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Background. IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-
mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and
treatment options needs to be investigated.Methods. A six-gene immune-related prognostic signature in IDH-mutant LGGs was
constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided
into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways
and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. Results. Stratification and multivariate
Cox analysis unveiled that the six-gene signature was an independent prognostic factor.*e signature (0.806/0.795/0.822) showed
a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and
1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific
immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells,
inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the
survival in IDH-mutant LGGs patients. Conclusion. *e six-gene signature could be a promising prognostic biomarker, which is
promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. *e study also refined the
current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and
overall survival.

1. Introduction

Gliomas are the most common intracranial primary tumor,
including nondiffuse gliomas and diffuse gliomas [1]. Diffuse
gliomas were divided into lower-grade gliomas (grade II and
grade III, LGGs) and glioblastoma (grade IV) by the 2016
World Health Organization classification based on the his-
tological type [1, 2]. Gliomas patients harboring IDH mu-
tations, including IDH1 and IDH2 mutation, have a better
prognosis than the wild type [3]. Most of the LGGs with IDH

wild type were molecularly and clinically analogous to pri-
mary glioblastoma [4]. IDH mutations often occur in LGGs
patients with incidences of up to 75%, while the mutation
frequency of IDH1 is lower in glioblastoma (12%) [5, 6].
Among glioblastoma (GBM), IDHmutations mainly occur in
secondary glioblastoma, progressing from IDH-mutant LGGs
[1]. Except for gliomas, acute myeloid leukemia was the only
cancer with a high incidence of IDH1mutations [7]. Based on
IDH mutations along with the 1p/19q codeletion, tumor
protein 53 (TP53) mutation, ATP-dependent X-linked
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helicase (ATRX) mutation, and telomerase reverse tran-
scriptase (TERT) promoters mutation, gliomas can be clas-
sified into different groups with distinct pathogenesis and
prognosis [1, 8, 9].

IDH1 and IDH2 genes encode isocitrate dehydrogenase 1
(IDH1) and isocitrate dehydrogenase 2 (IDH2) in gliomas.
*e mutation frequency of IDH2 is far less than IDH1, and
the two mutations rarely occur in the same patients [3, 10].
All the IDH1 mutations are heterozygous missense muta-
tions in codon 132. IDH2 mutations are in codon 172,
similar to the IDH1 codon 132 [10, 11]. Both IDH1 and
IDH2 are homodimers, catalyzing the oxidative decarbox-
ylation of isocitrate into α-ketoglutarate and stabilizing
cellular response to oxidative stress [5, 12, 13]. IDH1 mu-
tations can reduce enzymatic activity of the isocitrate and
catalyze the formation of 2-hydroxyglutarate (2-HG) from
α-ketoglutarate [14].*e accumulation of 2-HG is associated
with brain tumorigenesis, but it also inhibits the prolifer-
ation of tumor cells. Besides, IDH1 and IDH2mutations are
early events in the development of gliomas [15]. *erefore,
IDH1 and IDH2 mutations may be involved in the tu-
morigenesis of gliomas.

*e standard of care for diffuse LGGs, including cra-
niocerebral surgery, radiotherapy, and chemotherapy based
on temozolomide or PCV regimen, failed to prevent tumor
recurrence and progression [16]. Currently, immunotherapy
plays an increasingly vital role in cancer treatment and is also
being actively explored in gliomas [17]. Only glioblastoma
patients were incorporated into clinical trials, but glio-
blastoma patients have not shown any survival benefit with
nivolumab [18]. Recent studies have shown glioblastoma
patients with methylated MGMT promoter and no baseline
corticosteroid treated may benefit from immune checkpoint
inhibitors (ICIs) [19]. To promote the application of im-
munotherapy in LGGs, the tumor immune microenviron-
ment (TIME) needs to be investigated [20]. Studies revealed
that IDH mutations were associated with immunosup-
pressive phenotypes [21, 22]. However, these studies did not
explore the classification of IDH-mutant patients based on
TIME and outcome. Moreover, few studies combined IDH1
and IDH2 mutations for further analysis.

Our study constructed a six-gene immune prognostic
signature to predict overall survival in patients with IDH-
mutant LGGs and divided these patients into subgroups
with different outcomes and immunophenotypes. We
identified that the signature was an independent prognostic
factor, emphasizing the feasibility of the six-gene signature
to be a clinical biomarker for IDH-mutant LGGs. Last, a
predictive nomogram model integrating the signature and
clinical factors was developed to predict the overall survival
of IDH-mutant LGGs.

2. Materials and Methods

2.1. Data Collection. IDH-mutant LGGs patients (n� 800)
from three cohorts were included in the study: CGGA_693
RNA sequencing (RNA-seq) cohort (n� 288), CGGA_325
RNA-seq cohort (n� 127), and TCGA RNA-seq cohort
(n� 385). IDH-mutant GBM patients (n� 45) from the

CGGA_693 cohort were included in the study. *e corre-
sponding molecular and clinical information of the two
CGGA RNA-seq cohorts was downloaded from the CGGA
database (http://www.cgga.org.cn/), of which the
CGGA_693 cohort was regarded as the training cohort and
the CGGA_325 cohort as the validation set [23–26]. Simi-
larly, the TCGA RNA-seq cohort (https://portal.gdc.cancer.
gov/) was downloaded by using TCGAbiolinks R package
and was regarded as a validation cohort [27]. Univariate Cox
regression analysis was applied to identify significantly
overall survival-related genes (P< 0.05) with the
CGGA_693 cohort and the TCGA RNA-seq cohort. *en,
there were 253 overlapped protective genes (HR< 1) and
1864 risky genes (HR> 1) between these two cohorts. Fi-
nally, 105 immune-related prognostic genes were identified
from the 2117 prognostic genes based on immune-related
gene set from the Immunology Database and Analysis Portal
(IMMPORT) database (https://www.immport.org/) [28].
Moreover, we performed GO and KEGG pathway analyses
in David (http://david.abcc.ncifcrf.gov) for the functional
annotation of the 105 candidate immune genes.

2.2. Construction of the Immune Prognostic Signature.
Next, in the CGGA_693 cohort (the training set), the LASSO
Cox regression analysis was done on the 105 immune-re-
lated prognostic genes to further reduce the number of
immune genes by using the “glmnet” R package [29]. *en,
14 genes filtered by LASSO analysis were sent to multivariate
Cox regression analysis to develop a six-gene immune-re-
lated prognostic signature in 288 IDH-mutant LGGs pa-
tients of the CGGA_693 cohort [30]. A six-gene-based risk
score was calculated to evaluate each patient’s risk by
weighting the Cox regression coefficients. IDH-mutant
LGGs in the CGGA_693 cohort were classified as either low
or high risk by using the median risk score as a cutoff.
Survival analysis was carried based on the Kaplan–Meier
method and the log-rank test to evaluate the prognostic
performance of the six-gene signature. *e area under the
curve (AUC) was calculated from the time-dependent re-
ceiver operating characteristic (ROC) curves to assess the
sensitivity and specificity by using the “survivalROC” R
package.

2.3. Gene Set Enrichment Analysis (GSEA). To explore dif-
ferences in the biological process between the high- and low-
risk groups, GSEA was performed by using Java GSEA
software with a threshold of nominal (NOM) P value <0.05
and a false discovery rate (FDR) <0.25. *e
c5.bp.v7.2.symbols.gmt and c2.cp.kegg.v7.2.symbols.gmt
files were selected as the reference gene files.

2.4. Estimation of the Tumor Immune Microenvironment.
*e ESTIMATE algorithm was applied to access the infil-
tration of immune cells and stromal cells in tumor samples,
which calculated the ESTIMATE score, immune score,
stromal score, and tumor purity for each sample by the
“estimate” R package [31]. Meanwhile, to explore the
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connection between the six-gene signature and the infil-
tration levels of immune cells, we comprehensively esti-
mated the infiltration abundance of immune cells and
stromal cells by applying four independent algorithms:
xCell, TIMER, Cibersort, and MCP-counter [32–35]. Based
on 28 innate and adaptive immune cells markers from
Charoentong et al. study [36] and the markers of fibroblast
and endothelial cells from the MCP-counter [35], the single
sample gene set enrichment analysis (ssGSEA) algorithm
was used to evaluate the infiltration abundance of 30 im-
mune cells. Besides, we collected immunomodulators, in-
cluding MHC molecules, immunostimulators, and
immunoinhibitors, from Charoentong’s study [36]. *e
abundance of exhausted T cells was estimated by utilizing
ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI)
[37]. Meanwhile, 39 T-cell exhaustion-related genes were
collected by reviewing the recent literature [38]. *e genes
list is shown in Table S1. We also collected gene signatures
predicting immunotherapy and radiotherapy responses [39].
*e enrichment scores of therapeutic signatures were cal-
culated by applying the GSVA R package [40].

2.5. Estimation of Tumor Mutational Burden (TMB).
TCGAmutations R package was utilized to download so-
matic mutation of the TCGA LGGs cohort [41]. *e somatic
mutation and clinical information of the WESeq_286 cohort
were downloaded from the CGGA database (http://www.
cgga.org.cn/) [42, 43]. *e TMB of each IDH-mutant LGGs
patient with the TCGA and CGGA cohorts was estimated as
previously described [44].

2.6. Construction of the Nomogram. To explore whether the
six-gene signature could be an independent predictive factor
of the overall survival for IDH-mutant LGGs patients,
available molecular and clinical features (1p/19q codeletion
status, MGMT promoter methylation, age, gender, grade,
chemotherapy status, and radiotherapy status) were sub-
jected to univariate and multivariate Cox regression ana-
lyses. *en, a nomogram was constructed based on the
results of the multivariate Cox analysis by using the “rms” R
package, which might predict the 1-, 3-, and 5-year overall
survival of IDH-mutant LGGs patients. 1-, 3-, and 5-year OS
calibration were conducted to evaluate the predictive ac-
curacy of the nomogram. Moreover, we used the time-de-
pendent ROC curves to compare the predictive performance
of the six-gene signature with other independent prognostic
markers by the survivalROC R package.

2.7. Statistical Analysis. All statistical analyses of our study
were performed by using R 4.0.3. All reported P values
were two-tailed in the study, and P< 0.05 was regarded as
statistically significant. *e median risk score was defined
as a cutoff value throughout the study. *e Man-
n–Whitney-Wilcoxon test was used for comparison of
immune cell distribution, ESTIMATE score, and gene
expression value.

3. Results

3.1. Screening Prognostic-Related Immune Genes in IDH-
Mutant LGGs through Gene Expression. First, we screened
7598 and 3518 genes that were significantly correlated with
overall survival from the IDH-mutant LGGs cohort of
CGGA_693 (n� 288) and TCGA (n� 385) by applying
univariate Cox regression analysis, respectively
(Figure 1(a)). *en, we divided these genes into risky genes
(HR> 1) and protective genes (HR< 1) based on hazard
ratios (HR) values in the CGGA_693 and TCGA cohorts.
*e protective genes and risky genes were overlapped be-
tween the two cohorts, respectively (Figures 1(b) and 1(c)).
Later, 2117 genes, including 1864 risky and 253 protective
genes, were selected to overlap the immune gene sets
downloaded from ImmPort Portal. Finally, we obtained 105
candidate immune genes, including 97 risky genes and 8
protective genes. *e functional annotations of the 105
candidate immune genes were enriched in GO and KEGG
terms, including signal transduction, immune response,
antigen processing and presentation, and cytokine-cytokine
receptor interaction (Figures 1(g) and 1(h)).

3.2. Construction of a Six-Gene Immune-Related Prognostic
Signature for IDH-Mutant LGGs. To develop an immune-
related prognostic signature, 105 candidate immune genes
were analyzed by the LASSO regression algorithm in the
CGGA_693 cohort (Figures 1(a) and 1(e)). *en, we used
multivariate Cox regression analysis for 14 genes from the
LASSO regression algorithm to identify a risk signature. Fi-
nally, a six-gene risk signature, including two protective genes
and four risky genes, was constructed in the CGGA_693 cohort
(Figure 1(f)). *e risk scores were calculated to predict
prognostic value (risk score� 0.914∗ADM2+(−0.196)∗
BMP2+0.242∗BMP8B+0.361∗CCL25+0.869∗PIK3R3
+ (−0.280)∗ SSTR2). *e IDH-mutant LGGs patients in the
CGGA_693 cohort were separated into low- or high-risk
groups using the median risk score as the cutoff value. In IDH-
mutant LGGs patients of the CGGA training cohort, the
Kaplan–Meier analysis revealed that the high-risk group
(n� 144) had a significantly worse OS than the low-risk group
(n� 144) (median OS: 47.8 months versus not reach; HR for
OS: 3.755 (2.556–5.519); P< 0.0001; Figure 2(a)). *e gene
expression profiles and risk score distribution are presented in
Figure 2(d). *e 1-, 3-, and 5-year AUC of the six-gene sig-
nature for OS were 0.806, 0.795, and 0.822 through the time-
dependent ROC curve analysis in the CGGA_693 cohort,
respectively, showing a moderate prognostic ability for OS of
IDH-mutant LGGs (Figure 2(g)).

3.3. Validation of a Six-Gene Immune-Related Prognostic
Signature for IDH-Mutant LGGs and IDH-Mutant GBM.
To evaluate the predictive value of the signature, IDH-mutant
LGGs patients from the TCGA (n� 385) and CGGA_325
cohorts (n� 127) were enrolled as the validation sets. *e risk
score of each IDH-mutant LGGs patient from the validation
sets was calculated with the same formula. Using median value
as the cutoff value, IDH-mutant LGGs patients were
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Figure 1: *e study process of constructing a six-gene immune-related risk signature. (a) Flowchart of data analysis for screening immune-
related prognostic genes. (b, c) *e Venn diagram for the overlapped genes of HR> 1 and HR< 1 between the CGGA_693 and TCGA
cohorts. (d, e) LASSO Cox regression identified 14 genes related to OS in the CGGA_693 cohort. (f ) Coefficient values by multivariate Cox
for six selected genes. (g, h) Functional annotation of 105 candidate immune genes using GO terms of biological processes and KEGG terms.
CGGA: Chinese glioma genome atlas; TCGA: the cancer genome atlas; OS: overall survival; HR: hazard ratio; IPS: immune-related
prognostic signature.
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Figure 2: Validation of the six-gene risk signature. (a–c) Kaplan–Meier survival analysis for IDH-mutant LGG patients based on the risk
signature in the CGGA_693, TCGA, and CGGA_325 cohorts. (d–f) Risk scores distribution, survival status of each patient, and expression
profile of the six-gene signature in the three cohorts. (g–i) *e time-dependent ROC curve of the six-gene signature in the three cohorts.
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categorized as low- and high-risk patients.*e high-risk group
had a significantly shorter OS than the low-risk group in the
TCGA cohort (median OS: 75.2 versus 134.3 months; HR for
OS: 2.379 (1.418–3.990);P � 0.001) and theCGGA_325 cohort
(median OS: 46.3 months versus not reach; HR for OS: 3.698
(2.124–6.439); P< 0.0001), consistent with the CGGA_693
cohort results (Figures 2(b) and 2(c)). *e gene expression
profiles and risk score distribution were presented in
Figures 2(e) and 2(f). *e 1-, 3-, and 5-year AUC of the six-
gene signature for OS were 0.697/0.688/0.690 and 0.835/0.876/
0.846 through the time-dependent ROC curve analysis in the
TCGA and CGGA_325 cohorts, respectively (Figure 2(h) and
2(i)). *erefore, the risk signature also indicated a promising
prognostic ability for OS of IDH-mutant LGGs in validation
sets. Moreover, we evaluated the predictive value of the six-
gene signature in the IDH-mutant GBM cohort. *e risk score
of each IDH-mutant GBMpatient from the CGGA_693 cohort
(n� 45) was calculated similarly, respectively. We found that
high-risk patients had a worse OS than low-risk patients in the
IDH-mutant GBM cohort (median OS: 13.9 versus 33.6
months; HR for OS: 2.869 (1.351–6.091); P � 0.0061; Sup-
plementary Figure 1).

3.4. Predictive Role of the Six-Gene Immune-Related Signature
with the Survival in Various Clinical Characteristics. To test
the stability of the signature in different subgroups, we
conducted stratification analyses by dividing the
CGGA_693 cohort into different subgroups based on
clinicopathological and molecular information (age, gen-
der, WHO grade, radiotherapy status, chemotherapy status,
1p19q codeletion status, and MGMTpromoter methylation
status). As shown in Figure 3(a), the low-risk group had a
significantly longer median OS than the high-risk group in
patients with female or male, younger or older, WHO grade
II or WHO grade III, no chemotherapy or chemotherapy,
no radiotherapy or radiotherapy, 1p19q noncodeletion or
1p19q codeletion, and unmethylated MGMT promoter or
methylated MGMT promoter. We also evaluated the cor-
relation between clinicopathological/molecular parameters
and risk scores. *e value of risk score was higher in 1p19q
noncodeletion and WHO grade III (P< 0.05, Figures 3(b)
and 3(c)).

3.5. Immune Landscape of High- and Low-Risk Patients with
IDH-Mutant LGGs. We explored the distribution of 22
immune cells in the entire IDH-mutant LGG population.
*e most proportion of M2 macrophages and low pro-
portion of CD8+ T cells were found in IDH-mutant LGGs
patients, which may indicate an immunosuppressive tumor
microenvironment (Figures S8). Further, we explored the
differences in the immune infiltration characteristics be-
tween the low- and high-risk groups. We carried out ES-
TIMATE to investigate the immune characteristics and
tumor purity between the low- and high-risk groups.
Compared to the low-risk group, the high-risk group has a
higher ESTIMATE score, immune score, and stromal score
(P< 0.05; Figure 4(b)). In the IDH-mutant LGGs patients
(n � 288) of the CGGA_693 cohort, the median immune

score was used as the cutoff value to divide patients into
high and low immune score groups. We found that the high
immune score group had a worse outcome than the low
immune score group (median OS: 67.3 versus 108.5
months; HR for OS: 1.809 (1.263–2.591); P � 0.0012;
Figure 4(a)).

To further explore the infiltration abundance of immune
cells in LGGs patients with IDH-mutant, the ssGSEA algo-
rithm was performed on the gene expression data of the IDH-
mutant LGGs cohort (Figure 4(c)). We found that the high-
risk group had higher infiltration levels of innate and adaptive
immune cells, including CD8+ T cell, dendritic cell, and
macrophage (Figure 4(d); Figure S4). Meanwhile, similar
results were obtained by applying four independent immune
algorithms to calculate the immune cells’ infiltration level
(Figure 4(e)). In contrast, a scarcity of innate immune cells
and adaptive immune cells were shown in the low-risk group.
However, we found that the abundance of immunosup-
pressive cells, including Treg and MDSC, and fibroblasts was
higher in the high-risk group (Figure 4(f); Figure S4).
Meanwhile, the abundance of exhausted T cells (Tex) and the
expression level of T-cell exhaustion-related genes were
higher in the high-risk group (Figure S5A). Altogether, we
considered that the high-risk group could be an inflamed
tumor immune microenvironment, but there could be T-cell
exhaustion after immune activation. In contrast, the low-risk
group with scarce immune cells could be related to the
noninflamed tumor immune microenvironment.

3.6. Functional Annotation of the Six-Gene Risk Signature.
We conducted gene ontology (GO) enrichment analysis and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways analysis based on GSEA analysis to gain insight
into the different functions between low- and high-risk
groups. We found that various immune-related biological
processes (irBP), including activation of the immune re-
sponse, macrophage activation, T-cell activation, positive
regulation of cytokine production, positive regulation of
myeloid cell differentiation, and adaptive immune response,
were enriched in the high-risk group. In contrast, a few irBP
were enriched in the low-risk group (Figure 5(a)). It sug-
gested that the high-risk group may be associated with the
enhanced immune phenotype.

To further explore the microenvironment characteris-
tics, we compared the expression of cytokines between the
low- and high-risk groups. *e concentration of multiple
chemokines, including CCL2, CCL4, CCL5, CCL19, CCL20,
CXCL11, CXCL12, and CXCL13, and paired receptors,
including CCR1, CCR2, CCR5, CCR6, CXCR3, and CXCR4,
also was higher in the high-risk group. *ese chemokines
and receptors were associated with the increase of effector
tumor-infiltrating immune cells [39]. In particular, several
crucial chemokines and receptors (CXCL9, CXCL10, and
CXCR3), which can recruit CD8+ T cells into the tumor
microenvironment [45], were upregulated in the high-risk
group (Figure 6(a)). Besides, the high-risk group also
exhibited increased expression levels in immunosuppressive
chemokines, interleukins, and interferons. Several essential
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cytokines were also higher in the high-risk group, such as
CCL5 (recruitingMDSC to tumor site), CCL22 (driving Treg
recruitment into tumor site), and IL-10 (inhibiting cytokine
synthesis) (Figure 6(a); Figure S2A) [46–48]. MHC I and
MHC II expression were significantly higher in the high-risk
group, showing a more robust antigen presentation capacity
(Figure 6(b); Figure S6A).*e high-risk group also exhibited
higher expression of immunostimulators (Figure S6B). To
explore the immunogenicity of IDH-mutant LGGs, we
evaluated TMB based on CGGA and TGCA somatic mu-
tation data of IDH-mutant LGGs.*e TMBwas significantly

higher in the high-risk group, implying that the high-risk
patients owned higher immunogenicity than low-risk pa-
tients (Figure 6(c)). Overall, we speculated that the low-risk
group might show an intrinsic immune escape. Finally, we
evaluated the expression levels of the immune checkpoints
in the two groups, including PD-1, PD-L1, CTLA4, TIM-3,
TIGIT, BTLA, and LAG-3. We found that the high-risk
group had significantly higher PD-1, PD-L1, CTLA-4, TIM-
3, BTLA, and LAG-3 expression levels than the low-risk
group (P< 0.05; Figures 6(d) and 6(e); Figure S6C).
*erefore, the high-risk group could evade the immune
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elimination after immune activation, owing to its high ex-
pression of immune checkpoints. *e above results indi-
cated that high-risk patients might benefit from ICIs. To
further explore the feasibility of immunotherapy, we col-
lected several immunotherapy-predicted pathways. *e
high-risk group had higher enrichment scores of immu-
notherapy-predicted pathways than the low-risk group
(Figure 6(f)).

Furthermore, KEGG pathway analysis showed enriched
pathways in the high-risk group, including the JAK-STAT
signaling pathway and VEGF signaling pathway
(Figure 5(b)). Besides, the high-risk group had higher ex-
pression levels of VEGFA and VEGFC than the low-risk
group (Figure S2B). *e high-risk group also had higher
enrichment scores for predicting radiotherapy response
pathways (Figure S3).

3.7. Six-Gene Immune Signature Is an Independent Prognostic
Factor for IDH-Mutant LGGs. We conducted the univariate
and multivariate Cox regression analyses on risk score and
the clinical/molecular features to identify whether this
signature is an independent prognostic factor. Univariate
Cox regression analysis showed that 1p19q codeletion status
was significantly correlated with better survival, and grade
and risk score were significantly correlated with worse
survival in the CGGA_693 cohort (P< 0.05; Figure 7(a)).
After adjusting for the available clinicopathological factors,
multivariate Cox regression analysis indicated that the six-
gene signature was an independent prognostic factor (HR
for OS: 1.178, 95%CI: 1.119–1.240, P< 0.001; Figure 7(a)).
Consistently, the six-gene signature was an independent
prognostic indicator for OS, validated in the TCGA cohort
(multivariate Cox: HR for OS: 2.031, 95%CI: 1.637–2.520,
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Figure 4: (a) Impact of the immune score on OS in IDH-mutant LGG based on Kaplan–Meier survival analysis. (b)*e correlation between
ESTIMATE score, immune score, stromal score, and risk score. *e high-risk group showed a higher ESTIMATE score, immune score, and
stromal score than the low-risk group. (c) *e heatmap of 30 immune cells and stromal cells in the low- and high-risk groups. (d) *e
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between the low- and high-risk groups. *e asterisks represent the statistical P value (ns: P> 0.05; ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001;
∗∗∗∗P< 0.0001).
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P< 0.001; Figure 7(b)) and the CGGA_325 cohort (multi-
variate Cox: HR for OS: 1.087, 95% CI: 1.002–1.178,
P< 0.044; Figure S7). *erefore, the six-gene immune-re-
lated signature was an independent prognostic factor.

3.8. Nomogram Analysis. To provide a tool predicting the
overall survival of IDH-mutant LGGs for the oncologist,
we conducted a nomogram analysis integrating the risk
signature, tumor grade, and 1p19q codeletion status
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Figure 5: Functional difference between low- and high-risk groups in the CGGA_693 cohort. Gene set enrichment analysis (GSEA) for
analyzing immune phenotype (a) and pathways (b) between low- and high-risk groups. NES: normalized enrichment score.
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(Figure 7(c)). To validate the accuracy of the nomogram,
we carried calibration curves and time-dependent ROC
analysis. *e calibration curves of probabilities for 1-, 3-,
and 5-year OS unveiled excellent agreement between ac-
tual and predicted survival (Figures 7(d)–7(f )). *e time-
dependent ROC curves were plotted to compare the
predictive performance of the six-gene risk signature with
the existing independent indicators. *e six-gene risk
signature (0.806/0.795/0.822) had higher 1-, 3-, and 5-year
time-dependent AUC than grade (0.612/0.638/0.649) and
1p19q codeletion status (0.606/0.658/0.676), indicating
that the six-gene risk signature had a better survival
prediction performance (Figures 7(g)–7(i)).

4. Discussion

IDHmutation is the most stable in gliomas, which persists in
primary, progressive, and recurrent gliomas [49, 50]. Pre-
vious studies suggested that IDH1 mutation could be an
essential contributor to cause the better survival of IDH-
mutant glioma than the IDHwild type [51, 52]. However, the
outcome and tumor immune microenvironment are also
significantly discordant between different IDH-mutant gli-
omas patients. *erefore, gliomas patients with IDH mu-
tation need to be further classified, identifying gliomas
patients with poor prognoses to develop alternative treat-
ment options. Unlike previous studies that only included
IDH1 mutations, we simultaneously enrolled LGGs with
IDH1 and IDH2 mutations. Due to the specific prognosis
and tumor microenvironment of IDH- mutant LGGs pa-
tients, we identified a six-gene immune-related prognostic
signature in IDH-mutant LGGs. Our study data indicated
that the high-risk group had worse survival and higher
immune infiltration than the low-risk group, validated by
TCGA and CGGA databases. Furthermore, our six-gene
signature was identified as an independent prognostic factor

in IDH-mutant LGGs, independent of known prognostic
factors (tumor grade and 1p19q codeletion status). 1p19q
codeletion status is a significant prognostic biomarker in
LGGs, but many previous similar studies did not include the
factor in analyses [53]. Meanwhile, we constructed a no-
mogram model based on the six-gene signature and other
independent prognostic factors, including 1p19q codeletion
status and tumor grade, to assist clinicians in predicting the
survival of IDH-mutant LGGs patients. Moreover, our
signature has a higher prognostic value than the existing
clinical and molecular factors by comparing the AUC value,
which is promising to be a biomarker of prognosis and
immune status.

Our risk signature enrolled six immune-related genes,
including ADM2, BMP2, BMP8B, CCL25, PIK3R3, and
SSTR2. *ese genes play an essential role in tumor immune
response, promising to be novel targets in cancer immuno-
therapy. Adrenomedullin 2(ADM2) gene encodes ADM2
protein, which is a member of the calcitonin gene-related
peptide (CGRP) superfamily [54]. *e biological functions of
ADM2 are similar to Adrenomedullin [55]. *ere is evidence
suggesting that ADM2 can affect macrophage polarization
[56]. *e ADM2 expression was positively correlated with the
malignancy grade in gliomas. As expected, GBM had the
highest expression of ADM2. *e ADM2 promoted GBM cell
proliferation by activating ERK1/2 phosphorylation [57].
BMP2 and BMP8 are ligands of the transforming growth
factor-β (TGF-β) family [58]. BMP2 could be a potentially
immunomodulatory growth factor [59]. Previous studies
suggested that endogenous BMP2 inhibited T-cell differen-
tiation in the thymus [60, 61]. BMP2 promotes the differ-
entiation and apoptosis of GBM cells. In addition, BMP2
raises GBM responsiveness to TMZ by inhibiting the hypoxia-
inducible factor 1α (HIF-1α)/MGMTaxis [62]. *erefore, the
BMP2 was considered as a potential therapeutic target for
GBM. *e CCL25 is a CC motif chemokine ligand with just
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Figure 6: (a) *e expression levels of chemokines and their receptor in the low- and high-risk groups. (b) *e expression profile of
immunomodulators molecule, including MHC molecule, immunostimulator, and immunoinhibitor, in the low- and high-risk groups. (c)
Comparison of TMB in the low- and high-risk groups in the CGGA_693 and TCGA cohorts. (d) Chord diagram showing the correlation of
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levels of immune checkpoint molecules between low- and high-risk groups. (f ) Discordance in the enrichment scores of immunotherapy-
predicted pathways between low- and high-risk groups in the CGGA_693 cohort.
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one receptor: CCR9 [63]. CCL25 may induce the infiltration
of CD8+ T cells exhibiting CCR9 expression in tumors,
showing an anticancer effect [64]. CCL25 can also recruit
MDSC into the tumor microenvironment [65]. Phosphoi-
nositide-3-kinase regulatory subunit 3 (PIK3R3), also known
as p55GAMMA, is a member of the phosphatidylinositol 3-
kinase (PI3K) family [66]. Previous studies confirmed that
PIK3R3 could regulate the AKT/mTOR pathway, promoting
cancer progression [67]. In glioma, overexpression of PIK3R3
can support the growth of GBM cells by engaging IGF2
signaling in vitro, indicating that PIK3R3 is an oncogene in
glioma [68]. Somatostatin receptor 2 (SSTR2) is the family of
G protein-coupled receptors and is widely expressed in solid
tumors [69, 70]. SSTR2 is also expressed in inflammatory
and lymphocytes cells, regulating the proliferative and se-
cretory responses of these cells [69]. SSTR2 could mediate the
cytostatic effects of somatostatin by activating phosphotyr-
osine phosphatase PTPeta and inhibiting ERK1/2 activity in
C6 glioma cells [71]. Anaplastic oligodendrogliomas had a
high expression level of SSTR2A, associated with a better
outcome [72]. *erefore, SSTR2A might serve as a biomarker
and target for gliomas.

*e stability of prognostic models is crucial, deciding
whether the model can be applied to a broader population.
In our study, our six-gene risk signature is effective by
identifying and validating in three independent cohorts
containing the Chinese population and TCGA population.
Moreover, our six-gene risk signature showed a better
survival prediction performance in three cohorts with higher
1-, 3-, and 5-year time-dependent AUC. In general, our risk
signature is stable and reliable.

Besides IDH-mutant LGGs, we explored the prog-
nostic value of our six-gene signature in GBM with
mutated IDH. We found that the six-gene signature was
equally applicable for IDH-mutant GBM. In GBM patients
with mutated IDH, the high-risk patients had a worse

survival than the low-risk patients (P< 0.01). It indicated
that the gene expression patterns were similar between
different tumor grades of IDH-mutant gliomas. Mean-
while, our result also validated the previous viewpoint that
most IDH-mutant GBM were secondary glioblastomas,
which may evolve from IDH-mutant LGGs [49]. In the
new WHO 2021 classification, as expected, all IDH-mu-
tant diffuse astrocytic tumors are regarded as one type:
Astrocytoma, IDH-mutant. In other words, the IDH-
mutant GBM also is considered IDH-mutant astrocytoma.
*erefore, our risk signature could be applied in all IDH-
mutant gliomas.

A comprehensive understanding of the tumor immune
microenvironment (TIME) in IDH-mutant LGGs can boost
the comprehension of the mechanism of immunotherapy.
First, we explored the overall immune cell infiltration status
of the entire IDH-mutant LGGs population. We found that
macrophages, particularly the M2 subtype, account for the
most significant proportion in IDH-mutant LGGs patients,
consistent with other reports that both microglia and
macrophages are enriched in adult gliomas [73, 74].
Moreover, R-2-HG induces glioma-associated macrophages
with suppressive phenotype in IDH-mutant gliomas [75].
CD8+ T cells had a paucity of infiltration levels in these
patients, which may be since IDH1mutation suppressed the
accumulation and activity of CD8+ T cells by the accu-
mulation of 2-HG [22, 52, 76]. Overall, IDH-mutant LGGs
showed a relatively suppressive immune phenotype [77].
Furthermore, the relationship between our risk signature
and immune cell infiltration was investigated to uncover the
status of TIME with low- and high-risk patients in IDH-
mutant LGGs. Overall, the high-risk patients had a higher
immune infiltration than the low-risk patients, including
innate immune cells and adaptive immune cells. Contrary to
our result, immune infiltration is positively correlated with
overall survival in many types of tumors, including lung
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Figure 7: Constructing a nomogram model integrating the six-gene risk signature and clinical factors. (a, b) Univariate and multivariate
Cox analyses showed that the risk signature was significantly correlated with OS in both CGGA_693 and TCGA cohorts. (c) Nomogram
model for predicting the 1-, 3-, and 5-year survival in IDH-mutant LGGs. (d–f) Calibration curve of the nomogram for predicting the
probability of OS at 1, 3, and 5 years. (g–i) *e time-dependent AUC value of the six-gene signature and other clinical factors in the three
independent cohorts.

14 Journal of Oncology



adenocarcinoma, colon cancer, melanoma, and head and
neck squamous cell cancer [78–81]. *ere was a possible
explanation that the tumor microenvironment of high-risk
patients was mostly infiltrated with suppressive immune
cells [51, 82]. Moreover, the high-risk group has a higher
antigen presentation capacity (MHC molecule), immuno-
genicity (TMB), and immunostimulators levels (immu-
nostimulatory molecule). However, we observed the specific
immune escape mechanisms of the high-risk group based on
the cancer Immunoediting hypothesis [83]. More immu-
nosuppressive cells (MDSC, Treg, and fibroblast), immu-
nosuppressive cytokines (CCL5, CCL22, and IL-10), and
immune checkpoint molecules (PD-1, PD-L1, CTLA-4,
TIM-3, LAG-3, and BTLA) were accumulated in the high-
risk group, which could evade immune recognition and
clearance after immune activation. Previous studies also
unveiled that CD8+ T cells could upregulate the expression
of PD-L1 and IDO and promote the recruitment of Tregs in
the tumor microenvironment [48]. *e high-risk group had
more exhausted T cells and higher expression of T-cell
exhaustion-related genes (including checkpoint molecular),
implying that T cells lost polyfunctionality and renewal
capacity in these patients.*us, we speculated that the worse
survival of high-risk patients could be partly owing to the
specific immune escape and T-cell exhaustion in the tumor
microenvironment.

Currently, the standard treatment of LGGs is inade-
quate, which is challenging to prevent glioma recurrence
and progression. In our study, the high-risk group has a
poor prognosis, showing an imperative need to develop
alternative treatment options. Accordingly, we explored
several treatment options that may serve high-risk pa-
tients. Firstly, given the increased expression level of
immune checkpoint and infiltrating abundance of Tex in
the high-risk group, immune checkpoint inhibitors (ICIs)
could be efficacious to reverse T-cell exhaustion and
specific immune escape. IDH-mutant LGGs patients in the
high-risk group are more likely to benefit from ICIs. *e
increasing enrichment scores of immunotherapy-pre-
dicted pathways were also observed in the high-risk group,
further showing the prospect of ICIs in these patients.
Secondly, patients treated with radiotherapy (n � 114) had
a longer median OS than those untreated (n � 24) in the
high-risk group (median OS: 52.0 months versus 34.7
months), although the survival analysis was not statisti-
cally significant. Besides, the high-risk group held higher
enrichment scores for predicting radiotherapy response
pathways. *erefore, combined radiotherapy may be a
feasible treatment option, which needs to be verified in a
future prospective study. Currently, multiple oncogenic
signaling pathways have corresponding targeted drugs,
which have been used in clinical practice. Our study
observed that the JAK-STATsignaling pathway and VEGF
signaling pathway were significantly enriched in the high-
risk group. *ere was evidence suggesting that GBM-
resident TAMs were polarized to an immunosuppressive
phenotype by STAT3 activation [84, 85]. STAT3 activa-
tion blocks antigen presentation and T-cell activation by
inhibiting the maturation of DC [86]. Targeting STAT3

also became an immune therapeutic strategy, which can
modulate tumor-mediated immune suppression [87].
Studies showed that STAT3 signaling was associated with
chemoresistance of TMZ in gliomas [88]. *erefore, JAK-
STAT axis inhibitors could be an option for high-risk
gliomas patients with IDH mutations. It is promising for
high-risk patients to combine JAK-STAT targeting ther-
apy with TMZ, radiotherapy, or immune-related therapy.
Moreover, tumor growth and progression rely on oxygen
and nutrients supplied by blood, and vascular endothelial
growth factors (VEGF) play an essential role in angio-
genesis and vascular permeability [89]. VEGF also can
inhibit cytotoxic T-cell and DC development and promote
the infiltration of immunosuppressive cells, inducing an
immunosuppressive tumor microenvironment and pro-
moting tumor growth by the immune escape of tumor
[90]. In turn, immunosuppressive immune cells generate
proangiogenic factors and improve angiogenesis, forming
a positive feedback loop [91]. In addition, tumor cells
produce VEGF-A, which can increase the expression level
of PD-1, CTLA-4, and TIM-3 in CD8+ T cells, thereby
inducing T-cell exhaustion [92]. In our study, the in-
creased expression of VEGFA and VEGFC was in the
high-risk group. It may be one of the reasons leading to
the exhaustion of T cells in the high-risk group. *erefore,
antibodies (Bevacizumab, Aflibercept, and Ramucirumab)
or tyrosine kinase inhibitors (Sorafenib, Sunitinib,
Regorafenib, and Pazopanib) targeting VEGF pathways
could be effective in high-risk gliomas patients with IDH
mutations. *e application of anti-VEGF molecules could
normalize tumor vessels, increasing immune cells infil-
tration and the delivery of chemotherapy drugs. It is a
theoretical foundation for combined immunotherapy and
chemotherapy in high-risk groups [91]. In sum, our re-
sults bring new treatment options for high-risk patients,
but it still needs to be further verified in prospective trials.

*ere are also several limitations of the present study.
Firstly, a limitation of this study is its retrospective nature.
Although we had applied algorithms to evaluate the two
groups (low- and high-risk) in predicting the sensitivity of
immune checkpoint blockade therapy, more clinical data
and further prospective studies are required. Secondly, an
important clinical factor of LGGs, surgery resection margin,
is not included in the study.

5. Conclusions

In summary, the six-gene immune-related prognostic signature
is able to predict the outcome for patients with IDH-mutant
LGGs independently. It is promising to be a biomarker to
divide IDH-mutant LGGs patients into subgroups with distinct
overall survival and immunophenotypes. *us, the risk sig-
nature could be applied to personalized management and
improve survival. High-risk patients with IDH-mutant LGGs
may benefit from immunotherapy, radiotherapy, and targeted
therapy, and using the risk signature can improve the clinical
outcome of these patients. *ese results promoted the un-
derstanding of immune characteristics and clinical manage-
ment and precise therapy of IDH-mutant LGGs.
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html/TCGAbiolinks.html). *e RNA-seq data (FPKM)
from the CGGA database were downloaded from the web
(http://www.cgga.org.cn/download.jsp).

Conflicts of Interest

*e authors declare that there are no conflicts of interest.

Acknowledgments

*is research was supported by the Beijing Xisike Clinical
Oncology and Research Foundation (Y-HR2019-0185),
National Multidisciplinary Cooperative Diagnosis and
Treatment Capacity Building Project for Major Diseases of
China (Lung Cancer), the National Natural Science Foun-
dation of China (81770928 to Rongrong Zhou), and the
Natural Science Foundation of Hunan (2018JJ2626 to
Rongrong Zhou).

Supplementary Materials

Figure S1. Validation of the six-gene signature in IDH-
mutant GBM patients. Figure S2. *e expression levels of
interleukin and interferons in the low- and high-risk group
in the CGGA_693 cohort. Figure S3. Role of the six-gene
signature in predicting therapeutic responses to radiother-
apy in IDH-mutant LGGs. Figure S4. *e infiltrating dif-
ference of 30 immune cells and stromal cells between the
low- and high-risk groups in the TCGA and CGGA325
cohorts. Figure S5. *e T-cell exhaustion status in IDH-
mutant LGGs between low- and high-risk patients. Figure
S6.*e expression levels of immunomodulators molecule in
the low- and high-risk groups. Figure S7. Univariate and
multivariate Cox analyses showed that the risk signature was
significantly correlated with OS in the CGGA_325 cohort.
Figure S8.Distribution of 22 immune cells between low- and
high-risk groups. Table S1. Exhausted T-cell-related gene
list. (Supplementary Materials)

References

[1] P. Wesseling and D. Capper, “WHO 2016 Classification of
gliomas,” Neuropathology and Applied Neurobiology, vol. 44,
no. 2, pp. 139–150, 2018.

[2] D. N. Louis, A. Perry, G. Reifenberger et al., “*e 2016 World
Health organization classification of tumors of the central
nervous system: a summary,” Acta Neuropathologica, vol. 131,
no. 6, pp. 803–820, 2016.

[3] H. Yan, D. W. Parsons, G. Jin et al., “IDH1 and IDH2 mu-
tations in gliomas,” New England Journal of Medicine,
vol. 360, no. 8, pp. 765–773, 2009.

[4] N. Cancer Genome Atlas Research, “Comprehensive, inte-
grative genomic analysis of diffuse lower-grade gliomas,”New
England Journal of Medicine, vol. 372, no. 26, pp. 2481–2498,
2015.

[5] N. K. Kloosterhof, L. B. Bralten, H. J. Dubbink, P. J. French,
and M. J. van den Bent, “Isocitrate dehydrogenase-1 muta-
tions: a fundamentally new understanding of diffuse glioma?”
@e Lancet Oncology, vol. 12, no. 1, pp. 83–91, 2011.

[6] B. Philip, D. X. Yu, M. R. Silvis et al., “Mutant IDH1 promotes
glioma formation in vivo,” Cell Reports, vol. 23, no. 5,
pp. 1553–1564, 2018.

[7] E. R. Mardis, L. Ding, D. J. Dooling et al., “Recurring mu-
tations found by sequencing an acute myeloid leukemia ge-
nome,” New England Journal of Medicine, vol. 361, no. 11,
pp. 1058–1066, 2009.

[8] J. E. Eckel-Passow, D. H. Lachance, A. M. Molinaro et al.,
“Glioma groups based on 1p/19q,IDH, andTERTPromoter
mutations in tumors,” New England Journal of Medicine,
vol. 372, no. 26, pp. 2499–2508, 2015.

[9] H. Suzuki, K. Aoki, K. Chiba et al., “Mutational landscape and
clonal architecture in grade II and III gliomas,” Nature Ge-
netics, vol. 47, no. 5, pp. 458–468, 2015.

[10] S. W. Park, N. G. Chung, J. Y. Han et al., “Absence of IDH2
codon 172 mutation in common human cancers,” Interna-
tional Journal of Cancer, vol. 125, no. 10, pp. 2485-2486, 2009.

[11] J. Balss, J. Meyer, W. Mueller, A. Korshunov, C. Hartmann,
and A. von Deimling, “Analysis of the IDH1 codon 132
mutation in brain tumors,” Acta Neuropathologica, vol. 116,
no. 6, pp. 597–602, 2008.

[12] N. Ramachandran and R. F. Colman, “Chemical character-
ization of distinct subunits of pig heart DPN-specific isocitrate
dehydrogenase,” Journal of Biological Chemistry, vol. 255,
no. 18, pp. 8859–8864, 1980.

[13] J. M. Bolduc, D. H. Dyer, W. G. Scott et al., “Mutagenesis and
Laue structures of enzyme intermediates: isocitrate dehy-
drogenase,” Science, vol. 268, no. 5215, pp. 1312–1318, 1995.

[14] L. Dang, D. W. White, S. Gross et al., “Cancer-associated
IDH1 mutations produce 2-hydroxyglutarate,” Nature,
vol. 462, no. 7274, pp. 739–744, 2009.

[15] T. Watanabe, S. Nobusawa, P. Kleihues, and H. Ohgaki,
“IDH1 mutations are early events in the development of
astrocytomas and oligodendrogliomas,” American Journal Of
Pathology, vol. 174, no. 4, pp. 1149–1153, 2009.

[16] S. Xu, L. Tang, X. Li, F. Fan, and Z. Liu, “Immunotherapy for
glioma: current management and future application,” Cancer
Letters, vol. 476, pp. 1–12, 2020.

[17] J. T. Miyauchi and S. E. Tsirka, “Advances in immunother-
apeutic research for glioma therapy,” Journal of Neurology,
vol. 265, no. 4, pp. 741–756, 2018.

[18] K. A. Schalper, M. E. Rodriguez-Ruiz, R. Diez-Valle et al.,
“Neoadjuvant nivolumab modifies the tumor immune mi-
croenvironment in resectable glioblastoma,”NatureMedicine,
vol. 25, no. 3, pp. 470–476, 2019.

[19] D. A. Reardon, A. A. Brandes, A. Omuro et al., “Effect of
nivolumab vs bevacizumab in patients with recurrent glio-
blastoma,” JAMA Oncology, vol. 6, no. 7, pp. 1003–1010, 2020.

[20] N. Zhang, H. Zhang, Z. Wang et al., “Immune infiltrating
cells-derived risk signature based on large-scale Analysis
defines immune landscape and predicts immunotherapy re-
sponses in glioma tumor microenvironment,” Frontiers in
Immunology, vol. 12, Article ID 691811, 2021.

[21] A. S. Berghoff, B. Kiesel, G. Widhalm et al., “Correlation of
immune phenotype with IDH mutation in diffuse glioma,”
Neuro-Oncology, vol. 19, no. 11, pp. 1460–1468, 2017.

[22] L. Bunse, S. Pusch, T. Bunse et al., “Suppression of antitumor
T cell immunity by the oncometabolite (R)-2-hydroxy-
glutarate,” Nature Medicine, vol. 24, no. 8, pp. 1192–1203,
2018.

16 Journal of Oncology

https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
http://www.cgga.org.cn/download.jsp
https://downloads.hindawi.com/journals/jo/2021/3766685.f1.zip


[23] X. Liu, Y. Li, Z. Qian et al., “A radiomic signature as a non-
invasive predictor of progression-free survival in patients with
lower-grade gliomas,” NeuroImage: Clinical, vol. 20,
pp. 1070–1077, 2018.

[24] Y. Wang, T. Qian, G. You et al., “Localizing seizure-sus-
ceptible brain regions associated with low-grade gliomas
using voxel-based lesion-symptom mapping,” Neuro-Oncol-
ogy, vol. 17, no. 2, pp. 282–288, 2014.

[25] Z. Zhao, F. Meng, W.Wang, Z. Wang, C. Zhang, and T. Jiang,
“Comprehensive RNA-seq transcriptomic profiling in the
malignant progression of gliomas,” Scientific Data, vol. 4,
no. 1, Article ID 170024, 2017.

[26] Z.-S. Bao, H.-M. Chen, M.-Y. Yang et al., “RNA-seq of 272
gliomas revealed a novel, recurrent PTPRZ1-MET fusion
transcript in secondary glioblastomas,” Genome Research,
vol. 24, no. 11, pp. 1765–1773, 2014.

[27] A. Colaprico, T. C. Silva, C. Olsen et al., “TCGAbiolinks:
an R/Bioconductor package for integrative analysis of
TCGA data,” Nucleic Acids Research, vol. 44, no. 8, p. e71,
2016.

[28] S. Bhattacharya, P. Dunn, C. G. *omas et al., “ImmPort,
toward repurposing of open access immunological assay data
for translational and clinical research,” Scientific Data, vol. 5,
no. 1, Article ID 180015, 2018.

[29] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate de-
scent,” Journal of Statistical Software, vol. 33, no. 1,
pp. 1–22, 2010.

[30] Y.-Q. Liu, F. Wu, J.-J. Li et al., “Gene expression profiling
stratifies IDH-wildtype glioblastoma with distinct prognoses,”
Frontiers in Oncology, vol. 9, p. 1433, 2019.

[31] K. Yoshihara, M. Shahmoradgoli, E. Mart́ınez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[32] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enu-
meration of cell subsets from tissue expression profiles,”
Nature Methods, vol. 12, no. 5, pp. 453–457, 2015.

[33] D. Aran, Z. Hu, and A. J. Butte, “xCell: digitally portraying the
tissue cellular heterogeneity landscape,” Genome Biology,
vol. 18, no. 1, p. 220, 2017.

[34] T. Li, J. Fu, Z. Zeng et al., “TIMER2.0 for analysis of tumor-
infiltrating immune cells,” Nucleic Acids Research, vol. 48,
no. W1, pp. W509–w514, 2020.

[35] E. Becht, N. A. Giraldo, L. Lacroix et al., “Estimating the
population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression,” Genome
Biology, vol. 17, no. 1, p. 218, 2016.

[36] P. Charoentong, F. Finotello, M. Angelova et al., “Pan-cancer
immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint block-
ade,” Cell Reports, vol. 18, no. 1, pp. 248–262, 2017.

[37] Y. R. Miao, Q. Zhang, Q. Lei et al., “ImmuCellAI: a unique
method for comprehensive T-cell subsets abundance pre-
diction and its application in cancer immunotherapy,” Ad-
vanced Science, vol. 7, no. 7, Article ID 1902880, 2020.

[38] S. Liu, X. Liu, C. Zhang, W. Shan, and X. Qiu, “T-cell ex-
haustion status under high and low levels of hypoxia-in-
ducible factor 1α expression in glioma,” Frontiers in
Pharmacology, vol. 12, Article ID 711772, 2021.

[39] J. Hu, A. Yu, B. Othmane et al., “Siglec15 shapes a
non-inflamed tumor microenvironment and predicts the
molecular subtype in bladder cancer,” @eranostics, vol. 11,
no. 7, pp. 3089–3108, 2021.

[40] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, p. 7, 2013.

[41] K. Ellrott, M. H. Bailey, G. Saksena et al., “Scalable open
science approach for mutation calling of tumor exomes using
multiple genomic pipelines,” Cell systems, vol. 6, no. 3,
pp. 271–281, 2018.

[42] T. Jiang, Y. Mao, W. Ma et al., “CGCG clinical practice
guidelines for the management of adult diffuse gliomas,”
Cancer Letters, vol. 375, no. 2, pp. 263–273, 2016.

[43] H. Hu, Q. Mu, Z. Bao et al., “Mutational landscape of sec-
ondary glioblastoma guides MET-targeted trial in brain tu-
mor,” Cell, vol. 175, no. 6, pp. 1665–1678, 2018.

[44] Z. R. Chalmers, C. F. Connelly, D. Fabrizio et al., “Analysis of
100,000 human cancer genomes reveals the landscape of
tumor mutational burden,” Genome Medicine, vol. 9, no. 1,
p. 34, 2017.

[45] N. Nagarsheth, M. S. Wicha, andW. Zou, “Chemokines in the
cancer microenvironment and their relevance in cancer im-
munotherapy,” Nature Reviews Immunology, vol. 17, no. 9,
pp. 559–572, 2017.

[46] Y. Zhang, D. Lv, H.-J. Kim et al., “A novel role of hemato-
poietic CCL5 in promoting triple-negative mammary tumor
progression by regulating generation of myeloid-derived
suppressor cells,” Cell Research, vol. 23, no. 3, pp. 394–408,
2013.

[47] M. H. Mannino, Z. Zhu, H. Xiao, Q. Bai, M. R. Wakefield, and
Y. Fang, “*e paradoxical role of IL-10 in immunity and
cancer,” Cancer Letters, vol. 367, no. 2, pp. 103–107, 2015.

[48] S. Spranger, “Up-regulation of PD-L1, Ido, and T (regs) in the
melanoma tumor microenvironment is driven by CD8(+)
Tcells,” Science Translational Medicine, vol. 5, no. 200, Article
ID 200ra116, 2013.

[49] H. Ohgaki and P. Kleihues, “*e definition of primary and
secondary glioblastoma,” Clinical Cancer Research, vol. 19,
no. 4, pp. 764–772, 2013.

[50] B. E. Johnson, T. Mazor, C. Hong et al., “Mutational analysis
reveals the origin and therapy-driven evolution of recurrent
glioma,” Science, vol. 343, no. 6167, pp. 189–193, 2014.

[51] N. M. Amankulor, Y. Kim, S. Arora et al., “Mutant IDH1
regulates the tumor-associated immune system in gliomas,”
Genes & Development, vol. 31, no. 8, pp. 774–786, 2017.

[52] G. Kohanbash, D. A. Carrera, S. Shrivastav et al., “Isocitrate
dehydrogenase mutations suppress STAT1 and CD8+ T cell
accumulation in gliomas,” Journal of Clinical Investigation,
vol. 127, no. 4, pp. 1425–1437, 2017.

[53] X. Liang, Z. Wang, Z. Dai, H. Zhang, Q. Cheng, and Z. Liu,
“Promoting prognostic model application: a review based on
gliomas,” Journal of Oncology, vol. 2021, Article ID 7840007,
14 pages, 2021.

[54] Y. Takei, K. Inoue, M. Ogoshi, T. Kawahara, H. Bannai, and
S. Miyano, “Identification of novel adrenomedullin in
mammals: a potent cardiovascular and renal regulator,” FEBS
Letters, vol. 556, no. 1-3, pp. 53–58, 2004.

[55] Y. Takei, S. Hyodo, T. Katafuchi, and N. Minamino, “Novel
fish-derived adrenomedullin in mammals: structure and
possible function,” Peptides, vol. 25, no. 10, pp. 1643–1656,
2004.

[56] F. Wang, L. Kong, W.Wang et al., “Adrenomedullin 2 improves
bone regeneration in type 1 diabetic rats by restoring imbalanced
macrophage polarization and impaired osteogenesis,” Stem Cell
Research & @erapy, vol. 12, no. 1, p. 288, 2021.

[57] L. Huang, D. Wang, Z. Feng et al., “Inhibition of intermedin
(adrenomedullin 2) suppresses the growth of glioblastoma

Journal of Oncology 17



and increases the antitumor activity of temozolomide,”
Molecular Cancer @erapeutics, vol. 20, no. 2, pp. 284–295,
2021.

[58] C. H. Heldin and A.Moustakas, “Signaling receptors for TGF-
β family members,”Cold Spring Harbor perspectives in biology,
vol. 8, no. 8, 2016.

[59] C. E. Vantucci, L. Krishan, A. Cheng, A. Prather, K. Roy, and
R. E. Guldberg, “BMP-2 delivery strategy modulates local
bone regeneration and systemic immune responses to com-
plex extremity trauma,” Biomaterials Science, vol. 9, no. 5,
pp. 1668–1682, 2021.

[60] D. Graf, S. Nethisinghe, D. B. Palmer, A. G. Fisher, and
M. Merkenschlager, “*e developmentally regulated expres-
sion of Twisted gastrulation reveals a role for bone mor-
phogenetic proteins in the control of T cell development,”
Journal of Experimental Medicine, vol. 196, no. 2, pp. 163–171,
2002.

[61] A. Varas, “*e role of morphogens in T-cell development,”
Trends in Immunology, vol. 24, no. 4, pp. 197–206, 2003.

[62] L. Persano, F. Pistollato, E. Rampazzo et al., “BMP2 sensitizes
glioblastoma stem-like cells to Temozolomide by affecting
HIF-1α stability and MGMT expression,” Cell Death & Dis-
ease, vol. 3, no. 10, p. e412, 2012.

[63] C. E. Hughes and R. J. B. Nibbs, “A guide to chemokines and
their receptors,” FEBS Journal, vol. 285, no. 16, pp. 2944–2971,
2018.

[64] H. Chen, “Intratumoral delivery of CCL25 enhances im-
munotherapy against triple-negative breast cancer by
recruiting CCR9(+) T cells,” Science Advances, vol. 6, no. 5,
Article ID eaax4690, 2020.

[65] Y. Sun, J. Shao, F. Jiang et al., “CD33+ CD14+ CD11b+ HLA-
DR− monocytic myeloid-derived suppressor cells recruited
and activated by CCR9/CCL25 are crucial for the pathogenic
progression of endometriosis,” American Journal of Repro-
ductive Immunology, vol. 81, no. 1, Article ID e13067, 2019.

[66] X. Xia, A. Cheng, D. Akinmade, and A. W. Hamburger, “*e
N-terminal 24 amino acids of the p55 gamma regulatory
subunit of phosphoinositide 3-kinase binds Rb and induces
cell cycle arrest,”Molecular and Cellular Biology, vol. 23, no. 5,
pp. 1717–1725, 2003.

[67] L. Zhang, J. Huang, N. Yang et al., “Integrative genomic
analysis of phosphatidylinositol 3’-kinase family identifies
PIK3R3 as a potential therapeutic target in epithelial ovarian
cancer,” Clinical Cancer Research: An Official Journal of the
American Association for Cancer Research, vol. 13, no. 18 Pt 1,
pp. 5314–5321, 2007.

[68] L. Soroceanu, S. Kharbanda, R. Chen et al., “Identification of
IGF2 signaling through phosphoinositide-3-kinase regulatory
subunit 3 as a growth-promoting axis in glioblastoma,”
Proceedings of the National Academy of Sciences, vol. 104,
no. 9, pp. 3466–3471, 2007.

[69] Y. C. Patel, “Somatostatin and its receptor family,” Frontiers in
Neuroendocrinology, vol. 20, no. 3, pp. 157–198, 1999.

[70] W. Wu, Y. Zhou, Y. Wang et al., “Clinical significance of
somatostatin receptor (SSTR) 2 in meningioma,” Frontiers in
Oncology, vol. 10, p. 1633, 2020.

[71] F. Barbieri, A. Pattarozzi, M. Gatti et al., “Somatostatin re-
ceptors 1, 2, and 5 cooperate in the somatostatin inhibition of
C6 glioma cell proliferation in vitro via a phosphotyrosine
phosphatase-η-dependent inhibition of extracellularly regu-
lated kinase-1/2,” Endocrinology, vol. 149, no. 9,
pp. 4736–4746, 2008.

[72] R. Appay, E. Tabouret, M. Touat et al., “Somatostatin receptor
2A protein expression characterizes anaplastic

oligodendrogliomas with favorable outcome,” Acta Neuro-
pathologica Communications, vol. 6, no. 1, p. 89, 2018.

[73] S. F. Hussain, D. Yang, D. Suki, K. Aldape, E. Grimm, and
A. B. Heimberger, “*e role of human glioma-infiltrating
microglia/macrophages in mediating antitumor immune
responses1,” Neuro-Oncology, vol. 8, no. 3, pp. 261–279, 2006.

[74] D. Hambardzumyan, D. H. Gutmann, and H. Kettenmann,
“*e role of microglia and macrophages in glioma mainte-
nance and progression,” Nature Neuroscience, vol. 19, no. 1,
pp. 20–27, 2016.

[75] M. Friedrich, R. Sankowski, and M. Platten, “Tryptophan
metabolism drives dynamic immunosuppressive myeloid
states in IDH-mutant gliomas,” Nature Cancer, vol. 2,
pp. 723–740, 2021.

[76] X. van Dierendonck, K. E. de Goede, and J. Van den Bossche,
“IDH-mutant brain tumors hit the Achilles’ heel of macrophages
with R-2-hydroxyglutarate,” Trends Cancer, vol. 7, no. 8, 2021.

[77] C.M. Jackson andM. Lim, “Immunotherapy for glioblastoma:
playing chess, not checkers,” Clinical Cancer Research, vol. 24,
no. 17, pp. 4059–4061, 2018.

[78] S. Zuo, M. Wei, S. Wang, J. Dong, and J. Wei, “Pan-cancer
analysis of immune cell infiltration identifies a prognostic
immune-cell characteristic score (ICCS) in lung adenocar-
cinoma,” Frontiers in Immunology, vol. 11, p. 1218, 2020.

[79] X. Zhang, H. Zhao, X. Shi, X. Jia, and Y. Yang, “Identification
and validation of an immune-related gene signature predic-
tive of overall survival in colon cancer,” Aging, vol. 12, no. 24,
pp. 26095–26120, 2020.

[80] R. Huang, M. Mao, Y. Lu, Q. Yu, and L. Liao, “A novel
immune-related genes prognosis biomarker for melanoma:
associated with tumor microenvironment,” Aging, vol. 12,
no. 8, pp. 6966–6980, 2020.

[81] H. Lyu, M. Li, Z. Jiang, Z. Liu, and X. Wang, “Correlate the
TP53 mutation and the HRAS mutation with immune sig-
natures in head and neck squamous cell cancer,” Computa-
tional and Structural Biotechnology Journal, vol. 17,
pp. 1020–1030, 2019.

[82] R. Glass and M. Synowitz, “CNS macrophages and peripheral
myeloid cells in brain tumours,” Acta Neuropathologica,
vol. 128, no. 3, pp. 347–362, 2014.

[83] R. D. Schreiber, L. J. Old, and M. J. Smyth, “Cancer immu-
noediting: integrating immunity’s roles in cancer suppression
and promotion,” Science, vol. 331, no. 6024, pp. 1565–1570, 2011.

[84] A.-M. O’Farrell, “IL-10 inhibits macrophage activation and
proliferation by distinct signaling mechanisms: evidence for
Stat3-dependent and -independent pathways,” @e EMBO
Journal, vol. 17, no. 4, pp. 1006–1018, 1998.

[85] A. Wu, J. Wei, L.-Y. Kong et al., “Glioma cancer stem cells
induce immunosuppressive macrophages/microglia,” Neuro-
Oncology, vol. 12, no. 11, pp. 1113–1125, 2010.

[86] M. Kortylewski, M. Kujawski, T. Wang et al., “Inhibiting Stat3
signaling in the hematopoietic system elicits multicomponent
antitumor immunity,” Nature Medicine, vol. 11, no. 12,
pp. 1314–1321, 2005.

[87] A. Ou, M. Ott, D. Fang, and A. B. Heimberger, “*e role and
therapeutic targeting of JAK/STATsignaling in glioblastoma,”
Cancers, vol. 13, no. 3, 2021.

[88] Y. Wang, L. Chen, Z. Bao et al., “Inhibition of STAT3 reverses
alkylator resistance through modulation of the AKT and
β-catenin signaling pathways,” Oncology Reports, vol. 26,
no. 5, pp. 1173–1180, 2011.

[89] J. Folkman, “Tumor angiogenesis: therapeutic implications,”
New England Journal of Medicine, vol. 285, no. 21,
pp. 1182–1186, 1971.

18 Journal of Oncology



[90] D. Fukumura, J. Kloepper, Z. Amoozgar, D. G. Duda, and
R. K. Jain, “Enhancing cancer immunotherapy using anti-
angiogenics: opportunities and challenges,” Nature Reviews
Clinical Oncology, vol. 15, no. 5, pp. 325–340, 2018.

[91] M. Geindreau, F. Ghiringhelli, and M. Bruchard, “Vascular
endothelial growth factor, a key modulator of the anti-tumor
immune response,” International Journal of Molecular Sci-
ences, vol. 22, no. 9, 2021.

[92] T. Voron, O. Colussi, E. Marcheteau et al., “VEGF-A mod-
ulates expression of inhibitory checkpoints on CD8+ Tcells in
tumors,” Journal of Experimental Medicine, vol. 212, no. 2,
pp. 139–148, 2015.

Journal of Oncology 19


