticide residue detection
in food [72]. The summarized findings are presented in Table 4. The effective implemen-
tation of these detection systems demonstrates their strong potential for enhancing food
safety by enabling real-time and efficient monitoring of antibiotic residues in food items.
Recent advances in CQD–MOF composite sensors have shown promising applicability in
complex food matrices such as milk, pork, fish, and feed. As summarized in Table 4, many
systems have achieved high recovery rates (e.g., 91.0–110.0% in basa fish and milk and
97.39–103.61% in spiked milk), low limits of detection, and good reproducibility, indicating
their strong potential for real-world use. However, transitioning these sensors from labora-
tory demonstrations to practical, field-ready tools involves several critical challenges. These
include matrix interferences due to the complex chemical composition of food samples,
variability in sample preparation methods, sensor stability under varying environmen-
tal conditions, and the need for scalable, low-cost fabrication processes. Furthermore,
regulatory acceptance requires thorough validation under standardized protocols.

5.4. Mycotoxins

Mycotoxins are toxic secondary metabolites produced by various fungal species, and
pose significant health risks to humans and animals. They can contaminate food and feed at
multiple points throughout the production and supply chain, making their identification and
elimination a critical concern worldwide [172–179]. In this context, this study investigates the
design, synthesis, and application of CQDs@MOFs composites for the detection of mycotoxins
in food samples, with particular emphasis on their sensing mechanisms, performance metrics,
and potential for practical implementation in food safety monitoring [180–186]. For instance,
the MP QDs@ZIF-8 composite was fabricated at room temperature and employed in an elec-
trochemical sensor for detecting Aflatoxin B1 (AFB1), as shown Figure 5I. The characterization
of ZIF-8, MP QDs, and MP QDs@ZIF-8 was carried out using various techniques, including
TEM and HRTEM imaging, particle size distribution analysis, and XRD pattern analysis of the
simulated structures, as well as by studying both full and high-resolution XPS spectra, as illus-
trated in Figure 5II. This composite exhibited an emission peak at 528 nm with a bandwidth
of 21 nm. The sensor demonstrated exceptional selectivity and ultra-sensitivity, achieving
an LOD value of 0.0000035 nM and a detection range for AFB1 quantification spanned from
11.55 fg/mL to 20 ng/mL, as demonstrated Figure 5III. The EIS plots and CV curves of MP
QDs@ZIF-8/GCE and AFB1-imprinted MP QDs@ZIF-8/GCE, along with the ECL response
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of the proposed AFB1-imprinted sensor in PBS containing 0.01 M TPrA, are presented in
Figure 5IV. Furthermore, the successful recovery results from corn samples confirmed the
sensor’s accuracy and real-world potential for detecting AFB1. Overall, this study introduces
an innovative strategy for developing efficient electrochemical sensing systems to enhance
food safety, as illustrated in Figure 5V [8].

Figure 5. (I) Schematic illustration of the MP QDs@ZIF-8-based molecular imprinting ECL sensor
for AFB1 detection in corn samples. (A) Synthesis process and proposed ECL reaction mecha-
nism of MP QDs@ZIF-8 nanocomposites. (B) Signal responses of the AFB1-imprinted ECL sensor
throughout the detection process. (II) (A–I) TEM and HRTEM images, size distribution, XRD pat-
terns of simulated, XPS full spectra, and high-resolution XPS spectra of ZIF-8, MP QDs, and MP
QDs@ZIF-8. (III) (A–G) Optical images of MP QDs and MP QDs@ZIF-8, along with fluorescence
intensity variations over time, decay curves, and time-dependent evolution of MP QDs and MP
QDs@ZIF-8 composites. Fluorescence and ECL wavelength spectra of MP QDs@ZIF-8 with optical
filters, ECL-potential curve, and ECL-time responses of MP QDs@ZIF-8 and MP QDs. A schematic
representation of the proposed ECL reaction mechanism is also included. (IV) (A–D) EIS plots and
CV curves of MP QDs@ZIF-8/GCE and AFB1-imprinted MP QDs@ZIF-8/GCE, along with the ECL
response of the proposed AFB1-imprinted sensor in PBS containing 0.01 M TPrA. Additionally, an
SEM image showcasing the surface morphology of the AFB1-imprinted ECL sensor is presented.
(V) (A–D) ECL signals of the eluted AFB1-imprinted sensor after rebinding in various concentrations
of AFB1 solutions, along with the calibration curve for AFB1 detection. ∆IECL responses of the
eluted AFB1-imprinted ECL sensor following incubation in blank solution, 10 ng/mL of DON, OTB,
ZEN, FB1, or OTA as interferences, and 1 ng/mL AFB1 solution as a target, including a mixture
of all interferences with AFB1. Additionally, the ECL response of the imprinted sensor incubated
with 0.1 pg/mL AFB1 is shown after continuous CV scans for 17 cycles. Reprinted with permission
from [8]. Copyright @2022 Elsevier Ltd.

In a similar approach, an antibody-conjugated MoS2/UiO-66-NH2 composite was created
through a microwave-assisted method for the sensitive electrochemical detection of aflatoxin
M1 (AFM1). This sensor exhibited a detection range of 0.2–10 ng/mL and an LOD value of
0.06 ng/mL. Furthermore, its practicality was demonstrated by successfully detecting AFM1
in spiked milk samples. Notably, this approach can be adapted for the detection of other
aflatoxins, such as AFB1 [21]. Building on this, the synthesis of the NU66@QD-ICA composite
under room-temperature conditions resulted in a fluorescent sensor with an emission range
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of 400–670 nm. This sensor facilitated the sensitive detection of various toxins, including
aflatoxin B1, fumonisin B1, deoxynivalenol, T-2 toxins, and zearalenone (ZEN) in cereals
and feed. The detection limits for these toxins were 0.04, 0.28, 0.25, 0.09, and 0.08 µg/kg,
respectively. Moreover, the recovery rates ranged from 82.83% to 117.44%, with variation
coefficients between 2.88% and 11.80%, demonstrating the method’s practical reliability [73].

In another example, the SQDs@MOF-5-NH2 composite, synthesized via a “bottle-
around-ship” solvothermal method, serves as a fluorescent probe for detecting patulin
with enhanced fluorescence (645–755 nm). It offers high sensitivity (LOD: 0.000753 ng/mL)
and excellent specificity, with low RSDs in assays. Applied to apple juice, it shows strong
recovery rates (89.03–107.67%) compared to HPLC results. Despite a 120-min reaction time,
its simplified DNA hairpin amplification suggests broader applications for detecting myco-
toxins and other biomarkers [74]. Similarly, a hydrothermal method was used to prepare
MIP/Au@Cu-MOF/N-GQDs/GCE for electrochemical patulin sensing, showing a broad
linear range (0.001–70.0 ng/mL) and an LOD value of (0.0007 ng/mL). The sensor offered
excellent selectivity, sensitivity, and reproducibility, with high accuracy (97.6–99.4% recov-
ery) and precision (RSD: 1.23–4.61%) in apple juice. This strategy holds strong potential for
other MIP-based sensor applications [75]. The comprehensive findings presented in Table 5
illustrate the advancements in CQDs@MOF-based composites for mycotoxin detection in
food samples. This adaptability positions them as promising tools for the broader field of
analytical sensing, contributing to enhanced food safety and public health protection.

While the reported CQDs@MOFs-based sensors demonstrate impressive sensitivity,
selectivity, and reproducibility in controlled experimental conditions, practical implementa-
tion in real-world food matrices presents additional challenges. Complex sample matrices
such as cereals, milk, and fruit juices often contain interfering substances (e.g., proteins, fats,
and polyphenols) that may affect sensor performance by causing matrix effects or signal
suppression. Therefore, effective sample pretreatment and matrix-matching strategies are
critical for ensuring analytical reliability in real applications. Additionally, factors such
as sensor stability under varying storage conditions, reproducibility across production
batches, and scalability of sensor fabrication must be addressed to facilitate commercial-
ization. Despite these challenges, recent studies have shown promising results, with high
recovery rates and low RSD values in spiked food samples-indicating that the transition
from lab to field is feasible. Continued development toward miniaturized, portable sensor
platforms and integration with digital readout systems may further support the deployment
of CQDs@MOFs sensors in real-time food safety surveillance.

5.5. Pathogens

Pathogens are harmful microorganisms such as bacteria, viruses, and parasites that
can cause illness through contaminated food. Common examples include Salmonella, E.
coli, Listeria, and Norovirus. They may lead to symptoms like diarrhea, vomiting, fever,
or even severe complications. Ensuring food safety involves detecting and controlling
these pathogens in the supply chain. This review highlights CQDs@MOFs as a novel
sensing platform for the swift and selective identification of pathogenic bacteria in food.
The unique fluorescence of CQDs, integrated with the porous architecture of MOFs, allows
for highly sensitive detection even in complex food environments [187–192]. By functional-
izing the material with specific targeting agents, such as antibodies or aptamers, this hybrid
system addresses critical needs in food safety monitoring by offering precise pathogen
recognition [193–199]. For instance, Lin et al. reported the synthesis of a GQDs/Cu-MOF
nanocomposite using an ultrasonication method, as shown Figure 6I. This composite was
employed for the detection of Staphylococcus aureus (S. aureus) via electrochemical aptasen-
sors. The system demonstrated remarkable sensitivity with an LOD of 0.97 CFU/mL,
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alongside excellent stability, specificity, and a broad linear detection range of 5.0 × 100 to
5.0 × 108 CFU·mL−1. In addition, the aptasensor was effectively used to detect S. aureus
in various samples, such as tap water, milk, Lonicera japonica, urine, and water from the
Zhangjiang River. Additionally, the design of this aptasensor is highly adaptable, allowing
for the detection of other foodborne pathogens, as illustrated in Figure 6II. Furthermore,
the detection ranges and LODs for various pathogens were as follows: E. coli O157:H7,
B. cereus, Y. enterocolitica, and L. monocytogenes, as reported in Table 2 and depicted in
Figure 6III. These results underscore the versatility of the design, providing valuable tools
for early detection of food safety hazards and issuing timely warnings of foodborne dis-
eases. Furthermore, this research provides fresh perspectives on the advancement of novel
electrochemical aptasensor technologies [76].

Another example of an rGO-MWCNT/CS/CQD composite was synthesized at room
temperature to develop an electrochemical aptasensor for detecting Acinetobacter baumannii.
This enhanced detection sensitivity and aptamer surface density, improving sensor per-
formance. The aptasensor exhibited a linear range of 10 to 1 × 107 CFU/mL and an LOD
value of 1 CFU/mL, and effectively identified A. baumannii in serum and milk powder
samples [77]. Similarly, the synthesis of DP-CDs/TiO2 via hydrothermal methods demon-
strated enhanced photocatalytic bacterial deactivation under sunlight irradiation. This
composite was employed for the detection of Vibrio harveyi using a fluorescence sensor with
an emission range of 520–420 nm. In addition, a fluorometric sensor-strip was developed
for Fe3+ detection and the monitoring of acute hepatopancreatic necrosis disease (AHPND)
caused by Vibrio harveyi in shrimp farming [78].

In addition, the synthesis of [Zn(HCOO)3][C2H8N]/PEG and N-CQDs@[Zn(HCOO)3]
[C2H8N]/PEG composites via hydrothermal steps were reported. Their antimicrobial
activity against E. coli showed strong antibacterial performance under UV light. These com-
posites were presented as cost-effective, biocompatible antimicrobial agents that function
without antibiotics [31].

Similarly, CD-Ab-COF was prepared at room temperature and utilized as a fluorescent
probe for detecting E. coli O157:H7, and showed an emission peak near 365 nm, with the
sensor exhibiting a linear detection range of 0 to 106 CFU/mL and an impressive LOD
value of 7 CFU/mL. Furthermore, its performance was validated through the analysis
of real milk samples [9]. These studies underscore the potential of CQDs@MOFs and
carbon-based nanomaterials in advancing food safety diagnostics by enabling sensitive,
selective, and adaptable pathogen detection to mitigate foodborne outbreaks. Detection
parameters and performance metrics are summarized in Table 5. Although CQDs@MOFs-
based sensors have demonstrated remarkable sensitivity and selectivity, their real-world
application remains a key challenge for practical adoption. Complex food matrices such as
meat, dairy, seafood, and ready-to-eat products introduce issues like matrix interference,
signal suppression, and intricate sample preparation. Additional concerns include sensor
stability under variable storage conditions, manufacturing reproducibility, and minimizing
false positives or negatives. Despite these obstacles, several studies have successfully
validated CQDs@MOFs sensors in real samples such as milk, river water, and serum,
highlighting their promise for broader food safety monitoring. Future efforts should
prioritize sensor miniaturization, integration with portable devices, and alignment with
regulatory standards to support commercial translation.
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Figure 6. (I) Synthesis of the GQDs/Cu-MOF nanocomposite, (II) development of a GQDs/Cu-MOF
nanocomposite-based ratiometric electrochemical aptasensor for detecting S. aureus in tap water, milk,
Lonicera japonica, urine, and the Zhangjiang River. (III) DPV responses for varying concentrations
of E. coli O157:H7 (A), B. cereus (C), and L. monocytogenes (E): a to i represent 5.0 × 100, 5.0 × 101,
5.0 × 102, 5.0 × 103, 5.0 × 104, 5.0 × 105, 5.0 × 106, 5.0 × 107, and 5.0 × 108 CFU·mL−1. DPV
responses for different concentrations of Y. enterocolitica (G): a to h represent 1.0 × 101, 1.0 × 102,
1.0 × 103, 1.0 × 104, 1.0 × 105, 1.0 × 106, 1.0 × 107, and 1.0 × 108 CFU·mL−1. A linear correlation
between ICu-MOF/IS2-Fc and the logarithm of CFU·mL−1 was observed for foodborne pathogens:
E. coli O157:H7 (B), B. cereus (D), L. monocytogenes (F), and Y. enterocolitica (H). Reproduced with
permission from [76]. Copyright@ 2024 Elsevier B.V.

5.6. Aromatic Compounds

CQDs@MOFs composites offer a promising approach for ensuring food safety by
enabling the detection of aromatic contaminants, including 4-nitrophenol, Allura Red,
catechol, curcumin, glutathione, malachite green, phenylurea, trilobatin, and triticonazole.
These composites operate through fluorescence quenching or enhancement mechanisms,
wherein the interaction between the contaminant and the CQDs@MOFs alters its optical
signal. This provides a rapid, cost-effective, and non-destructive approach for identifying
trace amounts of harmful substances in food samples [200–206]. Similarly, heterocyclic
amines and phenolic compounds from Perilla frutescens seed extract show a correlation
between antioxidant capacities and their mitigating effects on volatile compounds during
low-temperature ultrasonic marination of coffee leaves and meat [207–212]. For example,
Yan et al. developed room-temperature-synthesized CDs-MFMIPs for ultrasensitive and
selective detection of 4-nitrophenol (4-NP) in food, with a wide detection range (0.05–50 µM)
and a low limit of 17.44 nM. The system, featuring magnetic properties and smartphone-
assisted visual sensing, enabled rapid, accurate analysis of real samples like tap water, fish,
and shrimp. This portable method offers a reliable, practical solution for onsite food safety
monitoring [80]. In addition, Esmail et al. developed a CD@MOF nanocomposite at room
temperature for detecting Allura Red AC (AR) in food, achieving a 0.30–7.00 nM range and
0.60 nM LOD. It showed high adsorption, reusability, and accurate detection in real samples
(candies, syrups, and energy drinks), with AR levels ranging from 2.95 to 2953 mM and
98.44 to 102.41% recovery [81]. For instance, Zhou et al. synthesized CDs@HKUST-1/GCE
via a hydrothermal method to create a highly sensitive electrochemical sensor for catechol
detection. It exhibited a broad linear range (5.0 × 10−9 to 2.5 × 10−5 mol/L), LOD value of
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(3.8 nM), and strong reproducibility and stability in tea sample analysis. This sensor shows
promising potential for food analysis and broader analytical applications [82].

Further, Wang et al. synthesized a CDs@MOF-5@Rh-6G composite with distinct dual-
emission peaks (435 and 560 nm) under 335 nm excitation, enabling sensitive ratiometric
detection of curcumin. The sensor exhibited an LOD value of (15 nM) and a wide linear
range (0.1–5 µmol/L), with successful application in detecting curcumin in mustard, curry,
and red pepper powders. This study highlights a promising strategy for food quality
control using practical and sensitive fluorescence sensing [10]. Furthermore, Jalili et al.
developed BYCDs@ZIF-8 nanocomposites for dual-emission detection of glutathione and
Cu2+ at room temperature. With a single 365 nm excitation, emissions at 565 and 440 nm
enabled a visible yellow-to-blue shift under UV light. The method showed high sensitivity,
an LOD value of 0.90 nM, and was effective in real samples like grape and cucumber
extracts, where it achieved satisfactory and reliable results, demonstrating its potential for
practical applications in monitoring food safety [83].

Additionally, Liu et al. demonstrated that the CDs&ZIF-8@MIPs fluorescent sensor
offers high sensitivity and selectivity for malachite green (MG), with a 2.93 nM detection
limit and a 20–180 nM linear range. It effectively distinguishes MG from analogs and
performs well in real water samples, highlighting its practical potential [84]. For example,
Sa-Nguanprang et al. successfully synthesized the N-GQDs@IRMOF-1@MIP composite,
IRMOF-1 (isoreticular metal–organic framework-1), MIP (molecularly imprinted polymer),
which enabled the development of an exceptionally sensitive detection method for trace
amounts of target phenylureas, as shown in Figure 7I. This method exhibited a broad linear
detection range of 1.0–150 µg L−1, with a remarkably low detection limit of 1.0 µg L−1.
Furthermore, the method was applied to real-world samples, including tomato, cucumber,
radish, and soybean milk, as illustrated in Figure 7II, demonstrating its practical utility
for food safety and environmental monitoring. Characterization of the materials was
performed through SEM and TEM imaging, providing detailed structural insights into
IRMOF-1, N-GQDs, and the GQDs/Fe3O4@SiO2/IRMOF-1/MIP composite. These imag-
ing techniques confirmed the morphology and integrity of the composite at the nanoscale.
Additionally, the adsorption–desorption isotherms for N- GQDs/Fe3O4@SiO2/IRMOF-
1/MIP (G) and N-GQDs/Fe3O4@SiO2/IRMOF-1/NIP (H) nano-sorbents, presented in
Figure 7III, demonstrated the efficient adsorption capacity of the materials. The large spe-
cific surface area and well-structured nanoparticle composition of the sorbents significantly
enhanced the adsorption performance, leading to an improvement in the overall detection
sensitivity and reliability. This novel approach opens up new avenues for the development
of highly efficient and versatile detection platforms for food safety applications [85]. Fur-
thermore, Yao et al. developed an AgMOF@N-CD composite at room temperature and
used it as an ECL sensor for trilobatin (Tri) detection. The sensor offered a wide linear
range (1.0 × 10−7 M to 1.0 × 10−3 M), LOD value of 5.99 nM, and excellent reproducibility,
stability, and anti-interference performance. It also accurately detected Tri in Lithocarpus
polystachyus Rehd samples, confirming its practical applicability [86].

Similarly, Shokri et al. demonstrated that the B-CDs/P-CDs@ZIF-8 composite, when
excited at 385 nm, emits dual peaks at 440 nm and 510 nm. This sensor demonstrated
high sensitivity for triticonazole detection with a broad linear range (10–400 nM) and
LOD value of (4.0 nM). Its practical application was confirmed by successful analysis of
water and fruit juice, highlighting its potential for food safety [87]. The overall results of
CQDs@MOFs-based sensing systems, summarized in Table 5, offer high sensitivity, selec-
tivity, and adaptability for detecting harmful aromatic compounds in food. Their unique
structural and optical properties enable precise, rapid detection, addressing key challenges
in food safety. Continued research promises even more efficient and reliable platforms.
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This integration highlights their transformative potential in real-world food monitoring
and public health protection. While many CQDs@MOFs-based sensing platforms demon-
strate exceptional sensitivity and selectivity under laboratory conditions, translating these
results to real-world food matrices remains a key challenge. Food samples often present
complex, heterogeneous matrices that can interfere with analyte recognition and signal
readout due to matrix effects such as pH variability, presence of fats, proteins, or colorants.
Moreover, issues like sensor stability in varied storage conditions, reproducibility across
batches, and regulatory compliance for use in commercial settings must also be addressed.
Encouragingly, several studies have demonstrated successful application in real samples
such as energy drinks, seafood, and vegetable extracts—highlighting progress toward
practical viability. Nonetheless, standardized sample preparation protocols, matrix-tolerant
sensor designs, and integration into portable or on-site testing platforms (e.g., smartphone-
assisted readouts) are essential steps toward broad real-world adoption. Addressing these
issues through interdisciplinary collaboration will be critical to bridging the gap between
laboratory innovation and field implementation.

Figure 7. (I) Synthesis process of the N-GQDs/Fe3O4@SiO2/IRMOF-1/MIP nano-sorbent, and
(II) the d-MSPE procedure for phenylurea extraction. (III) SEM images of IRMOF-1 (A,B) and
N-GQDs/Fe3O4@SiO2/IRMOF-1/MIP (C,D). TEM images of N-GQDs (E) and GQDs/MIP sor-
bent (F). Adsorption–desorption isotherms for N-GQDs/Fe3O4@SiO2/IRMOF-1/MIP (G) and N-
GQDs/Fe3O4@SiO2/IRMOF-1/NIP (H) nano-sorbents. Reproduced with permission from [85].
Copyright@ 2023 Elsevier Inc.

6. Challenges and Future Perspectives
Scaling up the production of CQDs@MOFs with consistent size, morphology, and

properties is challenging, requiring precise control over reaction conditions and costly
reagents. Both CQDs and MOFs are sensitive to moisture, light, and extreme temperatures,
which can degrade their functionality. Moreover, non-specific interactions with environ-
mental components may reduce sensing accuracy. Achieving high selectivity for specific
analytes in complex food matrices is difficult, and detecting low concentrations while
avoiding interference remains a challenge. Concerns about the potential release of CQDs or
MOFs into food products raise toxicity and regulatory issues. Ensuring safety for human
consumption is crucial. Additionally, integrating CQDs@MOFs into portable, user-friendly
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devices for on-site food detection is still underdeveloped. Validating these sensors across
diverse food systems adds to the complexity.

The future of CQDs@MOFs composites centers on green, scalable, and energy-efficient
synthesis, supported by machine learning and computational modeling for property pre-
diction. Enhancing stability through protective coatings, stabilizers, and tailored functional
groups can boost selectivity and sensitivity to specific food contaminants. Integrating
nanomaterials like metal nanoparticles and polymers creates multifunctional sensors with
improved optical, electronic, and catalytic performance. Research is expanding into detect-
ing emerging contaminants like microplastics, drug residues, and mycotoxins, alongside
applications in quality control for beverages, dairy, and perishables. Regulatory approval
and safety guidelines are essential for food-related uses.

Long-term environmental and health impact studies, along with the development of
affordable, portable, and automated sensors, are critical for broader adoption. Biomass-
derived CQDs and recycling strategies enhance sustainability. Industry collaboration is
vital to validate these sensors in real-world supply chains. Machine learning also enhances
sensor data interpretation, while wireless CQDs@MOFs enable real-time tracking in food
storage and distribution systems. These sensors can be embedded in packaging to detect
spoilage indicators (e.g., pH, CO2, and NH3) via color or fluorescence changes and enable
controlled antimicrobial release to extend shelf life. Research continues to focus on cost-
effective production and scaling to support safe commercialization and regulatory approval.

7. Conclusions
The combination of functionalized CQDs with MOFs holds significant promise for

revolutionizing food safety and detection applications. However, challenges such as
stability, sensitivity, and integration into practical systems must be overcome to ensure
their widespread use. With continued advancements in material science, functionalization
techniques, and sensing technologies, CQDs@MOFs composites have the potential to play
a key role in enhancing food safety monitoring in the future.
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