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ABSTRACT A mutant (MO-5) resistant to monensin (an ionophoric antibiotic) derived from the 
mouse Balb/3T3 cell line, was a poor host for vesicular stomatitis virus (VSV) or semliki forest 
virus (SFV) multiplication. The yield of VSV particles in MO-5 is one 100-fold reduced as is 
VSV-dependent RNA synthesis. In contrast to a pH-remedial mutant, the abortive production 
of infectious VSV particles in MO-5 cells was not restored by low pH treatment. The pH values 
in the endosome and the lysosome of MO-5 cells were 5.2 and 5.4, respectively, values that 
were comparable to the pH value in Balb/3T3 cells. Assays with [3H]uridine-labeled VSV 
indicated similar binding of VSV in MO-5: percoll gradient centrifugation analysis of [35S]- 
methionine-labeled VSV-infected Balb/3T3 showed accumulation of VSV in the lysosome 
fraction 20 rain after VSV infection, whereas VSV can be found mainly in endosome/Golgi 
fraction of MO-5 cells after 40 to 60 min on the percoll gradients. Degradation of [35S]- 
methionine-labeled VSV was observed at a significant rate in Balb/3T3 cells, but not in MO-5 
cells. The monensin-resistant somatic cell may thus provide a genetic route to study the 
mechanism of endocytosis or transport of enveloped viruses. 

Cellular recognition and uptake of bioactive macromolecules 
such as nutrients, plasma transport proteins, peptide hor- 
mone, and lysosomal enzymes are mediated through receptor- 
dependent binding and endocytosis (1-4). Enveloped animal 
viruses also penetrate plasma membranes of mammalian cells 
through endocytosis or fusion (5, 6). Viruses are then seen at 
later times in an acidic compartment, the lysosome, where 
uncoating of viral genome was supposed to occur (7, 8). 
However, recent study shows that before reaching the lyso- 
somes, fusion and decoating of influenza virus (9) or of 
Semliki forest virus (SFV) ~ (10) proceeds in the endosome, 
another acidic compartment. 

To further understand the biochemistry of endocytosis, 
isolation of somatic cell mutants with aberrant response to 
viruses can be invaluable. Moehring and Moehring (1 l) have 
isolated human KB cell lines resistant to diphtheria toxin 
which were also cross-resistant to viruses. Mento and Simi- 

Abbreviations used in this paper: FITC, fluorescein isothiocyanate; 
MEM, Eagle's minimal essential medium; moi, multiplicity of infec- 
tion; MO-5, a monensin-resistant clone; Mon r, monensin-resistant; 
pfu, plaque-forming units; SFV, semliki forest virus; VSV, vesicular 
stomatitis virus. 
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novitch (12) have isolated variants from Chinese hamster 
ovary cells resistant to sindbis virus which were concomitantly 
resistant to diphtheria toxin. Moehring and Moehring (13) 
have further isolated many mutants of the Chinese hamster 
ovary cell resistant to both Pseudomonas  exotoxin A and 
enveloped viruses. The failure of virus RNA synthesis in the 
toxin-resistant mutant was found to be completely overcome 
by exposure to low pH (l 3). Similar mutants were independ- 
ently isolated by Robbins et al. (14). 

In our laboratory, we have isolated Chinese hamster ovary 
cell mutants resistant to an ionophoric antibiotic, monensin, 
which showed reduced uptake of ricin and insulin (15-17). 
We have further isolated monensin-resistant (Mon r) clones 
from the mouse Balb/3T3 cell line, and a Mon r clone, termed 
MO-5, was found to be low in the endocytosis of low density 
lipoproteins (18). In this study, we report that MO-5 might 
yield a novel type of vesicular stomatitis virus (VSV) resist- 
ance. 

MATERIALS AND METHODS 

Cell Line, Culture Medium, and Virus: Mouse Balb/3T3 cell 
line, Balb/3T3 A3-l-l, which was obtained from Dr. T. Kakunaga (National 
Cancer Institute, USA), was the parental clone from which drug-resistant cells 
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were isolated. The Balb/3T3 cells showed a saturation density of 1-2 x 106 
cells per ml at 37°C ( 19, 20). Balb/3T3 cells were cultured in minimal essential 
medium (MEM) containing 0.1% Bactopeptone (Difco Laboratories, Detroit, 
MI), 10% newborn calf serum (Flow Laboratories, Inc., McLean, VA), and 
penicillin G (100 U/ml) (21, 22). VSV and SFV grown in human embryonic 
lung cells were used as previously described (23). The infectivity of viruses was 
assayed in L-929 cells by plaque formation as previously described (23). 

Isolation of Mon r Mutant and Colony Formation: Balb/3T3 
cells were treated with 300 ttg/ml of ethyl methane sulfonate for 18 h at 34"C 
to a survival level of 50% of the initial number, and then cultured for 7 d in 
the absence of any drug (15). The cells were treated with 10 ~g of monensin 
per milliliter and both the medium and the drug were changed every 3 or 4 d. 
Colonies appearing in the presence of the drug after incubation for ~3-4  wk at 
34"C were purified and six Mon r clones were independently isolated. The Mon r 
clone termed MO-5 was used in this study. Mutagenesis with ethyl methane 
sulfonate increased the frequency of Mon r clones ~10-fold higher than that 
observed without mutagen. To determine cellular sensitivities to chemicals, we 
plated 700 cells in replicate 60-mm plastic dishes in the absence of any drug 
for 18 h, and further exposed the cells to chemicals and incubated them for 10 
d (15, 21). Colonies were stained with Giemsa and scored. Plating efficiency 
was -50% in the absence of any drugs. 

Chemicals and Isotopic Compounds: Radioisotopic com- 
pounds and chemicals were obtained from following sources: [3SS]methionine 
( t,235 Ci/mmol)  and [SH]uridine (6 Ci/mmol), New England Nuclear, Boston, 
MA; colchicine, Boehringer Mannheim Biochemicals, Federal Republic of 
Germany); monensin and nigericin, Calbiochem-Behring Corp., San Diego, 
CA; and chloroquine, Sigma Chemical Co., St. Louis, MO. 

Virus Infection Test and Viral RNA Synthesis: Cell monolayers 
were infected with VSV at a multiplicity of infection (moi) of 5 to 10 plaque- 
forming units (pfu) per cell and incubated for 1 h at 37°C in a COs-incubator 
for adsorption. Then the monolayers were washed once with phosphate-buff- 
ered saline (PBS) and further incubated for 5 h at 37°C. To assay virus yield, 
we titrated extracellular virus. 

Cell monolayers were infected with VSV at a moi of 5 in the presence of 3 
ttg/ml actinomycin D in 1 ml MEM for 1 h at 37"C, and then the cells were 
labeled with 2 t~Ci/ml [3H]uridine. After incubation for various times, the cells 
were lysed in H20 and suspended in trichloroacetic acid to a final concentration 
of 10%. The TCA-insoluble fractions were collected on glass fiber filters and 
counted. We subtracted from each value activities in RNA of uninfected cells 
treated with actinomycin D. 

Binding Assay of VSV: Binding of [3H]VSV was carried out at 4"C 
(24). [3H]VSV were prepared from HEL-R66 cells infected with VSV which 
were incubated with 5 uCi/ml 13H]uridine and 1 ttg/ml of actinomycin D in 
10 ml of MEM for 6 h, and specific activities of [3H]VSV were 10,000-12,000 
cpm/ttg virus protein. Some 5 to 10 × 102 cells per dish were incubated with 
10-15 ug of [3H]VSV in 1 ml of M EM at 4"C for 100 min, and binding activity 
was measured for cell-associated radioactivity after two washings with PBS. 

Assay for Effect of Low pH Treatment: Balb/3T3 or Mon ~ cells 
(2.8 x 105/ml) in 5 ml of medium were treated without or with 0,1 mM 
chloroquine for 15 rain at 37"C, and the cells were incubated at a moi of 5 
v, ith VSV for 60 rain at 4"C. The drug-containing medium was then removed 
by washing once with PBS, and I ml of Eagle's minimal essential medium at 
pH 7.5 or pH 5.5 was added without chloroquine. The cells were then incubated 
for 3 min at 37"C. The PBS was removed and the prewarmed MEM with or 
without 0.1 mM chloroquine was added to follow incubation for an additional 
6 h at 37"C. Virus yield was assayed as previously described (23). 

Analysis of VSV Distribution by Colloidal Silica Gra- 
dients: [35S]Methionine-labeled VSV ([sss]vgv) was prepared from HEL- 
R66 cells in 100 mm of methionine-free medium infected with 5 pCi/ml of 
[sSS]methionine and I ttg/ml of actinomycin D for 6 h. [35S]VSV was purified 
by sucrose density gradient centrifugation and ~3 x 104 cpm/~tg virus protein 
was obtained. Some 5 to 10 x 106 cells per dish were incubated with 10 ug of 
[3~S]VSV in MEM medium at 37°C for 90 min. After the incubation, half of 
the sample (three dishes per each assay) was washed and analysed by density 
gradient centrifugation, and the other half was further incubated at 37"C for 60 
rain with fresh medium containing 10% newborn calf serum. After the incu- 
bation, the cells were removed from plates with a rubber policeman. Cell 
suspensions on 1 ml of a buffer containing l0 mM triethanolamine, 1 mM 
EDTA, 0.25 M sucrose (pH 7.5) were placed in a nitrogen cavitation bomb 
and pressurized to 35 psi for 15 min ( 18, 25). The cells were then homogenized 
in a Dounce homogenizer (Kontes Institute, Vineland, N J) with ~10 strokes. 
This procedure enabled us to obtain more than 90% lysis. After centrifugation 
of the homogenate at 3,000 g for 10 rain to pellet nuclei and unbroken cells, 
the supernatant was layered over 8 ml of 25% isoosmotic percoll (Pharmacia 
Fine Chemicals, Piscataway, N J) in 10 mM triethanolamine, 1 mM EDTA, 

0.25 M sucrose (pH 7.5). The bottom of the tube contained a 0.5-ml cushion 
of 2.5 M sucrose. After centrifugation at 40,000 g for 60 min, the density 
gradient was collected from the top and the fractions were assayed for density 
using density marker beads (Pharmacia Fine Chemicals). Radioactivities were 
counted in Scintisol EX-H (22) by an Aloka gamma counter./3-Hexosaminidase 
as a marker enzyme for lysosomes was assayed as previously described (25, 26). 

Degradation of VSV in Mouse Cells: Some 3.4-7.1 × 105 cells 
per dish were infected with [~S]methionine-labeled VSV at a moi of 50 at 37"C 
for 90 min. Then the dishes were washed twice with PBS and followed 
incubation with fresh MEM at 37"C. At the indicated time, I ml of medium 
was removed and trichloroacetic acid was added to a final concentration of 
10%. After spin down at 2,000 rpm for 10 min, 1 ml of supernatant fraction 
in 10 ml of scintisol EX-H was measured. At time 0, 250-261 cpm was found 
in the medium, and we subtracted the background activity from each radioac- 
tivity. 

Measurement of Lysosomal and Endosomal pH: Fluorescein 
isothiocyanate (FlTC)-dextran (60,000-90,000-mol-wt, Wako Chemical Indus- 
tries, Osaka, Japan) was synthesized according to the procedure of Straubinger 
et al. (27). A standard curve relating to the ratio of fluorescence intensities at 
520 nm with excitation at 495 nm and 450 nm was constructed according to 
the method of Ohkuma and Poole (28) using FITC-dextran (20 ttg/ml) in 0.2 
M sodium citrate (pH 4.5 to 6.0), sodium phosphate (pH 6.5 to 7.5), or Tris- 
HCI (pH 8.0) buffer. To load FITC-dextran on to the lysosome, cells were 
incubated with FITC-dextran (2 mg/ml in MEM) at 37°C overnight and chased 
for 2 h in MEM containing 2 mg/ml of nonlabeled dextran. To load FITC- 
dextran onto the endosome, cells were incubated with FITC-dextran (40 mg/  
ml in MEM) at 20"C for 2 h and chased for 30 min. Cells were separated from 
dishes by trypsin treatment, washed three times by centrifugation, and sus- 
pended in Hanks' buffered salt solution-10 mM HEPES (pH 7.4 containing 
0.2% bovine serum albumin and 1 mM ATP). Fluorescence intensities of ~1 
x 106 cells were measured by an Hitachi 850 fluorescence spectrophotometer. 
Autofluorescence was determined using the cells not exposed to FITC-dextran. 
Fluorescence intensities from single cells were estimated by quantitative fluo- 
rescence microscopy as previously described (9). 

RESULTS 

Production of Enveloped Viruses and Viral RNA 
Synthesis in a M o n  r C lone  Derived from the 
Mouse  Balb/3T3 Cell Line 

A Mon r clone, MO-5, was found to show fivefold higher 
resistance to monensin and threefold-resistance to nigericin, 
an Na+/K ÷ ionophoric antibiotic, than the parental Balb/3T3 
cell line (Table I). Our recent study suggested that MO-5 cell 
is low in the endocytosis of low density lipoproteins (18), and 
many ligands often enter the cells through common pathways 
(2, 4). We could ask whether MO-5 is resistant to enveloped 
viruses, VSV, or SFV. As seen in Table I, in comparison with 
the parental clone, relative virus yield of  VSV was 10 -2 and 
that of SFV was 0.05 in MO-5. Cytopathic effect of  MO-5 
cells required about 100-fold higher amounts of VSV than 

TABLE t. Relative Resistance To Monensin and Yield of Enveloped 
Viruses in Mon r Clone 

Relative resist- 
Relative virus y ield* 

ance to 

monen-  nigeri- 
Cell lines sin* cin* VSV SFV 

Balb/3T3 1.0 1.0 1,0 1.0 
M O - 5  5.0 3.0 10 -2 5 x 10 -2 

* Relative resistance to various agents is expressed when D10 dose of each 
drug at each cell line is divided by that of the parental Balb/3T3 cell line. 
DTo values of each drug for Balb/3T3 were 20 ng/ml of monensin, which 
inhibited 90% of colony formation of initial number. 

* Cells (4 x 104 cells/well) were infected with VSV or SFV at a moi of 5 and 
then incubated for 2 d. Titers of virus released from Balb/3T3 cells into 
medium were 6 x 10 ~ pfu/ml in VSV and 8 x 10 s pfu/ml in SFV. 
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the virus dose to cause similar cytopathic effect against Balb/ 
3T3 cells (Table II). 

Production of specific viral RNA was also compared be- 
tween VSV-infected Balb/3T3 and MO-5 cells. The cells were 
infected with a moi of 10 at 37"C and VSV-specific RNA 
synthesis was monitored by measuring incorporation of 
[3H]uridine in the presence of actinomycin D at 37°C. In 
comparison with viral RNA synthesis in Balb/3T3, the RNA 
synthesis was greatly reduced in MO-5 (Fig. 1). 

Effect of Low pH Treatment on VSV Production 

It is known that acidification of endosomes is a necessary 
process for endocytosis of enveloped viruses (6, 29). Lysosom- 
otropic amines like chloroquine or ammonium chloride in- 
terfere with the endocytotic process POssibly through raising 
the endosomal pH (30), as well as the lyososomal pH (28). In 
addition, after a brief exposure to low pH, uncoating of 
enveloped viruses is supposed to proceed through fusion of 
the viruses to their plasma membranes of enveloped virus- 
resistant mutants with acidification-negative endosomes (14, 
31). We thus examined whether the decreased yield in MO-5 
is remedied by exposure to low pH. The production of infec- 
tious VSV particles in MO-5 was one hundredth or much less 
of that in the parental Balb/3T3 cells when briefly exposed to 
pH 5.5 or pH 7.5 (Table III). The treatment by low pH could 
not overcome the failure in VSV production in the resistant 
clone. The presence of 0.1 mM chloroquine during the incu- 
bation after the pH treatment at pH 7.5 significantly inhibited 
the VSV production in both Balb/3T3 and MO-5, whereas 

TABLE II. Cytopathic Effect of VSV on Balb/3T3 and MO-5* 

VSV samples Balb/3T3 M O - 5  

I 0-~ 100% 100% 
10 -2 100% 50% 
10 -3 80% 0% 
10 -4 20% 0% 
10 -s 0% 0% 

* Balb/3T3 or MO-5 (4 x 10' cells/well) were infected with various diluted 
samples of VSV (10 -~ dilution corresponding 1o 2 x 106 virus particles per 
ml), and after 48 h, cytopathic effects were tested. 

chloroquine inhibited the virus production only slightly by 
30-35% of the control after the treatment at pH 5.5 (Table 
III). 

pH of Endosomes and Lysosornes 

FITC-dextran was loaded to lysosomes or endosomes by 
incubation at different temperatures. At 20°C for 2 h, most 
FITC-dextran was loaded in endosomes as demonstrated by 
Dunn et al. (32). The amount of pinocytosed FITC-dextran 
was only slightly different between the parent and mutant 
ceils. We estimated the pH value in these two compartments 
from the ratio of the fluorescence intensities according to 
Ohkuma and Poole (28). The fluorescence intensities with 
two different excitation wavelengths and the relative rate of 
I49JLso are indicated in Table IV. The pH values were esti- 
mated from standard curve of the relative rate against pH as 
previously described (9). The pH values of lysosomes of the 
parent Balb/3T3 cells and the mutant MO-5 cells, were about 
5.1-5.2, and those of endosomes were 5.4-5.5 (Table IV). 
There wag no significant difference in the pH values between 
the two cell lines. These pH values were sufficiently low for 
the envelope fusion of VSV to occur. The pH measured from 
single cells also showed little difference between the two cell 
types. Addition of 10 pM monensin caused an increase in the 
pH values of these two compartments to higher than 6.7 (data 
not shown). 

Binding and Intracellular Distribution of  VSV in 
Balb/3T3 and M O - 5  

Several independent assays so far showed that MO-5 was 
resistant to VSV, and thus one might argue whether the 

"]-ABLE III. Effect of Low pH Treatment on VSV Production in 
Balb/3T3 and MO-5* 

0.1 mM 
chloro-  

pH qu ine  8albJ3T3 M O - 5  

5.5 - 6.8 x 10 s (100) 3.0 x 103 (100) 
5.5 + 5.0 x 10 s (74) 2.1 x 103 (70) 

x 

v 

£ 
c 

o: 

> 

l 2 3 4 5 6 

T ime  ( h ) 

FIGunE 1 Product ion o f  VSV RNA by Balb/3T3 and M O - 5  cells. 
The ceils were  exposed to a moi o f  f ive p laque- fo rming  units o f  
virus for  1 h at 37°C in the presence o f  3 p.g/ml o f  ac t inomyc in  D, 
washed wi th PBS, and incubated in 1 ml o f  MEM conta in ing 
ac t inomyc in  D (3 pgJml) and [3H]ur id ine at 2 pCi/ml.  At indicated 
times, radioact iv i t ies o f  [3H]ur id ine incorpora ted into ac id- insoluble 
fract ions were  determined.  O, Balb/3T3; @, MO-5 .  

7.5 - 8.0 x 10 s (100) 5.0 x 103 (100) 
7.5 + 5.6 x 103 (0.7) 1.0 x 103 (20) 

* Cell (5.6 x 104/well) were adsorbed with VSV at a moi of 5 for 60 rain at 
4°C and washed once with PBS to follow exposure for 3 min at 37°C to pH 
5.5 or pH 7.5 MEM medium. Then the cells were further incubated in the 
absence or presence of 0.1 mM chioroquine for 6 h at 37°C, and titer of 
VSV in medium was measured as described in Materials and Methods. In 
parenthesis, relative virus yield (%) was presented as average data from two 
independent assays. 

TABLE IV. Comparison of pH in the Endosomes and the Lysosomes 
of Balb[3T3 and MO-5  Cells* 

Acidic corn- 149s 

Cell l ine par tment  1495 14s0 14s0 pH 

Balb/3T3 Lysosome 0.118 0.056 2.638 5.1 
8alb/3T3 Endosome 0.231 0.078 3.586 5.5 
M O - 5  Lysosome 0.147 0.062 2.826 5.2 
M O - 5  Endosome 0.325 0.110 3.276 5.4 

* Measurement of pH in endosome and lysosome was done as described in 
Materials and Methods. Background of 149s and 14so is 0.023 and 0.020 in 
Balb/3T3, and 0.017 and 0.016 in MO-5, respectively. 

62 THE JOURNAL OF CELL B~OLOGY - VOLUME 101 ,  1 9 8 5  



resistance in MO-5 results from a failure in binding to the cell 
surface. To test this possibility, binding activities of [3H]- 
uridine-labeled VSV were compared in Balb/3T3 and MO-5 
cells. Binding was performed at 4"C for 100 min, and then 
binding activity was assayed from two washings with PBS. 
Balb/3T3 and MO-5 showed similar binding activity; binding 
activities (cpm per 106 cells) were 3,820 +__ 260 in Balb/3T3 
and 3790 _+ 225 in MO-5. 

We compared intraceUular distribution of VSV in Balb/ 
3T3 and MO-5 by using density gradient centrifugation. Balb/ 
3T3 and MO-5 cells infected with [3SS]methionine-labeled 
VSV were followed for various times at 37"C, and then the 
cells were washed and analysed on colloidal silica gradients 
(Fig. 2). Radioactivities associated with VSV were enhanced 
mainly in the endosome/Golgi region with a density of 1.03 
to 1.04 g/ml in Balb/3T3 cells 10 min after the infection, and 
almost all the radioactivities moved in lysosomal fractions 
with densities of 1.05 to 1.06 g/ml 20 min after the infection 
(Fig. 2, A and B). The complete shift of the radioactive VSV 
into the lysosomal fraction of Balb/3T3 cells was observed 60 
min after the infection or after a 3-h chase of the 60-min 
incubation sample with [35S]VSV (Fig. 2, D and E). In con- 
trast, in MO-5 cells, the main peak of the radioactive VSV 
could be observed at regions of endosome/Golgi after 20-40 
min incubation, and half the radioactivities of VSV appeared 
in the lysosomal fraction 60 min after the incubation with 
[35S]VSV (Fig. 2, F-l). After a 3-h chase of the 60-min 

incubation sample of MO-5 cells, most of the radioactivities 
now appeared as a main peak in the lysosomal fraction (Fig. 
2J). Movement of VSV into the endosome and the lysosome 
was found to be very slow in MO-5 cells in comparison with 
the parental cell line. 

Degradation of [3sS]VSV in Balb/3T3 and MO-5 
Enveloped virus like SFV during endocytic pathway is 

degraded in the lysosome (7). Degradation of virus was com- 
pared between Balb/3T3 and MO-5 cells to follow acid- 
soluble radioactivity in the medium (Fig. 3). In virus-infected 
Balb/3T3, significant amounts of radioactivity in acid-soluble 
form appeared 2 h after the [~sS]VSV infection. In comparison 
with the Balb/3T3 cells, greatly reduced amounts of acid- 
soluble radioactivities were found in VSV-infected MO-5 
cells: degradation activity of VSV in MO-5 cells was -20% of 
that in Balb/3T3 cells (Fig. 3). 

DISCUSSION 

In this study we have isolated mutants resistant to monensin, 
and the Mon' clone termed MO-5 was found to be resistant 
to enveloped viruses. Monensin inhibits receptor-mediated 
endocytosis of many ligands, possibly through raising the pH 
of the endocytic vesicles (30). Acidification of the endocytic 
vesicles appears to be essential for the uptake of ligands (33). 
Selection of mutants resistant to monensin is thus expected 
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FIGURE 2 Comparison of intracellular localization of 1013 
[~sS]VSV in Balbl3T3 and MO-5 as determined by equi- 
librium density gradient centrifugation. Cells of Balb/3T3 
(A-E) and MO-5 (F-J) were incubated for 10 (A and F), 20 u 13 

v 20(:} (B and G), 40 (C and H), and 60 (D and I) rain at 37°C 
with [~sS]VSV, and the homogenates were analyzed by G, 
Percoll gradient centrifugation. In E and J, the cells incu- .; 
bated for 60 min with [3ss]vsv were then washed, further 
incubated for 3 h at 37°C, and the homogenates were 
analyzed by Percoll gradient centrifugation. Position of o 
the lysosome (L) was determined by assaying/3-hexos- n- 
aminidase and the region corresponding to the endosome 
or/and Golgi was indicated by E, estimated from density. 
Density marker beads were used to determine the gra- 
dient density. 
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FIGURE 3 Degradation of [35S]methionine-labeled VSV in Balb/3T3 
and MO-5. After infection of Balb/3T3 cells (O) and MO-5 cells (O) 
with [3sS]VSV, acid-soluble radioactivity in media was followed at 
various times as described in Materials and Methods. From each 
value, background radioactivity (150-200 cpm) at time 0 was sub- 
tracted and the corrected values were presented. 

to obtain clones with aberrant endocytosis systems or with 
aberrant acidification. An acidification-defective mutant has 
been previously isolated and identified as a toxin-resistant 
clone (14). A brief exposure of the mutant resistant to diph- 
theria toxin and enveloped viruses to pH 5.0 increased sub- 
sequent production of VSV (14), and thus the mutant appears 
to be altered in the acidification process. The mutant also 
showed failure to release iron from the transferrin possibly 
through the low acidification activity (34). Similarly, Pseu- 
domonas exotoxin A-resistant clones isolated from human 
cancer KB cells by Moehring and Moehring (13) were cross- 
resistant to sindbis virus and only slightly to VSV, and they 
were found to be highly sensitive to ricin. Abortive synthesis 
of sindbis virus RNA in the toxin-resistant mutant was com- 
pletely remedied by low pH treatment (13). Further study has 
suggested that ATP-dependent acidification of endosome is 
altered in the toxin-resistant mutant (31). Somatic cell mutant 
resistant to enveloped viruses thus far appears to be due to 
deficient acidification of endosome. 

Uncoating process of SFV (10) or influenza virus (9) during 
development of viruses in ceils is expected to proceed in the 
acidic compartment known as the endosome. We have yet to 
determine which step in the endocytotic process is mutated 
in MO-5: acidification-defective mutation as described by 
other workers (11, 14) or membrane fusion-defective muta- 
tion, as expected. In MO-5, binding activity of VSV to the 
cell surface was comparable to the parental cell line, but 
movement of VSV from the cell surface into the endosome 
and lysosome was extremely slow in comparison with the 
parent cell (Fig. 2). Measurements of pH in the endosomes 
and the lysosomes of MO-5 cells showed acidic pH similar to 
those in Balb/3T3 (Table IV). Our VSV-resistant clone, MO- 
5, appears not to alter in the acidification activity. The poor 
production of VSV in MO-5 could not be remedied by a brief 
exposure to low pH (Table III): the low pH is necessary for 
enveloped viruses to fuse the cell membrane (35, 36). Mem- 
branous lipid components are recently suggested to be closely 
linked with the endocytosis. Mahoney et al. (37) suggested 
that altered ratio of unsaturated fatty acid to saturated fatty 
acid in membranes affects endocytotic activity of the macro- 
phage. In addition, cholesterol molecules are found to be a 
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prerequisite for the fusion of SFV and membranes (38). In 
MO-5 cells, retardation of the intracellular transport of low 
density lipoproteins (18) as well as VSV (Fig. 2) was observed, 
suggesting alteration of membranous lipids. Endocytosis of 
viruses is supposed to proceed as does that for other ligands: 
adenovirus and epidermal growth factor (39) or a2-macro- 
globulin and VSV (40) are found respectively in the same 
vesicles. Our present data suggest that any alteration in the 
membrane constituents affects a common pathway, plausibly 
an earlier step during the endocytosis process of various 
ligands in MO-5 cells. 

A Chinese hamster ovary cell mutant with a dominant trait 
of ricin-internalization defect has been isolated (41) and the 
mutant was found to carry two aberrant fatty acyl proteins 
(42). The compactin (ML236B)-resistant clone of Chinese 
hamster V79 cell line with defective endocytosis of low density 
lipoproteins (43) showed altered components of membranous 
fatty acid (44). Since MO-5 showed similar sensitivity to ricin 
or compactin (ML236B) as the parental clone (Ono, M., 
unpublished data), an altered lesion of MO-5 appears to be 
different from these mutants defective in ricin-internalization 
(15, 40) or in low density lipoprotein-internalization (43). 
Mutants with defective endocytosis of several ligands have 
different properties, suggesting involvement of many factors 
in the endocytosis. 

In comparison with Balb/3T3 cells, degradation of VSV in 
MO-5 cells was found to be very low (Fig. 3). Proteins of 
enveloped viruses are degraded in lysosomes of the virus- 
infected cells (7). Intracellular transport of VSV was more 
inhibited in MO-5 cells than Balb/3T3 (Fig. 2). VSV thus 
reaches the lysosomal compartment at a much slower rate in 
MO-5 than the parental clone, which might result in the low 
degradation of VSV in the resistant clone. One could also 
argue that VSV particles themselves internalized in MO-5 
cells are resistant to degradation enzyme(s). Enveloped pro- 
teins of VSV after the possible decoating in the endosomes 
are supposed to be highly susceptible to degradation enzyme(s) 
in the lysosomes of Balb/3T3 cells, By contrast, if VSV moves 
into the lysosomes without decoating in the endosomes of 
MO-5 cells, the intact VSV particles might not be susceptible 
to degradation enzyme(s) in lysosomes, Further study of 
whether decoating of VSV actively proceeds in the resistant 
clone is in progress. 
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