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Abstract: Fine aerosols with a diameter of less than 2.5 microns (PM2.5) have a significant negative
impact on human health. However, their measurement devices or instruments are usually expensive
and complicated operations are required, so a simple and effective way for measuring the PM2.5

concentration is needed. To relieve this problem, this paper attempts to provide an easy alternative
approach to PM2.5 concentration estimation. The proposed approach is based on image processing
schemes and a simple linear regression model. It uses images with a high and low PM2.5 concentration
to obtain the difference between these images. The difference is applied to find the region with the
greatest impact. The approach is described in two stages. First, a series of image processing schemes
are employed to automatically select the region of interest (RoI) for PM2.5 concentration estimation.
Through the selected RoI, a single feature is obtained. Second, by employing the single feature,
a simple linear regression model is used and applied to PM2.5 concentration estimation. The proposed
approach is verified by the real-world open data released by Taiwan’s government. The proposed
scheme is not expected to replace component analysis using physical or chemical techniques. We
have tried to provide a cheaper and easier way to conduct PM2.5 estimation with an acceptable
performance more efficiently. To achieve this, further work will be conducted and is summarized at
the end of this paper.

Keywords: PM2.5 concentration estimation; digital image processing; automatic region of interest
selection; data exclusion; linear regression

1. Introduction

Air pollution has been reported to significantly affect human health [1], causing issues such as
premature death, bronchitis, asthma, cardiovascular disease, and lung cancer [2]. Pollutants in the
air include CO, NO2, and particulate matter. Among them, particulate matter with a diameter of
less than 2.5 microns (PM2.5) is a key component which severely affects human health in many ways.
For example, PM2.5 aerosols are able to directly enter the lungs through the respiratory tract and
affect a person’s health [3]. According to the World Health Organization report, more than 90% of
the world’s population inhales large amounts of pollutants every day, which results in approximately
seven million deaths each year [4]. Consequently, PM2.5 concentration estimation is required and has
become an important concern for human health [5,6].
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Many techniques have been developed to measure the PM2.5 concentration, such as the filter-based
gravimetric method [7], tapered element oscillating microbalance method [8], beta attenuation
monitoring method [9], optical analysis method [10,11], and black smoke measurement [12]. These
methods require expensive instruments and professional operations. Some more comprehensive
methods analyze the relationship between human activities and PM2.5 by satellite and big data [13,14].
However, satellite and big data are not available to the common user. Therefore, a simple and effective
method should be sought for PM2.5 concentration estimation.

In urban environments, researchers have developed low-cost sensors. These sensors are widely
deployed throughout the city to monitor the PM2.5 concentration [15]. Although one sensor is low in
cost, it is not effective when widely deployed in a city requiring many sensors. The portable PM2.5

sensor can be used to monitor the PM2.5 concentration at different locations [16]. The portable device
reduces the cost of employing a large number of sensors, but requires more manpower to move the
sensors. Optical sensors, such as TEOM 1400a analyzer, SDS011 (Nova Fitness, Jinan, China), ZH03A
(Winsen, Zhengzhou, China), PMS7003 (Plantower, Beijing China), and OPC-N2 (Alphasense, Braintree,
UK), have been introduced to monitor PM2.5 [17]. However, these optical sensors are more expensive
than ordinary cameras. Since a camera is installed on the top floor of environmental monitoring
stations in Taiwan, using the camera to estimate PM2.5 is a simpler and more effective approach than
employing extra devices.

It should be noted that air pollution is usually characterized by a poor visibility due to light
scattering, such as Rayleigh scattering and Mie scattering, caused by the interaction between light and
airborne particles [18]. In other words, the visibility is reduced, as a large amount of aerosol pollution
scatter the atmospheric light [19], and vice versa. In previous decades, some researchers proposed
methods to estimate the visibility through image processing schemes [20,21]. Recently, an expensive
digital camera was used to take high-quality photos for visibility estimation [22]. These studies have
shown that image processing schemes can be applied to visibility estimation. Furthermore, it was
reported that the PM2.5 concentration is related to visibility reduction [23]. However, these studies did
not develop image processing technologies to estimate the PM2.5 concentration. Therefore, it gives us
hope that the PM2.5 concentration may be estimated through image processing schemes.

The rapid development of computers, algorithms, and artificial intelligence has meant that image
processing methods using machine learning have been widely applied. The main advantage of
using machine learning is that it requires training and does not require defining too many features.
Two types of the training-based algorithms are neural network methods [24] and linear regression
schemes [25]. The neural network methods require a very fast and expensive graphics processing
unit [26]. By contrast, compared to neural network methods, the estimation of spatial variations
by linear regression could be performed by a consumer computer, as economical and predictive
performance were both acceptable [27]. Nowadays, high-quality images can be taken by a commercial
digital camera. This facilitates PM2.5 concentration estimation by image processing schemes.

In order to understand which features can affect PM2.5 concentrations when using image
processing methods, previous research has pointed out that the PM2.5 concentrations may affect
image characteristics, including the distance, hazy model, entropy, contrast, sky color, and solar
zenith angle. It was found that the distance is the feature that has the most influence [28]. This is
consistent with the definition of visibility, and a previous study has also shown that visibility can
be estimated using high-frequency information from an image [22]. The region of interest (RoI)
has also been manually selected to estimate PM2.5 concentrations [28]. However, the estimation
performance might be degraded because of such a manually selected RoI. Besides, the computational
cost might not be cheap, since a support vector regression model with several features was involved
in the estimation. To solve these problems, this paper presents an approach to PM2.5 concentration
estimation, where only a single feature is used and simple linear regression is employed as an estimator.
The main contribution of the proposed approach is to use a series of image processing schemes in
PM2.5 concentration estimation where the images are taken by a consumer camera. It provides a
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valuable alternative to estimating PM2.5 concentration. The main aims of this image-based approach
are as follows: (i) to automatically locate the RoI to replace the manual selection of Liu’s work [28];
(ii) to use a single feature for linear regression instead of multiple features in PM2.5 concentration
estimation, with an acceptable performance; and (iii) to provide a cheaper alternative method with
a camera for estimating the PM2.5 concentration. This paper is organized as follows. The proposed
approach is described in Section 2. In Section 3, real-world data is given to verify the proposed
approach. Finally, a conclusion is made in Section 4.

2. The Proposed Approach

There are two stages involved in the proposed approach. In the first stage, a series of image
processing schemes are employed to automatically locate the region of interest (RoI) to extract a single
feature, which is required in the following stage for PM2.5 concentration estimation. In the second
stage, a simple linear regression model is used with the training data, which contains pairs of the
single feature obtained through the selected RoI and the actual PM2.5 concentration measurement. The
simple linear regression model is then used in PM2.5 concentration estimation with the testing data.
The estimated PM2.5 concentration is compared with the actual value and evaluated by performance
indices. An overall block diagram for the proposed approach is depicted in Figure 1. The details of
the proposed approach are described in the following sections. The proposed automatic RoI selection
approach is described in Section 2.1, the simple linear regression model is given in Section 2.2, and three
performance indices employed to assess the proposed approach are given in Section 2.3.
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Figure 1. A block diagram of the proposed approach.

2.1. Automatic RoI Selection

It should be noted that not all parts of an image are strongly related to the PM2.5 concentration.
Therefore, selecting an appropriate RoI to estimate the PM2.5 concentration is an important step for the
successful application of the proposed approach. It is known that some details in the image will be
blurred when the PM2.5 concentration is high, compared to when there is a low PM2.5 concentration.
In other words, the pixel value of the images with a high and low PM2.5 concentration is different.
This also illustrates that not every feature has a good correlation with the PM2.5 concentration.
It motivates us to use the differences in image pairs of low and high PM2.5 concentrations in automatic
RoI selection. A flowchart of the proposed automatic RoI selection is depicted in Figure 2. A pair of
images, shown in Figure 3a,b, are given to demonstrate how the proposed automatic RoI selection
works. Given a pair of images of low and high PM2.5 concentrations, both images are converted into
gray-level images. The image of a low PM2.5 concentration is denoted as I1 and the one with a high
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PM2.5 concentration is denoted as I2. A series of image processing steps to determine the final RoI is
described in the following.Sensors 2019, 19, x FOR PEER REVIEW 4 of 14 
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2.1.1. Sobel Edge Detection

As the first step, Sobel edge detection is applied to the image pair, I1 and I2, to extract the
high-frequency components [29]. In Sobel edge detection, the gradients used in this approach for the
x-axis and y-axis, respectively, are denoted as Gx and Gy, and given as

Gx =


−1 0 1
−2 0 2
−1 0 1

 and Gy =


−1 −2 −1
0 0 0
1 2 1

, (1)
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where a 3 × 3 mask is employed. The final magnitude Gxy is calculated as

Gxy = |Gx|+
∣∣∣Gy

∣∣∣. (2)

The images produced by Sobel edge detection are denoted as I1,s and I2,s, and are shown in
Figure 4a,b, respectively. In Figure 4, one can see that the low concentration image I1, after Sobel edge
detection, has more details than I2. This shows that more high-frequency components are contained
in I1,s than I2,s. The edge detection results of Figure 3a,b are shown in Figure 4a,b, respectively. We
can see that two buildings on the right of Figure 3a do not appear in Figure 3b. This is because the
PM2.5 concentration of Figure 3b is higher than that of Figure 3a. This means that the edges of the two
buildings are invisible in Figure 4b. The difference of Figure 4a,b is shown in Figure 4c. The results
show that the PM2.5 concentration has a significant effect on the high frequency components of images.
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2.1.2. Otsu Thresholding

After Sobel edge detection, Otsu thresholding [30] is applied to the two images in Figure 4 to
obtain binary images. In Otsu thresholding, the pixels in an image are separated into two groups based
on the histogram. By employing statistical properties, the optimal threshold, where the variance of
each group is minimized and the variance between two groups is maximized, is determined. In Otsu
thresholding, the weighted sum of the variance between two groups is found as

σ2
w = w0(t)σ2

0(t) +w1(t)σ
2
1(t), (3)

where σ2
0(t) and σ2

1(t) represent the variance of each group, and w0(t) and w1(t) are the weights of
two groups separated by the threshold t, respectively. The weights w0(t) and w1(t) are obtained,
respectively, as

w0(t) =
t−1∑
i=0

p(i) (4)

and
w1(t) =

∑L−1

i=t
p(i), (5)
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where p(i) is the probability of the pixel value i and L is the number of gray levels. The variance
between two groups is given as

σ2
o(t) = σ2

− σ2
w(t), (6)

where σ2 is the variance of the whole image. Equation (6) can be transformed into

σ2
o(t) = w0(t)w1(t)[µ0(t) − µ1(t)]

2, (7)

where µ0(t) and µ1(t) are the means of two groups separated by threshold t. The optimal threshold
is then found with t, which maximizes σ2

o(t) in Equation (7). The images I1,s and I2,s after Otsu
thresholding, are denoted as I1,so and I2,so and shown in Figure 5a and Figure 5b, respectively.
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2.1.3. Morphological Dilation

Using the obtained binary images, I1,so and I2,so, shown in Figure 5, morphological dilation is
applied to expand boundaries and to connect neighborhood pixels. The degree of expansion depends
on the size of structuring elements. The equation employed for morphological dilation is given below:

A
⊕

B = {white|B x ∩A , ∅
}
, (8)

where A is the image to be processed and B represents the structuring elements.
In the proposed RoI scheme, the 3 × 3 mask for structuring elements with all white pixels is

used. After morphological dilation, the resulting images are denoted as I1,som and I2,som and shown in
Figure 6a and Figure 6b, respectively.
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2.1.4. Image Subtraction and Labeling

In this step, image subtraction is used to obtain the difference image for I1,som and I2,som in
Figure 6. Then, a labeling scheme is employed to identify connected pixels. The difference image for
I1,som and I2,som is shown in Figure 7, denoted as Id, where pixels with the same value in the image
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pair are eliminated and those with different pixel values remain in a white color. In order to distinguish
whether pixels are connected, a labeling scheme [31] is applied to mark the connected pixels by colors.
The connected neighborhood pixels are marked with the same color. After labeling, the resulting
image, denoted as Idl, is as shown in Figure 8. Finally, the labeled regions with the top three largest
numbers of pixels are considered as candidate regions of interest.
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2.1.5. Selected RoI in the Given Pair of Images

Now, the red flow path shown in Figure 2 will be described. The difference image, denoted as Isd,
for I1,s and I2,s is obtained by image subtraction. Then, the three candidate regions of interest and
the difference image Isd are overlapped to select the pixels in the candidate regions of interest. Next,
the averages of pixel values in each candidate region of interest are calculated. Then, the RoI with the
highest average is determined as the final RoI in the given pair of images, I1 and I2. This completes the
process of automatic RoI selection given in Figure 2 for the given pair of images.

2.1.6. Final RoI Determination

It needs to be pointed out that the image pair given above is just an example provided to show the
process of the proposed automatic RoI selection. In practice, in automatic RoI selection, 30 images with
a low PM2.5 concentration (≤5 µg/m3) and 120 images with a high PM2.5 concentration (≥70 µg/m3)
are randomly selected from the training set. In this study, the images with low and high PM2.5

concentrations are paired by combinations. In other words, the 30 × 120 paired images are included in
the automatic RoI selection process, as described in Figure 2. By using the averages of 3600 results,
the three candidate regions of interest are determined, as shown in Figure 9. The box plot given in
Figure 10 shows the range of average pixel values in each candidate RoI. Since Region 1 has the highest
average value, it is selected as the final RoI to estimate the PM2.5 concentration. The average pixel value
within the final RoI will be used as the only single feature for the following simple linear regression
model in the proposed approach.
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2.2. Simple Linear Regression Model

A simple linear regression model, which is a statistical analysis scheme [25], will be used to
estimate the PM2.5 concentration in the proposed approach. xi is the average pixel value within
the final data and yi is the corresponding PM2.5 concentration measurement in the training data
(where subscript i denotes the ith sample). It is assumed that these two sequences of data have a linear
relation, shown as

yi= α+ βxi, (9)

where α and β are coefficients to be determined. yi denotes an estimate of yi (corresponding PM2.5

concentration). The estimation error between yi and yi is given as

εi = yi − yi. (10)

Employing the least squares algorithm to minimize the estimation error, coefficients α and β can
be found as

α =
N∑

i=1

yi − β
N∑

i=1

xi (11)

and

β =

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi∑N

i=1 x2
i −

∑N
i=1 xi

∑N
i=1 xi

, (12)

where N is the number of samples. Once the simple linear regression model is obtained, it is employed
to estimate the PM2.5 concentration with the testing data.
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2.3. Performance Indices

Inherently, image-based method cannot analyze the ingredients in the air, as in previous works,
thus it is hard to define a parameter to show the performance by error. Instead, three overall
performance indices are used to evaluate the proposed approach. The first one is the root mean square
error (RMSE). It is used to show the error between the recorded value and the estimated value of the
proposed method. RMSE is calculated as

RMSE =

√
1
N

∑N

i=1
(yi − yi)

2, (13)

where yi and yi are the true and estimated PM2.5 concentrations, respectively. The second performance
index is R squared (R2), which has also been used in previous work [28], and is employed to show the
correlation between estimated results and measured values. It is defined as

R2= 1−

∑N
i=1(yi − yi)

2∑N
i=1(yi − y)2 , (14)

where y is the mean of yi. R2 indicates the linearity between yi and yi. When it is linear, R2 = 1. The third
index is F-test, which is the test statistic for an F-distribution under the null hypothesis [32], where the
p-value indicates the statistical significance; that is, it determines whether the result is beyond chance
or not. The p-value will be used as an indicator of statistical significance in the following experiments.

3. Experimental Results

In this section, the proposed approach is verified by a real-world data set, which is described
later in Section 3.1. Then, the results without and with unreliable data exclusion are shown in
Sections 3.2 and 3.3, respectively.

3.1. Experimental Data Sets

In the experiments, the images were taken from Renwu Environmental Monitoring Station,
Kaohsiung City, Taiwan. A consumer camera was set up at the station and took one image every
ten minutes during the period of 7:00 AM to 5:00 PM. In total, 10,084 images were collected from
May to October 2016. We did not exclude sampled images of sunny or rainy days. The image data
were divided into training and testing data, of which the proportions were 60% and 40%, respectively.
The images shown in Figure 3a,b are examples taken from the data set. Furthermore, the hourly PM2.5

concentration and relative humidity (RH) in the corresponding area were obtained from the open data
released by the Environmental Protection Administration, Executive Yuan, Taiwan [33]. Using the
data, a simple linear regression model was obtained and used to estimate the PM2.5 concentration by
employing the proposed approach.

3.2. Results with All Data

In this experiment, all of the data set, including 10,084 images, was used. As described in Section 2,
three candidate regions of interest were automatically selected and the final RoI was determined by the
highest average pixel value among the three candidate regions of interest. Besides, the average pixel
value in the final RoI was used as the only single feature. To compare the estimation performances
for the whole image, Region 1, Region 2, and Region 3 are presented in Figure 11a–d, which show
scattering plots for each case, where the region under consideration is shown in the upper right corner.
The three performance indices with all data are displayed in Table 1. Table 1 indicated that Region
1 had a better performance than the other cases. Besides, all results were statistically significant in
the F-test. In the case with all data, the highest R2 = 0.41, which was achieved by Region 1. One
may see that the performance of the whole image case is inferior to those for candidate regions of
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interest. When Regions 1 to 3 are considered, the performance index R2, from high to low, is Region 1,
Region 3, and Region 2. The result is consistent with the priority for the proposed automatic RoI
selection. In other words, the proposed automatic RoI selection is appropriate for the given data.
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Table 1. The performance indices (with all data).

RMSE (µg/m3) R2 F-test

Whole image 14.54 0.11 p < 0.0001
Region 1 11.88 0.41 p < 0.0001
Region 2 13.53 0.23 p < 0.0001
Region 3 12.55 0.34 p < 0.0001

3.3. Results with Unreliable Data Exclusion

By conducting experiments, it was observed that two factors may affect the performance of the
proposed approach. One is the time difference between the time to take images and the time to measure
the PM2.5 concentration. For the data set described in Section 3.1, the images were taken every ten
minutes, but the PM2.5 concentration was collected hourly. In other words, six images were related to
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only one PM2.5 concentration for each hour. When the PM2.5 concentration changes within an hour, it
might degrade the estimation performance. To solve this problem, the variance of six images taken in
the same hour was calculated. When the variance was greater than 1, the images were considered as
unreliable data and discarded.

The other factor seen to affect the performance of the proposed approach was the RH. There are
many substances, in addition to PM2.5, in the atmosphere that affect visibility, such as sulfur oxides,
nitrogen oxides, carbon monoxide, and water droplets. It has been observed that PM2.5 aerosols are
expanded by absorbing water molecules in the air and this affects visibility [34]. It has also been
reported that the RH affects PM2.5 concentration estimation [28]. Consequently, the effect of RH on
PM2.5 concentration estimation was considered in the proposed approach.

By conducting experiments, we observed that the estimation performance of the proposed
approach was significantly degraded when RH ≥ 65%. Consequently, the data was excluded if its
corresponding RH ≥ 65%. Moreover, it should be noted that human health is mostly endangered by a
higher PM2.5 concentration, instead of a lower one. Consequently, the data with PM2.5 concentrations
less than 5 µg/m3 were excluded. By employing the criteria RH ≥ 65% or PM2.5 concentration less
than 5 µg/m3, 2361 images were excluded from the given data set. With the consideration of data
exclusion, the three performance indices were recorded and are presented in Table 2 for all cases, as
in Table 1. As seen in Table 2, Region 1 had a better performance than the other cases, as in Table 1.
Moreover, all results were statistically significant in the F-test. When comparing the results presented
in Tables 1 and 2, one can see that the RMSE and R2 were obviously improved in all cases with data
exclusion. Additionally, Region 1 exhibited the most improvement. The RMSE was reduced from
11.88 to 8.67, while the R2 increased from 0.41 to 0.73. Again, the results implied that the automatically
selected RoI was appropriate in the given example. To sum up, the proposed approach with automatic
RoI selection and data exclusion is feasible and has an acceptable performance for PM2.5 concentration
estimation. By Table 2, one may observe that the performance of the whole image case is inferior to
those for candidate regions of interest, as in Table 1. According to the results, the performances from
high to low are Region 1, Region 3, and Region 2, which is consistent with the priority for the proposed
automatic RoI selection, as shown in Figure 10. Again, the results have verified the feasibility of the
proposed automatic RoI selection scheme in the given experiments.

Table 2. The performance indices (with unreliable data exclusion).

RMSE (µg/m3) R2 F-test

Whole image 13.17 0.22 p < 0.0001
Region 1 8.67 0.73 p < 0.0001
Region 2 11.51 0.34 p < 0.0001
Region 3 10.76 0.65 p < 0.0001

4. Conclusions

This paper has presented a simple alternative for estimating the PM2.5 concentration in which a
series of image processing schemes and simple linear regression are employed. The proposed method
uses images with a high and low PM2.5 concentration to obtain the difference between these images.
The difference is used to find the RoI. Two main stages are involved in this approach. The first stage
includes a series of image processing schemes, which are used to automatically select the final RoI,
from which only a single feature is extracted and used in a simple linear regression model. The second
stage is employed to find a simple linear regression model with the single feature, by applying the
final RoI identified in the first stage. Then, PM2.5 concentration estimation is performed. Using an
image data set and an open PM2.5 concentration data set, experiments were conducted to verify the
proposed approach. The results indicated that the proposed approach with the automatically selected
RoI achieved the best performance, with R2 = 0.73. Although the proposed method is not as direct
as chemical schemes used to analyze the composition of air, the aim of this paper has been fulfilled,
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i.e., to provide a simple alternative approach for PM2.5 concentration estimation with an acceptable
performance. The proposed approach is not expected to replace component analysis using physical or
chemical techniques. However, we hope that the proposed method can provide a cheaper and easier
way to conduct PM2.5 estimation with an acceptable performance more efficiently. To achieve this,
further work will be conducted and can be summarized as follows:

1. Since the proposed method uses a fixed camera to capture images at the same location, the influence
of images taken in different locations on the results of this study need to be investigated further;

2. Though we have shown that the performance for each candidate RoI is better than the whole image
case, it is still worthy to seek a better way to find the final RoI for the performance improvement;

3. In this study, sunny or rainy days are not considered and they will be researched in the
future. Besides, other weather factors, such as solar conditions, will be considered in the PM2.5

concentration estimation from a higher dimension aspect.
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