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Abstract

The effectiveness of seasonal influenza vaccination programs depends on individual-level compliance. Perceptions about
risks associated with infection and vaccination can strongly influence vaccination decisions and thus the ultimate course of
an epidemic. Here we investigate the interplay between contact patterns, influenza-related behavior, and disease dynamics
by incorporating game theory into network models. When individuals make decisions based on past epidemics, we find that
individuals with many contacts vaccinate, whereas individuals with few contacts do not. However, the threshold number of
contacts above which to vaccinate is highly dependent on the overall network structure of the population and has the
potential to oscillate more wildly than has been observed empirically. When we increase the number of prior seasons that
individuals recall when making vaccination decisions, behavior and thus disease dynamics become less variable. For some
networks, we also find that higher flu transmission rates may, counterintuitively, lead to lower (vaccine-mediated) disease
prevalence. Our work demonstrates that rich and complex dynamics can result from the interaction between infectious
diseases, human contact patterns, and behavior.
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Introduction

Human decision-making profoundly impacts the spread of

disease as well as the effectiveness of intervention measures.

However, decision-making has rarely been incorporated into

mathematical modelling of epidemics [1,2]. Vaccination not only

protects vaccinated individuals but also breaks chains of

transmission that would otherwise occur, thereby indirectly

protecting individuals who have not been vaccinated. Perceived

risks associated with disease and vaccination may critically

influence adherence and thus the ultimate fate of an epidemic.

Although federal mandates minimize these effects for some

diseases, for recurring epidemics like seasonal influenza whose

control relies on voluntary vaccination, our model predicts that

there may be a mutual feedback between behavior and disease:

high prevalence in one season may increase future vaccination,

thereby lowering future prevalence; conversely low prevalence

may decrease future vaccination, which ultimately increases

prevalence.

Recently, methods from classical game theory have provided

valuable insights into interactions between epidemiology and

decision-making [3]. For example, the elderly have high risks of

developing severe or fatal disease when infected by seasonal

influenza and thus are expected to vaccinate at high rates; younger

people, on the other hand, perceive lower risks and thus less

incentive to vaccinate [4]. However, school-aged children have

more social contacts than the elderly and can therefore transmit

the disease in much higher numbers [5]. Game theoretical

approaches have also shown that herd immunity, or the indirect

protection of vaccination, can lead to a so-called ‘‘free-rider’’

problem. Individuals may forgo vaccination when they perceive

that they are sufficiently protected by the immunity of others. This

poses a problem for voluntary vaccination programs, because the

best strategy for a community as a whole may be very different

from that for short-term, individual self-interest. In particular,

complete eradication by voluntary vaccination may be under-

mined by self-interested behavior [2]. However, this problem can

be averted using a fast and reliable ring vaccination strategy that

targets infected individuals and their contacts, as has been shown

for smallpox [6]. This analysis shows that introducing contact

network structure can significantly alter the predicted impact of

rational behavior on vaccine coverage levels.

Here, we explore the interrelationship among network struc-

ture, vaccination decisions and annual influenza dynamics.

Specifically, we investigate the impacts of (1) contact heterogene-

ity, (2) the transmission rate of flu and (3) the number of prior

seasons considered (remembered) when individuals make vacci-

nation decisions on the threshold number of contacts above which

individuals are expected to vaccinate and the resulting fraction of

the population expected to vaccinate. We have developed a
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mathematical framework for studying influenza vaccination

strategies in a population with explicit network structure that

experiences seasonal epidemics and use cobwebbing [7] to predict

oscillatory patterns in vaccination behavior. We show that as the

transmissibility of the disease increases, the equilibrium state

evolves from a fixed strategy into a two-strategy oscillation and

back into a fixed strategy. In reality, however, influenza vaccina-

tion patterns are relatively stable. We explore several explanations

for the discrepancy between our model and the observed patterns

and show that predicted oscillations dampen when individuals

make vaccination decisions based on multiple prior years of

experience.

Methods

Network Theory Background and Epidemiological
Calculations

We model the interplay between the seasonal transmission of

influenza and human vaccination behavior using percolation

theory applied to contact networks. In general, network-based

models have shown that contact patterns can dramatically impact

disease dynamics [8,9]. In a network model, nodes represent

individuals; edges connecting nodes represent contacts that can

lead to disease transmission; the number of edges coming out of a

node is called its degree; and the distribution of these values is

called the degree distribution. Whether an outbreak will grow into

an epidemic depends on the degree distribution. All else equal, the

greater the variance in contact rates, the more vulnerable the

population [10]. Furthermore, an individual’s risk of infection

during an epidemic increases with the individual’s degree [9].

Therefore, with perfect information, individuals should consider

not only their own contact patterns but the local and overall

structure of their community when they decide whether to

vaccinate.

We build on the theory of epidemics on infinitely large random

graphs [10], in which the fate of any outbreak is determined by the

distribution of degrees within the network and the probabilities of

transmission across the edges in the network. In a network where

the degrees of individuals are independent of those of their

contacts, the degree distribution can be represented by wk,k~f
0 . . .?g, where wk is the probability that an arbitrary individual

from the population has k potential transmission contacts with

other individuals. Additionally, each edge (from a node i to a node

j) has a transmissibility, that is a probability that, if infected, i will

transmit disease to j during its infectious period; here we assume

individuals gain immunity upon recovery. If the transmissibilities

can be assumed to be independently and identically distributed

(i.i.d.) random variables on the edges of the network, then one

can calculate the expected size of an epidemic and other key

epidemiological quantities based solely on the expected (average)

transmissibility T across edges in the network. This iid assumption

breaks down if there is variation among nodes in terms of

infectiousness and/or susceptibility, because their edges will have

correlated probabilities of transmission [11,12].

T summarizes several aspects of disease spread including the

frequency of encounters between connected individuals, the length

of infectious period, and the probability that a given encounter will

lead to transmission. Here, we assume that the T values are

constant from year to year and thus ignore virus evolution as well

as naturally acquired cross immunity. Our analyses focus primarily

on the fairly wide range of transmissibility values that have been

estimated for seasonal influenza (0:06vTv0:26) [13].

The size of an epidemic started on a random network depends

in part on the transmissibility T . For a given degree distribution

wkf g, there is a critical transmissibility

Tc~

P?
k~1 kwkP?

k~1 k k{1ð Þwk

ð1Þ

below which a population is expected to experience only small

outbreaks, and above which large epidemics are possible but not

guaranteed. If TvTc, the number of infected individuals in the

epidemic is finite with probability 1. If TwTc, then there is a

nonzero probability that a positive fraction of an infinitely large

population will become infected. The derivation of Tc and other

important epidemiological quantities in the network framework

are given in [10] and [14]. Note, that this theory predicts behavior

in a typical large random network with the specified degree

distribution; and the predictions will be inexact for networks with

extensive clustering or modularity.

Network Degree Distributions
We compare vaccination dynamics across three different classes

of networks: a pseudo-empirical network based on estimated

contact patterns in an urban setting, a homogeneous network in

which all individuals have almost identical degree, and a highly

heterogeneous (scale free) network in which degrees follow a

truncated power law distribution. Although flu networks are

neither completely homogeneous nor scale free, these comparisons

allow us to investigate the importance of network structure on the

interaction between vaccination behavior and flu transmission

dynamics. Our pseudo-empirical urban network is based on a

simulation of urban contact patterns using empirical census,

mobility, school, health care, employment, and other relevant

data. This distribution has been used previously to study the

spread of diseases through typical urban populations [9,13,15]. It

is bimodal with adult and school-aged children having mean

degree of approximately 20 and young children having a lower

mean degree between 5 and 10. The homogeneous network was

generated by applying a homogenizing procedure to the urban

degree distribution. Specifically, given degree distribution hkf g, its

Author Summary

When influenza spreads through a human population, its
dynamics are shaped by both the complex patterns of
contact that arise through our daily activities and individual
decisions about the prevention and treatment of flu
infections. However, until recently, mathematical models
of flu transmission have ignored complex interaction and
behavioral patterns in order to facilitate mathematical
analyses. Here, we combine two recent approaches to
modeling flu–network theory and game theory–to address
the interplay between contact patterns and host vaccina-
tion decisions during seasonal flu outbreaks. Intuitively, the
more contacts one has, the more likely he or she is to
vaccinate. However, under the assumption that people
make rational decisions based on complete information
about the prior seasonal epidemic, vaccination decisions
are predicted to vacillate dramatically. A severe epidemic in
one year inspires high vaccination rates in the following
year; this causes a milder epidemic which then leads to
lower vaccination rates in the following year; and the cycle
begins anew. We find further that the more homogeneous
the contact patterns, the more pronounced the vacillations
will be, and that decision-making based on multiple past
seasons (rather than just one) leads to much more
consistent behavior.

Behavioral Epidemiology on Networks
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mth homogenization (with m odd) has distribution ykf g, where

yx~
Xm{1ð Þ=2

i~0

Xm{1ð Þ=2

k~0

m!

i!k! m{i{kð Þ!
Xx{1

y~1

hy

 !i

hm{i{k
x

X?
y~xz1

hy

 !k

:

This is the expected distribution if one were to calculate the

medians of m random variables drawn from the degree

distribution hkf g many times. The bigger the sample m, the

closer the median of the sample is the to median of the baseline

degree distribution; and thus as m increases, the resulting

homogenized distribution converges to a delta function on the

integers. Our homogeneous network is the m~63 homogenization of

the urban network degree distribution. Power law networks are

characterized by a majority of low degree individuals and a

minority of very highly connected individuals (having much higher

degrees than found in more homogeneous networks). We chose

the parameters of our power law network so that it has the same

critical transmissibility (Tc) as the urban network (0.055) [9]. (The

homogenized urban distribution network has a slightly higher

critical transmissibility (0.062).) Specifically, the probability of

degree k in the power law network is given by

Ck{2e{k=104 ð2Þ

truncated for kw200, where C is a normalizing constant. All three

distributions are shown in Figure 1B.

Vaccination Dynamics
To study the vaccination behavior of individuals, we adopt a

behavior model similar to that of [16–18]. In our model, each

individual decides to vaccinate based on knowing his or her degree

and the average per-contact risk of infection in prior seasons; he or

she does not directly consider personal infection history or the

histories of immediate neighbors. Individuals weigh their per-

ceived costs and benefits of vaccination and decide whether to

vaccinate accordingly. Let u be the baseline component of the

payoff corresponding to the value of a healthy life over the course

of an epidemic.

An individual’s cost of vaccinating (cV ) includes the monetary

cost of vaccination, the perceived vaccine risks (reflecting both the

perceived probability of adverse events and their perceived

severity), long term health impacts, and other intangibles. Perceived

vaccine risks need not reflect actual vaccine risks. The cost of

infection (cI ) also has a monetary component corresponding to

factors including missed work days, as well as the costs of doctors

visits and medication. Influenza vaccines are only partially effective,

that is, some vaccinated individuals remain susceptible to infection.

We assume that, if infected, a vaccinated individual experiences less

severe disease, but is equally infectious as a non-vaccinated,

infected individual. We represent this in our model with a reduction

in the severity (costs) of infection, cR. In our analysis, we assume

perceived values (Table 1) that have been estimated from survey

studies [4] and actual vaccine costs from [19]. Besides the costs of

the infection and vaccination, individuals are also aware of their

number of contacts (degree), and make independent estimates of

the risks of each outcome based on their degree.

The vaccination strategy vk of an individual of degree k is the

probability that the individual will be vaccinated. The payoff to an

individual of degree k as a function of its vaccination strategy vk is

given by the payoff function

Uk vkð Þ~u{vk cV zdkcRð Þ{ 1{vkð ÞakcI : ð3Þ

where dk is the perceived probability of becoming infected if

vaccinated and ak is the perceived probability becoming infected if

not vaccinated. (We assume dkvak). Here, we implicitly allow

individuals to adopt mixed strategies such that vk~1 means

always vaccinate, but vk~0:5 means that the individual chooses to

vaccinate with probability 50%, choosing randomly each time. We

also assume that vaccination has no benefits beyond those related

to the current epidemic period. Given Eq. (3), we can determine

the strategies vB
k that maximize the payoff to an individual for

given risks of infection in terms of the costs and risks (see online

supplement). We use the term rationality to refer to our assumption

that individuals make vaccination decisions that yield the highest

personal utility (based on their perceived risks). A utility function

could also include family health and a wealth of other factors, but,

Figure 1. In a heterogeneous population, an individual’s decision to vaccinate depends on the number of his or her contacts
(degree) and the perceived epidemiological risk in the prior season. (A) When the costs of vaccination and infection are the same for
everybody, an individual should only choose to vaccinate if his or her risk exceeds a calculated threshold depending on the person’s degree (here
T~0:078). (B) The proportion of the population with each given degree are different for a homogeneous network (magenta histogram), an urban
network (blue bimodal histogram), and an exponentially-scaled power-law network (steeply descending green histogram). For a log-linear plot of the
degree distributions, see the online supplement.
doi:10.1371/journal.pcbi.1001062.g001
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for simplicity, we have assumed that individuals behave according

to self-interest.

To make use of these payoff rules, individuals must assess their

risks of infection with (dk) and without (ak) vaccination. Our model

assumes that individuals estimate these risks based on past

information and their own degree, which we assume individuals

know accurately. In the simplest case, we assume that individuals

use the observed distributions of influenza cases in the prior season

to compute the probability that they will become infected in a

future season. That is, they operate under the assumption that

attack rates will be similar from one season to the next. These

estimates will be incorrect to the extent that vaccination patterns

differ from the prior season.

The estimation of epidemiological risks depends on a key

variable: the probability that a random contact remains uninfected

throughout an epidemic (f). Suppose that a fraction vk of

individuals with degree k are vaccinated, and that a fraction r of

vaccinated individuals acquire immunity to infection, whereas

1{r of vaccinated individuals remain fully susceptible. (Note that

if instead we were to assume that vaccination imparts a certain

degree of protection per contact, then high degree individuals

might not have sufficient incentive to vaccinate with imperfect

vaccines because they would likely maintain a high level of

epidemiological risk. See Sec. 4 of online supplement for a brief

discussion of this.) The probability of infection for an unvaccinated

individual with degree k is given by

ak~1{ 1{ 1{fð ÞTð Þk ð4Þ

[8] and using the vaccine efficacy term r from above, the

probability of infection for a vaccinated individual of degree k is

dk~ 1{rð Þak: ð5Þ

To find the probability f of a random contact avoiding infection,

based on the epidemic in the prior season, we solve the following

self-consistency equation (derived in Text S1)

f~

P?
k~1 kwk �vvkrz �vvk 1{rð Þz 1{�vvkð Þ½ � 1{ 1{fð ÞT½ �k{1

n o
P?

k~1 kwk

: ð6Þ

where the vaccination fractions reflect behavior in the prior

season.

Thus, f is the cornerstone of the individual risk assessment

component of the decision process. Because f depends on the net

vaccination rates of individuals of different degrees, the payoff

function for individuals of degree k depends not only on the

individual’s current vaccination strategy vk, but also on the net

vaccination rates for all degrees �vv1, �vv2, . . .. Thus, we rewrite the

payoff functions as Uk vk; �vv1,�vv2 . . .ð Þ. In trying to maximize their

payoffs, individuals decide to vaccinate at the start of an influenza

season when the benefit of vaccination in preventing infection

exceeds its costs; and they base their estimates of current risk on

the prevalence in the previous season. An individual can

approximate f based on how many contacts were sick in the

previous season, however we make the assumption here that

individuals gauge f accurately.

Figure 1A illustrates that higher degree individuals perceive

greater overall risk of infection and are thus more likely to

vaccinate. (We believe that risk (1{f), the probability that a

random contact was infected during the prior season, is a more

intuitive quantity than f and use it in the diagrams throughout this

paper.) The threshold between vaccinating and not vaccinating

moves to lower and lower degree as the risk per edge increases. For

example, at a perceived risk of 0:3, individuals with at least 25

contacts are expected to vaccinate, whereas at a perceived risk of

0:6, this threshold drops to a degree of 12.

We also consider an extended version of the model in which

individuals infer their infection risk from several past epidemics

rather than just from the prior season. Let f̂ft be the perceived

probability of a random contact not becoming infected in year t,
and ft to be the actual probability of a random contact not

becoming infected. A more general model for the dynamics of

perception is then given by the recursive equation

f̂ft~ 1{sð Þft{1zsf̂ft{1, ð7Þ

where the parameter s controls the duration of memory: s~0
means that individuals base their behaviors on only the most

recent epidemic’s size (the simple model), s~1 means individuals

ignore the recent data in favour of their initial belief, and

intermediate values mean that individuals weigh information

across all prior epidemics, with an emphasis on more recent

seasons. In both the simple and extended models, individuals are

essentially making decisions based on infection risk in previous

seasons. These and other model parameters and variables are

summarized in Tables 1 and 2.

Results

To examine the interplay among network structure, decision-

making, and disease spread, we compare vaccination and disease

Table 1. Model parameters describing network structure and cost structure.

symbol description value

wk the probability that a random individual has degree k

T average probability that an infected contact infects an unvaccinated individual during his/her infectious period

cV actual cost of vaccination $27a

cI perceived cost of infection to an unvaccinated individual $73b

cR perceived cost of infection to a partially resistant (immune) person $43b

rperceived perceived efficacy – probability that vaccination yields immunity 0:69b

ractual actual efficacy – probability that vaccination yields immunity 0:77c

All must be specified a priori. ((a) Luce et al. [19], TIV costs Table 2, (b) Galvani et al. [4] (weighted by age in urban population), (c) Bansal et al. [13], Table 2 (weighted by
age in urban population).)
doi:10.1371/journal.pcbi.1001062.t001
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dynamics of the above model in our urban and powerlaw

networks. We start by assuming that individuals only use the

previous season for assessing their risks (that is, risk is determined

by Equation (7) with s~0). Figure 2 illustrates the basic dynamics

of our model and the impact of network structure on them. Our

calculations show that if individuals update their vaccination

strategies each season in response to changes in their perceived

risk, then the actual risk itself will change from one season to the

next (Figure 2A). High risk in the prior season will lead to high

vaccination rates and thus low disease risk in the current season,

and vice versa. A strategy set v�~ v�1 . . . v�?
� �

is a Nash equili-

brium if individuals of each degree are using a best-response

strategy and the annual risk f is not changing; rational responses to

individual-level perceptions of risk lead to vaccination patterns

that are constant from one epidemic period to the next. The Nash

equilibrium always takes the form v�~ 0,0,0,0, . . . ,v�i , . . . ,1,1,1,1,1
� �

with v�i in 0,1½ � as shown in the online supplement. Figure 2B

shows the impact of network structure (degree distribution) on

Nash equilibria levels of risk and the threshold degrees above

which everyone vaccinates at these equilibria. In this case

(T~0:078), the Nash degree threshold for vaccination increases

with the heterogeneity of the degree distribution; however the

fraction of the population predicted to vaccinate at the Nash

equilibrium does not change monotonically with network

heterogeneity (6.8% vaccinate in the urban network, followed by

0.75% and 0.066% in the homogenized and power law networks,

respectively).

Our urban network has most individuals with between 10 and

30 contacts, and thus with our model represents a network ranging

between moderate and high levels of epidemiological risk. Here, at

equilibrium, the degree threshold for vaccination is relatively low

(about 26 contacts) a proportion of 0.07 of the population

vaccinates (higher than in the power-law case), but those

individuals not vaccinating are well enough connected to keep

population-wide risk relatively high (1{f~0:29). In contrast to

the urban network, the power law network is comprised of a

majority of low degree individuals with few opportunities for

disease transmission and a small but important minority of very

high degree individuals that can readily protect themselves

through vaccination. Thus, relative to the urban network, the

scale free (power law) network has a lower equilibrium level of risk

(1{f~0:07), higher degree threshold for vaccination (about 109

contacts), and a smaller fraction of the population that is expected

to vaccinate (0.0007). Our homogenized urban network has fewer

high degree individuals than the urban network, so the population

has lower incentive to vaccinate. At Nash equilibrium, the

proportion vaccinating is lower (0.007) and the epidemiological

risk is higher than in the urban network. Although this model

always has a unique Nash equilibrium, the dynamics need not

converge to this equilibrium, as described below.

When we take a closer look at these dynamics in the more

realistic urban network across three different levels of transmissi-

bility (T ), we find that when risk in the prior season is lowest (zero),

individuals perceive no risk and thus do not vaccinate for the

current season (Figure 3). Consequently, disease sweeps through

the population unhindered by vaccination, resulting in the

maximum possible transmission (risk). Although the equilibrium

risk level is not generally monotone in the transmissibility

(Figures 3A, 3B), the equilibrium level of vaccination does

monotonically increase with transmissibility (Figure 3D), which

will always be the case for the given Eq. (4) and (5) (see Text S1).

Changes in transmissibility affect risk and ultimately the Nash

Table 2. Other variables used when describing the
transmission network structure.

symbol description

Tc critical transmissibility threshold

f probability a random contact is not infected per epidemic

Risk probability of a random contact being infected per epidemic
(that is, 1{f)

ak probability that an unvaccinated individual of degree k

becomes infected

dk probability that a vaccinated individual of degree k becomes
infected

vk probability an individual of degree k will vaccinate

doi:10.1371/journal.pcbi.1001062.t002

Figure 2. Risk from one season to the next and equilibria in the homogeneous, urban and power-law networks. (A) The inter-seasonal
risk map showing the relationship between risk in one season and risk in the next season, assuming everybody acts to maximize his or her payoff (as
in Figure 1A). The line f xð Þ~x indicates constant level of risk from one season to the next, and an intersection of the response risk curve with this line
represents a Nash Equilibrium. The stairstep shape seen in the homogeneous and urban networks is also present in the power-law example but
appears smooth here as the steps are very small in comparison to the line width. (B) Each of these intersection points corresponds to an equilibrium
level of risk (horizontal lines) and vaccination threshold degrees (vertical lines). Both figures assume that transmissibility is T~0:078.
doi:10.1371/journal.pcbi.1001062.g002

Behavioral Epidemiology on Networks
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equilibria vaccination thresholds (Figure 3B). The equilibrium risk

at very low and very high transmissibilities is similar, indicating

that, in terms of risk, additional vaccinations can compensate for

the increased transmissibility and f (Figure 3C).

Figure 4A shows a cobwebbing diagram to illustrate the

dynamics in a particular example and how convergent and

dynamic stability can be determined from it and similar plots in

Figures 2A and 3A. Dynamic stability refers to whether or not a

very slight perturbation will cause oscillations in a population at

equilibrium. In some cases, dynamic instability corresponds to a

situation where the equilibrium requires a degree class to be

partially vaccinating. As individuals base their decisions on f and

their degree, there can only be one partially vaccinating degree

class: individuals with higher degree will get vaccinated, while

those with lower degree will not. Within the partially-vaccinating

degree class, the payoff if vaccinating must be identical to the

Figure 3. The effect of transmissibility on risk and vaccination dynamics. (A) The effect of transmissibility (T) on inter-seasonal change in risk
in the urban network. Equilibria occur at intersections with black (f xð Þ~x) line. (B) As the transmissibility increases, the equilibrium vaccination
threshold and risk change non-monotonically. For low T (T~0:06, magenta) the equilibrium level of risk is less than 0.2 per year, and the vaccination
threshold is greater than the maximum degree in the network. Consequently, nobody in the population is expected to vaccinate. For intermediate T
(T~0:078, blue), the equilibrium risk is near 0.5 per year and only a small fraction of the most connected individuals vaccinate. At high T (T~0:26,
orange), a large fraction of individuals vaccinate, leaving an intermediate level of risk. (C) As both risk and transmissibility increase, vaccination
behavior increases. (D) Consequently, the equilibrium level of vaccination is an increasing function of the transmission rate.
doi:10.1371/journal.pcbi.1001062.g003

Figure 4. Cobwebbing diagrams of risk and vaccination rates. (A) shows the inter-seasonal risk relation and (B) the corresponding fractions of
the population expected to vaccinate as a best response to the perceived risk of infection for the urban network when T~0:26 and s~0. Whether
vaccination rate (or f) is stable from season to season depends on the slope of the inter-seasonal risk relation at the equilibrium (the slope of the
intersections above or likewise in Figures 2A and 3A. When this slope is zero, there is a partially vaccinating degree class at equilibrium and the
system is dynamically unstable, and otherwise (infinite slope) there are no partially vaccinating classes and it is dynamically stable. Additionally, when
the ‘‘average’’ slope has magnitude less than one, the system is convergently stable. Conversely, if the magnitude of the average slope is greater than
one, it is not convergently stable. The dynamics shown are both dynamically and convergently unstable.
doi:10.1371/journal.pcbi.1001062.g004

Behavioral Epidemiology on Networks
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payoff if not vaccinating because Eq. (3) is linear in vk. However,

any arbitrarily small perturbation in risk is sufficient to make the

degree class either fully vaccinate or not vaccinate at all. When

there is no partially vaccinating class, that is, when the threshold

cleanly divides the population into two groups, arbitrarily small

perturbations to risk have no such effect. Convergent stability is

important also, as it indicates whether populations close to the

Nash equilibrium evolve toward it. If the equilibrium is

convergently unstable but there is no partially vaccinating degree

class, a population sitting on the Nash equilibrium will stay there

due to the disincentive for anyone to change their strategy.

However, any small forced perturbation away from the Nash

equilibrium (such as that caused by environmental stochasticity)

will cause the population to move away from the Nash

equilibrium. If the population is convergently stable, but the Nash

equilibrium has a partially vaccinating degree class, we expect the

population to move toward the equilibrium and end in reaching a

2-cycle with only one degree class switching between vaccination

and non-vaccination and other classes maintaining constant

behaviors.

Steady-state risks (corresponding to Nash Equilibria) and

unstable limit cycles change as transmissibility increases for our

homogenized network, simulated urban network, and power law

network (Figure 5). Although we focus our discussion on the

dynamics of risk, we also plot prevalence (proportion of population

infected) (Figure 6). For intermediate transmissibility values, risk is

predicted to oscillate considerably from one season to the next,

with the lower branch reaching close to zero (Figure 5). As noted

above, this indicates virtually no vaccination in one season

followed by wide-spread disease and consequently high vaccina-

tion in the next. The dynamic behavior over the whole

transmissibility interval differs significantly from the bifurcations

seen by [7]. Rather than exhibiting the common period-doubling

cascade to chaos, the bifurcation pattern exhibits a period-

bubbling pattern [20] that returns to steady-state for large

transmissibilities. In fact, it is not possible to achieve an orbit of

more than two oscillation points in our model when only one

season is considered (see Text S1). For transmissibilities below the

critical transmissibility value (TC ) of 0.055, there are no epidemics,

and so risk is always zero. After this cutoff, the Nash risk rises

quickly as epidemics then become possible. At this point we see a

branching of orbit values, where the Nash solution is no longer

dynamically stable. The curve representing Nash solutions takes

on a sawtooth pattern. Higher transmissibilities yield higher

vaccination rates at the Nash equilibrium (see Text S1). The

decreases of the Nash curves in Figure 5 are caused by increasing

vaccination rates of partially-vaccinating degree classes. Recall

that the Nash solutions often contain one partially vaccinating

degree class; the increase of vaccinators within a given class more

than compensates for the increase in transmissibility, causing a

decrease in risk. Increases in the diagrams correspond to cases

when the changes in strategies are not sufficient to counterbalance

the increases in transmissibility or when increases in transmissi-

bility have no effect on the vaccination strategies at equilibrium.

There are two causes for this second situation: newly vaccinating

degree classes may contain no individuals and thus have no effect

on risk; and some values of transmissibility are between the point

that a degree class K is fully vaccinated and that at which Kz1
would begin vaccinating; that is to say, there are no partial

vaccinating classes.

We also found that the oscillations in the homogeneous and

urban networks are more extreme at low T values than in the

power law network, yet they stabilize at high T values. The steady-

state values also show different trends: they exhibit a sharp

decrease around T~0:1 in the urban network and an even

sharper decrease in the homogeneous network, but generally

increase with T in the powerlaw network. Figure 6 shows the same

pattern in prevalence: the increase of prevalence with transmis-

sibility in the power law network and the surprising decreases of

prevalence in the homogeneous and urban networks. These

differences stem from the larger number of medium degree

individuals in the homogeneous and urban network compared to

the power law network. At low values of T , vaccination and

behavioral fluctuations occur only in high degree classes. Although

the power-law network has more extremely high degree

individuals, it has very few of them, and they vaccinate almost

immediately when T is increased; thus compared to the more

homogeneous networks, it experiences less extreme epidemiolog-

ical oscillations. At higher values of T , moderate to high degree

individuals vaccinate and behavioral fluctuations occur in

relatively low degree classes. As low degree groups are much

more numerous in the power-law network than in the other

networks and low degree individuals have very few contacts to

whom they can transmit disease, orbit points converge to the Nash

strategy in the homogeneous and urban networks, whereas the

power law network continues to experience oscillations even at

very high T ’s because they have many more low degree

individuals. While the homogeneous and urban networks exhibit

similar dynamics, there are a few differences. In the homogeneous

network, equilibrium risk and prevalence reach higher levels (both

near 0.4). Compared to the urban network, relatively few of the

individuals in the homogeneous network have incentive to

Figure 5. The effect of transmissibility on risk. The impact of transmissibility on risk (steady-states and orbits) for the (A) homogeneous (B)
urban and (C) power-law networks. Nash equilibria are unstable for the majority of the interval between T~:06 and T~0:26; some individuals waver
between accepting and rejecting vaccination.
doi:10.1371/journal.pcbi.1001062.g005
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vaccinate. The steady-state lines are also less jagged in the

homogeneous network because there are fewer degree classes

whose behavior can change as transmissibility increases.

So far, we have assumed that individuals predict current risk

based solely on prevalence during the prior season. While this

provides valuable insights into the potential impacts of past

behavior and disease spread on future decisions and transmission,

it is unlikely that people base their decisions on such simple

considerations. Thus we also consider cases of Eq. (7) where

0vsv1, corresponding to a geometric-discounting of historical

epidemic risks. Recent seasons are thereby weighted more heavily

than more distant seasons, with s controlling the historical inertia

(Figure 7A). When we extend the time-horizon for decision

making in this way, the oscillations begin to disappear (Figure 7B).

In Figure 8, we see the effect of varying T for different s values.

The general pattern is that the larger s is, the less inter-seasonal

variation there is, and in fact it converges upon the steady-state

strategy. Additionally, the larger the value of s, the longer it takes

the system to forget the initial conditions of our simulation; in the

real world this might mean longer to forget an uncharacteristically

high or low disease prevalence season.

Our results illustrate that network structure greatly impacts

vaccine and disease dynamics, both in terms of the points of

oscillation and the Nash strategy. They also show that, as

individuals increasingly look backwards in time, these oscillations

collapse onto the Nash strategy for all transmissibilities.

Discussion

Network structure can have important effects on the spread of

infectious diseases like influenza. Typically, high degree individ-

uals are more quickly infected [21], but whether an individual

becomes infected during an influenza epidemic depends not only

on his or her contact patterns, but on the overall connectivity of

the population [9]. Our model suggests that vaccination behavior

similarly depends on both local and global connectivity. We have

assumed that individuals have accurate information about the risk

in the previous season and their own degree. In reality,

individuals may approximate their risk by knowing how many

of their contacts were previously sick or also by media sources,

but, in our analysis, they know their own degree and the per-

contact risk in the population in the previous season. Our

comparison of a semi-empirical urban network and an exponen-

tially-scaled power law network shows that, under the simplifying

assumptions of our model, equilibrium behavior may be very

different for individuals with identical numbers of contacts in the

two networks. In the scaled power-law network, most individuals

have very low degree and are unlikely to become infected. Thus

even high degree individuals will perceive a relatively low risk,

because few of their (low degree) contacts will have been infected

in prior seasons. In the urban network model, contact patterns

are more homogeneous and thus epidemiological risk is also more

homogeneous.

Figure 6. The effect of transmissibility on prevalence. The impact of transmissibility on prevalence (steady-states and orbits) for the (A)
homogeneous (B) urban and (C) power-law networks.
doi:10.1371/journal.pcbi.1001062.g006

Figure 7. The effect of memory on vaccination decisions. (A) Contributions of past seasons to current perceptions of risk, under different s
values. (B) The impact of prior information on oscillations when T~0:26: longer memory decreases variability.
doi:10.1371/journal.pcbi.1001062.g007
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In all cases, we find the likelihood that one vaccinate increases

with degree, because the probability of infection increases with

number of contacts (specified in Eq. (4) and Eq. (5)). This is

consistent with observed correlations in vaccination behavior from

one year to the next [22]. However, given that children tend to

have higher numbers of contacts than adults, it is not necessarily

consistent with the empirical observation that older adults

vaccinate at the highest rates, followed by adults and then children

[4]. While this discrepancy may reflect non-rational or public

policy-driven behavior, it also stems, in part, from our simplifying

assumption that risks associated with flu are homogeneous

throughout the population. In fact, the severity of seasonal flu is

thought to be highest for the youngest and oldest age groups [23].

This model can be extended easily to explicitly consider this

pattern and other age-specific behavior, risks and perceptions; and

such extensions may reveal complex interactions between

sociological (network) and biological driven risks factors.

Our model also suggests that vaccination behavior may depend

critically on the transmissibility of the circulating strain of

influenza. For low levels of transmissibility, below the epidemic

threshold, there is no epidemiological risk and thus nobody

vaccinates. Just above the epidemic threshold, vaccination levels

are predicted to converge to a stable Nash equilibrium, and the

proportion of the population vaccinating increases as the

transmissibility of the strain increases (Figure 3D). Individuals

with more than a threshold number of contacts are expected to

vaccinate, while those with fewer contacts are not. However,

above a critical value of transmissibility, the model shows

oscillatory vaccination behavior rather than an attracting

equilibrium strategy. The population alternates between near-

universal vaccination of all but the least connected individuals and

vaccination limited to only the most highly connected individuals

(Figure 6). Ultimately, at unrealistically high levels of transmissi-

bility, the dynamics stabilize on a single equilibrium strategy.

Differences in network shapes largely affect these characteristics;

for example, in the urban network, increases in transmissibility

may actually decrease prevalence, a trend not possible in our

power law network (Figure 6) and one that seems not to be

highlighted in previous models.

A natural question that emerges is whether a corresponding

homogeneous-mixing model would exhibit these types of oscilla-

tions. Regardless of presence or absence of network structure,

there may be a general propensity for such behavior-prevalence

systems to oscillate, due to overcompensation mechanisms similar

to those that cause oscillations in simple predator-prey models

such as the Lotka-Volterra model. For instance, when disease

prevalence is very low due to high vaccine coverage, rational

individuals will stop vaccinating. The susceptible pool then grows

and an outbreak occurs. Individuals begin to vaccinate again in

large numbers, which thus drives the prevalence down to levels

even lower than would occur if vaccine coverage were constant

over time, and the cycle repeats. In empirically plausible

parameter regimes of previous (non-network) behavior-prevalence

models, little or no oscillatory behavior has been observed [4,24].

However, in other parameter regimes, these and other non-

network models oscillate in ways that mirror the oscillations

observed in the present network model [24,25]. When we

compared our homogenized urban network with our original

urban network, there were no major differences, but whether

network structure per se enhances or suppress oscillations in

behavior-prevalence systems is not yet clear and would be an

interesting topic for future research.

To what degree are oscillations seen in reality? Annual rates are

not constant, but neither are they oscillatory to the extent possible

in the model [26–28]. There was rapid expansion in coverage in

the 1980’s and 1990’s as seasonal influenza vaccines gained

acceptance, followed by a saturation to approximately constant

coverage [26,28]. An autocorrelation analysis of these data sets

indicates no statistically significant correlation at lag two, or any

other lag up to and including five years. A straightforward, but

unlikely explanation is that the transmissibility of influenza is

below the level at which vaccination behavior is predicted to

Figure 8. Longer-term memory reduces oscillations for various transmissibilities. As s increases, individuals integrate more of their prior
epidemiological experiences into their decision-making and two-cycles disappear. (A) s~0:30 (B) s~0:45 (C) s~0:60 (D) s~0:85.
doi:10.1371/journal.pcbi.1001062.g008
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fluctuate. Estimates for the transmissibility of influenza approxi-

mately span the range 0:06vTv0:26 [13]. The explanation

more likely rests on the assumptions of our vaccination decision

model. In our initial model individuals make choices based solely

on attack rates in the prior seasons. However, people use more

heterogeneous decision heuristics and do not base their decisions

exclusively on such information. Our model assumes that by

knowing the number of their own contacts and per-contact risk in

the population, individuals accurately estimate their own risks of

infection in a comparable outbreak (same pathogen, same

population, same levels of vaccination). In reality, one might not

be able to estimate previous risk accurately and one may not

properly assess his or her own likelihood of becoming sick even

given perfect information about prior prevalence. Additionally, we

assumed that individuals slightly over a particular risk cut-off

vaccinate and those slightly under this cut-off do not. By contrast,

the decision processes might be less sensitive to such small

differences and possibly less deterministic. Lastly, some people

might think back further in predicting their risk for the current

season, and this degree of heterogeneity of memories may prevent

oscillations.

In a study of measles vaccination, Philipson concludes that

disease prevalence is an important factor in determining

individuals’ vaccination decisions [29]. Although our model

assumes that this is also the case for influenza, there are likely

many constraints on vaccine coverage other than individual

choice, including vaccination policies, accessibility of immuniza-

tion services, and having sufficient vaccine production capability to

meet demand [30]. Individual choice itself likely depends also

upon factors other than the attack rate in the previous season, such

as the recommendations of physicians, the opinions of peers, an

individual’s state of health, and vaccine cost [27,31]. Any tendency

toward periodic cycles in vaccine coverage in the empirical data

could easily be masked by these other determinants of vaccine

coverage in real settings. Additionally, if behavior were modelled

stochastically, so that greater marginal utility led to increased

likelihood of vaccination, it would also likely dampen oscillation.

Indeed, multi-season memory alone is sufficient to dampen the

two-cycles observed in the model (Figure 8). The simplicity of our

model allows a large degree of analytical rigour and cobwebbing

facilitates comparison with classical models of population biology.

Moreover, it demonstrates that global network structure can

strongly influence not only the disease dynamics directly, but less

directly as well by altering vaccination behavior.

Supporting Information

Text S1 Derivations and theory.

Found at: doi:10.1371/journal.pcbi.1001062.s001 (0.30 MB PDF)
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