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Abstract

This study presents a comparison of quantitative MRI methods based on an efficiency metric that
quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of
unbiased parameter estimates, an intrinsic efficiency metric 7 was derived for fully-sampled
experiments which can be used to both optimize and compare sequences. Here we optimize and
compare several steady-state and transient gradient-echo based gMRI methods, such as magnetic
resonance fingerprinting (MRF), for joint 7; and T, mapping. The impact of undersampling was also
evaluated, assuming incoherent aliasing that is treated as noise by parameter estimation. In vivo
validation of the efficiency metric was also performed. Transient methods such as MRF can be up to
3.5 times more efficient than steady-state methods, when spatial undersampling is ignored. If
incoherent aliasing is treated as noise during least-squares parameter estimation, the efficiency is
reduced in proportion to the SNR of the data, with reduction factors of 5 often seen for practical SNR
levels. In vivo validation showed a very good agreement between the theoretical and experimentally
predicted efficiency. This work presents and validates an efficiency metric to optimize and compare
the performance of gMRI methods. Transient methods were found to be intrinsically more efficient
than steady-state methods, however the effect of spatial undersampling can significantly erode this
advantage.

Introduction

Over time many methods have been developed that aim to estimate T; and T as effectively as possible, from
classical inversion recovery and spin-echo sequences, to steady-state sequences (Deoni et al 2003, Welsch et al
2009, Heule et al 2014, Teixeira et al 2017, Shcherbakova et al 2018) and more recently MR fingerprinting (MRF)
(Ma et al 2013). Selecting which method to favor for any given scenario can be challenging since the achieved
precision (statistical uncertainty) and accuracy (proximity to true value), and the way these change with
acquisition time are generally complex functions of the pulse sequence settings, tissue properties, specific details
of the hardware used and the type of image reconstruction.

Nevertheless, comparisons have been made using metrics that strive to evaluate the intrinsic merits of each
method (Crawley and Henkelman 1988, Jones ef al 1996, Deoni Rutt and Peters 2003, Ma et al 2013, Asslander
etal2019a, Assldnder 2020), accounting for the differences external to the methods themselves. Fundamentally,
these differences are the amount of data and the SNR of the experiment. The amount of data has been
normalized using either the total number of measurements (Jones et al 1996) or the total acquisition time
(Edelstein et al 1983, O’Donnell et al 1986, Crawley and Henkelman 1988, Deoni et al 2003, Ma et al 2013, van
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Valenbergetal 2017, Asslander 2020). The SNR of the experiment has been normalized using the voxel volume
(Deoni et al 2003), a combination of the thermal noise level with the proton density (Edelstein et al 1983,
O’Donnell et al 1986, Jones et al 1996, van Valenberg et al 2017, Assldnder et al 2019a, Asslinder 2020) or the
signal dynamic range of each method (Crawley and Henkelman 1988). Some of these studies (Ma et al 2013,
Assldnder et al 2019a, Assldnder 2020) showed that balanced MRF (using a balanced readout) outperforms
driven equilibrium (DE) single pulse observation of T;/ T, (DESPOT) for both T; and T, estimation, but it is as yet
unclear how other commonly used methods, like spoiled MRF (Jiang et al 2015) (using a gradient spoiled
readout) or double echo steady-state (DESS) (Welsch et al 2009), compare. Furthermore, methods based entirely
on gradient spoiled readouts are popular for their insensitivity to off-resonance at a cost of an SNR penalty—it is
unclear whether this trade-off benefits 7; and T, estimation.

In this work we focus on precision and propose a general efficiency metric that integrates the concepts from
figures of merit used so far, quantifying the encoded information from a spin dynamics perspective, but not how
itis decoded by the reconstruction. The resulting metric is then used to optimize and comprehensively compare
arange of well-established methods that simultaneously estimate T; and T5. Finally, we discuss the utility of the
efficiency metric and other important considerations when comparing gMRI methods.

Theory

We consider that each voxel contains a single pool of spins characterized by unique values of Tj and T); that the
signal models for the different qMRI methods are accurate, subject to additive Gaussian noise; and that
parameter estimation results in an unbiased estimate of the parameters of interest 6 (i.e. Tj and T; but potentially
other parameters). Therefore, the error in the estimates is defined by the precision that is characterized by the
standard deviation oy of the estimated parameter 6. Analogous to the definition of SNR, the precision can also be
represented by the parameter-to-noise-ratio (NR):

ONR = i (1)
09

Although the ONR directly relates to the SNR, it also depends on how much information about the parameter
being measured is encoded in the data. Further, the SNR can be broken down to consist of an intrinsic SNR
(relating to the receiver system, field strength, resolution etc) and the amount of data acquired. These
dependencies have been highlighted in previous works (Edelstein et al 1983, O’Donnell et al 1986, Crawley and
Henkelman 1988, Jones et al 1996) and can be expressed in the following equation that serves to define efficiency
with which a parameter 6 is estimated, 7(0):

ONR = 1)(0) - SNRopay = [ Tacq - )

Here, SNR,,,.. = M, /0y represents the maximum SNR of any one measurement. M is defined as the maximum
signal from a voxel that would be measured by applying a 90° pulse with the magnetization in thermal
equilibrium; this is a characteristic of the system (field strength and coil) and acquisition geometrical parameters
(resolution and field of view); oy is the receiver noise standard deviation (i.e. what would be measured during
one k-space data readout scaled to account for differences in scaling between k-space and image domain) and is
characteristic of the k-space readout and its bandwidth; T, is the total acquisition duration for all data required
to estimate the parameter 6. Rewriting equation (2) with 7 (0) as its subject gives:

77(0): ONR 1 . 0 (o)) 1 0 o)) 1

SNR ax  Tacq a oy Mo [ Toeq h UgRLB Moy | Tag .

An upper bound on the efficiency can be obtained without need for physical measurement by calculating the
Cramér—Rao lower bound (CRLB) for gy (05RP) (Sengupta and Kay 1995), resulting in () < n°RLE(6). The
ability to achieve this bound depends on the full parameter reconstruction pipeline, which we assume to extract
all encoded information so that equality holds.

To illustrate the utility of the efficiency concept, figure 1 shows an example simplified ‘fingerprinting’
experiment with only 5 radiofrequency (RF) pulses, each followed by a measurement. When optimized for
maximum efficiency in estimating 7; and T, two pulses get set to zero amplitude leaving a 3 pulse, 60°~180°—
90°, sequence that basically combines two familiar sequences: a spin-echo and an inversion recovery with
optimized inversion and echo times for maximum information. Interestingly, it is more efficient to measure
fewer signals but allow magnetization to recover, in this case.

Although the results from equations (2) to (3) are general, when computing efficiency with the CRLB we
have assumed that each measurement is fully-sampled and acquired using a single channel coil with uniform
sensitivity. This allows a quick evaluation of efficiency, crucial for use in optimization, but is not realistic. In
practice, data is acquired using multi-channel receiver coils, often with some degree of undersampling, either for
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Figure 1. Optimized fingerprint with just 5 pulses that are applied cyclically, with a spoiling gradient preceding each pulse. Schematic
representation of (a) the optimized flip angles and intervals between the pulses and (b) the signal s and its derivatives w.r.t. T; and T; at
echo time (2 ms). Note that the regions in gray are already repetitions of the main block of 5 pulses. Because the efficiency measure
incorporates the acquisition time it allows the best structure of flip angles and their timings to be found such its averaging extracts the
most information about the parameters of interest.

parallel imaging or as an inherent part of the method as in MRF. For multi-channel coils, oy is still defined as the
standard deviation in one readout in one channel, as after pre-whitening all channels should have the same noise
level (Pruessmann et al 1999). In this case M, is the result obtained from optimally combining all channels. Use
of multi-channel coils with optimal combination would not affect the efficiency; better intrinsic SNR would
improve the NR which is captured by SNR, 4, in equation (3). On the other hand, undersampling will affect
both T, and 0p, impacting the efficiency of the sequence. According to Hu and Peters (2019), the standard
deviation (p,g) of f in an experiment with an R undersampling factor can be related to the fully-sampled case

(op) as:

TR — 4 (0,) VR, )

o

n

where dp is the so-called ‘dynamics-factor’ that expresses the parameter error amplification due to the ill-
conditioning of the parameter estimation (Hu and Peters 2019). The subscript 71 represents the #'™ voxel, as

dr may be spatially varying since it will include effects from coil encoding such as the g-factor (Pruessmann et al
1999) as well as sampling effects that may arise from use of time-varying non-cartesian k-space trajectories.
Hence the efficiency of an undersampled experiment 17, can be related back to the fully-sampled experiment
efficiency 7 by:

1n(6) '
dR(en)

Nr(On) = 5

For aleast-squares estimator dg > 1, so can only reduce the efficiency compared to the fully-sampled
experiment. In general, dgr must be estimated by analysis of the full parameter reconstruction pipeline, which
will be problem dependant and could become very large for a non-cartesian image reconstruction. In the
following subsection we approximate dy, for the special case of a zero-filled reconstruction.

Zero-filled reconstruction

The original MRF paper (Ma et al 2013) proposed a zero-filled reconstruction that treated undersampling
artifacts as noise. In this case for a least-squares estimator the final parameter standard deviations are
proportional to the signal standard deviations; thermal noise and ‘aliasing noise’ both contribute noise that have
asimilar impact on parameter estimation but may differ in relative strength. Assuming ‘aliasing noise’ follows an
independent Gaussian distribution N (0, %), the image domain signal standard deviation in an
undersampled experiment 0,;qq. g May be written:

3
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_ 2 2
Oimage,R — \ O alias +R- Uimage > (6)

where 0;q¢. is the image domain noise standard deviation in a fully-sampled experiment. Hence, we may write

1 o 1 2
dR ~ image,R _ X Uzaltas +1. (7)
\/§ Oimage R T image

This may further be written in terms of the signal-to-noise-ratio in a ‘fully-encoded” image (SNR;;; q¢.) and the
signal-to-aliasing ratio (SaR ;s ) from an undersampled image without thermal noise as:

1 SNRiZmage
dr~ | ——— + 1. 8
K \j R SaRZ,qq. ®

It is therefore expected that the dynamics-factor will become larger if the signal-to-noise-ratio of the data
improves; although at first this seems non-intuitive it highlights that aliasing effects are proportional to the
signal, so a stronger signal leads to a larger contribution. Note that in equations (6)—(8) we have considered a
constant signal amplitude and an image domain SNR since aliasing is fundamentally treated in the image
domain.

Method

Optimized sequence design
In order to make a fair comparison between all analyzed methods, sequence acquisition settings # (repeat time,
flip angles () etc) were optimized similarly to other works (Gras et al 2017, Nataraj et al 2017, Teixeira et al
2017, Asslander et al 2019b, Zhao et al 2019), improving T; and T; efficiencies for a range of tissue parameters p
represented by the set of parameters P. For clarity, 6 is the set of parameters of interest, while p is all parameters
that may affect the signal; in general 1(0) = 7 (6; p, u) but this dependence is kept implicit for notation
simplicity. In thiswork 6 = {T;, T,} while p depends on the types of sequence used—if spoiled sequences are
used then p = {1, T, My}, butifbalanced sequences are used, then off-resonance frequency wy and phase of
the measurement ¢, are also relevant, such that p = {T;, T5, My, ¢, wo}-

The optimization solved to find the acquisition parameters # that maximizes efficiency for each method
follows:

2 2
1 1
u’" = argmin +
o ,;(nm; P, u)) (77(T2; 3 u))
st.g(u) <0

fw =0, 9)

where g and f are method-dependent constraint functions and are detailed in supporting information

table S1 (available online at stacks.iop.org/PMB/66/15NT02 /mmedia). The set of parameters P consists of

T, = 781 ms, T, = 65 ms, (corresponding to white matter at 3 T Bojorquez etal 2017); My = 1, ¢, = 0°and

wy € [—100, 100] Hz in steps of 5 Hz. Inclusion of a range of wy forces methods based on balanced sequences to
achieve good efficiencies over a range of frequencies.

The optimization problem was solved using the sequential quadratic program algorithm from Matlab
function fmincon. Whenever the number of design variables was <400, a multi-start strategy was employed
consisting of 100 random initializations, otherwise a single initialization was used consisting of the originally
published acquisition settings for the respective method.

Efficiency comparison

We have studied five steady-state methods: DESPOT (Deoni et al 2003) and a variant called joint system
relaxometry (JSR) (Teixeira et al 2017) (analyzed together due to their similarity), PLANET (Shcherbakova et al
2018), DESS (Welsch et al 2009) and triple echo steady-state (TESS) (Heule et al 2014); and MRF sequences with
gradient spoiled (Jiang et al 2015) or balanced (Ma et al 2013, Assldnder et al 2016) readouts. MRF sequences
started from thermal equilibrium or were in a DE mode (Ma et al 2018; Assldnder et al 2019b), in which a pulse
train of fixed length is cycled such the final magnetization is equal to the initial magnetization. For each method
optimized acquisition settings u%" were determined using equation (9) with efficiency calculated using the
CRLB in equation (3) assuming fully-sampled measurements. This was repeated for several acquisitions with
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Table 1. Number of measurements of the several acquisitions for which the T; and T efficiencies of every method were optimized. N is the
number of measurements in the transient method (length of the fingerprint). For the transient methods (in orange), fingerprints with less
than 400 measurements (in gray) were not considered for further analysis as these could be incompatible with spatial encoding.

Method Number of measurements

All feasible combinations of SPGR and bSSFP
measurements from a minimum 3 measurements up to a
maximum of §;

From 3 bSSFP measurements up to 20 bSSFP measurements;

From 2 DESS measurements up to 8 DESS measurements;
From 1 TESS measurement up to 6 TESS measurements;

N ={5,10,20,50,100,200,300, 400,500, 600, 700,
800,900, 1000,1200,1400,1600}

N = {5,10,20,50,100, 200,300,400, 500,600, 700,
800,900,1000}

different numbers of measurements (table 1). The signal model, optimization constraints and acquisition
settings for each method are in supporting information table S1.

For each method the acquisition with the lowest cost function (highest efficiency) was evaluated for a wider
range of T} € [600, 1200] ms in steps of 40 msand T, € [40, 100] ms in steps of 4 ms. We found that MRF
sequences with very small numbers of pulses can achieve very high efficiencies, particularly if starting from
thermal equilibrium. However, in practice such short pulse trains make only a limited number of
measurements, so cannot support spatial encoding. Therefore, MRF acquisitions with less than 400 excitations
were not evaluated over the extended parameter range (values shown in gray in table 1).

For the main cross comparisons between methods, all efficiencies were calculated assuming fully-sampled
measurements. This makes a concise and transparent presentation and is a reasonable approach for steady-state
methods. However, MRF methods are most often acquired with a considerable degree of undersampling, and in
these cases the obtained efficiency would also depend on the dynamics-factor dg according to equation (5). To
address this we estimated dg for the sub-optimal zero-filled reconstruction using equation (8). Both random and
spiral (Glover 1999, Pipe and Zwart 2013, Wundrak et al 2015) undersampling were explored for the Shepp—
Logan phantom and Monte-Carlo simulations (100 000 trials each with independent Gaussian additive noise)
were performed to estimate the standard deviation of the undersampled data o;,g, - Several undersampling
factors R and different SNR levels were used to estimate dy.

Validation experiments
To experimentally validate the efficiency metric the standard deviation of § needs to be determined, requiring
multiple estimates obtained from different datasets. To stay within an acceptable acquisition time, we focused on
validation of efficiency prediction for estimation of a single parameter—T; using DESPOT1 (Christensen et al
1974). One healthy volunteer (male, age 25) was scanned on 3 T Achieva MRI systems (Best, Netherland) using a
32-channel head coil. Brain images ataresolution1 x 1 x 3 mm were obtained using 3D Cartesian encoding
of a transverse slab with 7 slices, such that the middle slice could be analyzed free of slice profile effects; no
parallel imaging acceleration was used. The acquisition consisted of 10 repeats of 6 SPGR sequences with
a = {5° 8° 10° 13°, 15°, 18°} and TR = 20 ms, yielding a maximum root mean squared RF field of 0.46 uT
for « = 18° to minimize bias from magnetization transfer (MT) effects (Ou and Gochberg 2008, Teixeira et al
2019a). To compare multiple examples with different efficiencies, all combinations of at least 3 SPGR were
considered. Additionally, a transmit field (B;") map was acquired using actual flip angle imaging method
(Yarnykh 2007) with an isotropic resolution of 5 mm.

All numerical simulations and analyses were performed in a workstation with 64 GB of RAM and with an
Intel Xeon E5-2687 W0 @ 3.10 GHz, using MATLAB R2017b (The MathWorks, Natick, MA, USA) with some
functions implemented in C++/MEX using the Eigen linear algebra library (Guénnebaud and Jacob 2010).
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Figure 2. Efficiency comparison for steady-state (blue) and transient (orange) methods as described in subsection ‘efficiency
comparison’; in each case the results shown are for the most efficient acquisition of each method (table 1). (a), (b) T, T efficiency
averaged over all off-resonance values; spread corresponds to variability over {T;, T5}.(c),(d) T;, T; efficiency averaged over all

{ T}, T,}; spread corresponds to variability over off-resonance frequencies. As may be expected the balanced sequences show greater
sensitivity to off-resonance.

Results

Efficiency comparison

Figure 2 shows a comparison of optimized efficiencies for steady-state and transient methods assuming fully-
sampled measurements in all cases, whilst the optimized acquisition settings are in supporting information table
S2 and figure 3. Figures 2(a) and (b) show the distribution of efficiency values over different 7} and T; values and
averaged over off-resonance, while figures 2(c) and (d) show spread over different off-resonance values averaged
over T; and T, values. Consistently we see that the steady-state methods are less efficient than their transient
counterparts; DESPOT /JSR is the most efficient steady-state method while balanced MRF starting from thermal
equilibrium is the most efficient transient method. In general the best transient method is approximately 3-3.5
times more efficient than the best steady-state method. The transient methods have an apparently greater spread
in efficiency as a function of 7; and T;. Only the methods that include balanced readouts are sensitive to off-
resonance, and of these the transient methods seem more sensitive than the steady-state ones. Nevertheless,
methods using balanced readouts are more efficient than those using spoiled readouts despite having to estimate
two additional nuisance parameters. The optimized acquisition settings for the best transient sequences in
figure 3 also reveal recovery periods of zero flip angle in lieu of performing more measurements. Supporting
information figure S1 compares efficiency of different optimized MRF trains with different numbers of
measurements.

Figure 4 shows the results of the Monte-Carlo investigation of the dynamics-factor dg for zero-filled
reconstructions computed with random and spiral sampling. For this special case, dy increases quickly for lower
undersampling factors R, but then plateaus at higher R; the level it reaches is directly proportional to SNR;;a6
(figure 4(b)), with spiral sampling achieving lower dg values than random sampling. Figure 4(c) plots the
‘aliasing-to-signal ratio” as a function of R for a scenario with zero thermal noise; empirical fits to data show that
to a good approximation this is proportionalto VR — 1 for both sampling schemes used. The full dz maps are
in supporting information figure S2.

Invivo validation
Figure 5 depicts comparisons of T efficiency for DESPOT1 estimation in vivo for several subsets of the total
dataset. Figure 5(a) shows efficiency maps for a selection of combinations (the full set of maps is in supporting
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information figure S3). Figure 5(c) shows the average of the experimental Tj efficiency inside the white and gray
matter regions (figure 5(b)) plotted against the average of the theoretical efficiency in the same regions for each
combination tested. The goodness-of-fit for this comparison was calculated to be R? = 0.9688.
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Figure 5. In vivo validation results for the T efficiency of DESPOT1. (a) Theoretical and experimental T efficiency maps obtained for
some combinations of the acquired SPGRs. (b) White and gray matter masks obtained using FSL FAST (Zhang et al2001). (c) Average
experimental T efficiency inside the gray and white matter masks plotted against the respective theoretical efficiency for each
combination of SPGRs. A table with all SPGR combinations is provided in supporting table S3 and all maps are in supporting
information figure S3. The correction for incomplete spoiling in SPGR proposed by Baudrexel et al (2018) was implemented. Brain
extraction was performed using FSL BET (Smith 2002) and all images were registered using MIRTK (Schuh et al 2013). Gold standard
values for T, and M, were estimated from fitting to the average of all repetitions and the noise standard deviation oy was estimated
from the image domain (supporting information figure S4).

Discussion

This work presented a comparison of gMRI methods for simultaneous T; and T, estimation based on an
efficiency metric, 7, that quantifies the information encoded about the parameters per square root of acquisition
time. The efficiency metric was validated in vivo using the DESPOT1 method (figure 5). The results showed an
excellent agreement between experimental and theoretical T; efficiency (R* = 0.9688) when averaged over
white/gray matter masks.

The metric 1 considers intrinsic efficiency related to the dynamics of the spin system only. Therefore, it
considers what mainly distinguishes one method from another: the intrinsic way magnetization is manipulated
to achieve greater or lesser sensitivity to the tissue parameters of interest. Nevertheless, according to equation (2)
there are two other factors that affect the final parameter-to-noise-ratio, and these do need to be considered in
the bigger picture. One factor is the amount of data acquired, as efficiency is normalized by m . Thus, the SNR
advantage yielded by 3D encoding compared to 2D encoding should be accounted for when comparing the
expected parameter-to-noise-ratio. The other is the intrinsic SNR of the experiment, specified by SNR,,4,. While
increasing the repetition time might appear to reduce efficiency, one could for example make use of that time to
reduce the receiver bandwidth, thus increasing SNR,,,,,. Moreover, different k-space sampling strategies could
be employed to make more efficient use of that time, like spiral sampling (Jiang et al 2015) or even EPI (Rieger
etal 2017,2018). However, there are pragmatic limits to which such trade-off can be explored due to T5" decay
and increased sensitivity to water-fat shift, off-resonance, among others. In the end, intrinsic SNR, amount of
data acquired, and efficiency have to weighed together to determine the best method for a specific application.

A Cramér—Rao approach was adopted for determining the uncertainty of parameter estimation, providing a
secure mathematical basis for interpretation of results with a clear domain of applicability based on unbiased
estimators (Sengupta and Kay 1995). This connects to a key assumption in relaxometry—the biophysical model.
In this work we assumed that the magnetization dynamics are well represented by the Bloch equations and that
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each voxel contains only one tissue type. In practice this ignores factors such as M T (Ou and Gochberg 2008,
Teixeira et al 2019a, 2019b) and diffusion (Kobayashi and Terada 2018) that can produce systematic differences
between the model and data, biasing parameter estimation, and to which different methods have different
sensitivities.

Figure 2 suggests that after optimization, the transient methods are generally more efficient than the steady-
state methods for fully-sampled experiments. From the latter, DESPOT/JSR has the highest optimized
efficiency. This approach combines SPGR and balanced SSFP sequences, giving it a large degree of flexibility. We
found that the most efficient acquisitions consisted of mainly bSSFP sequences but having at least one SPGR
enhances efficiency by decorrelating T; and 7T; information. The PLANET method uses only bSSFP sequences,
which results in slightly lower efficiency as it constitutes a constrained case of JSR that excludes SPGR
measurements and forces a single flip angle and TR. Optimizing bSSFP sequences to maximize 7 leads to use of
multiple different flip angles. Because TESS and DESS obtain multiple echoes per TR period, they are often
thought of as efficient, however our results indicate this may not be the case. Although they measure multiple
echo pathways, the information in these echoes is correlated since they share the same flip angle and TR, and the
higher order echoes often have lower signal amplitudes; it could be more efficient to obtain more diverse data
instead.

The transient (MRF) sequences are divided into those in DE and those that start from thermal equilibrium,
and between either gradient spoiled or balanced readouts. The results in figure 2 compared only the most
efficient transient acquisition with at least 400 measurements (figure 3). Supporting information figure S1
expands this with efficiencies for different numbers of measurements. It was seen that very high efficiencies can
be achieved for short MRF pulse trains that start from thermal equilibrium; these may not be viable for
performing the spatial encoding required for 3D but could potentially be used for 2D encoding. Methods that
start from thermal equilibrium (i.e. the ‘non-DE’ sequences) are ‘privileged’ by assuming sufficient time has
elapsed following previous acquisitions to allow full recovery. If this recovery time is also included in the
efficiency calculation these methods lose their high efficiency. In the case of longer acquisitions, both MRF
sequences in DE and starting from thermal equilibrium converged to a similar efficiency, which is still higher
than steady-state methods.

Overall the best transient method was found to be 3-3.5 times more efficient than the best steady-state
method considering fully-sampled measurements. It is important to note that this apparently superior efficiency
comes from considering spin dynamics alone, i.e. information encoded into the data, but excludes spatial
sampling and reconstruction. Our analysis assumed that reconstruction faithfully represents the state of the
system at each timepoint. In practice undersampling of the data, which is particularly a feature of transient
methods (Ma et al 2013), reduces efficiency according to the dynamics-factor dg. This factor depends on the
reconstruction method. Many such methods are available—an exhaustive review of these is beyond the scope of
this study. The quoted efficiencies excluding di could thus be considered best-case scenarios. At the other
extreme, a zero-filled reconstruction (initially proposed for MRF Ma et al 2013) is a straightforward entry-level
approach that represents a reasonable worst case for dy. Figure 4 shows that for higher undersampling factors R,
dg is independent of R but scales linearly with the SNR of the data. To understand these relationships, figure 4(c)
shows empirically that the ‘alias-to-signal’ ratio scalesas /R — 1. Substituting this into equation (8) we find:

dg ~ \/wsm? +1,

image

where k is a scaling constant, which yields dz oc SNR;;,4, for large R and large SNR. Though at first unintuitive
this should be expected since high SNR implies that the dominant source of ‘noise’ in the reconstruction comes
from aliasing. This implies that actually MRF using a simple zero-filled reconstruction will be less efficient than
steady-state imaging in many circumstances.

Of course, it is important to reiterate that zero filling is a simple but sub-optimal approach to MRF
reconstruction, and many more sophisticated and superior methods do exist. Current reconstructions using
machine learning (Cohen et al 2018, Hamilton and Seiberlich 2020, Hermann et al 2021) and/or some prior
knowledge or form of regularization (Pierre et al 2016, Asslander et al 2018a, Zhao et al 2018) should be expected
to reduce dy since they attempt to resolve the aliased signal rather than treat it as noise (Stolk and Sbrizzi 2019).
Hence the dg values computed here might be considered as upper bounds, yet it is still to be shown how far dg
can be reduced by more modern methods while still maintaining accuracy. A further consideration is that more
complex reconstructions employing regularization or prior knowledge may introduce bias, which is beyond the
scope of the proposed efficiency metric that considers only precision assuming unbiased estimation.

Our comparison analyzed error amplification from thermal noise considering gradient-echo based methods
for brain imaging that simultaneously estimate T and T. For other applications (e.g. cardiac or abdominal
imaging) different considerations (e.g. physiological noise, SAR, or motion) need to be taken into account. These
can be incorporated by changing the model and/or constraining the design space, which might change the
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comparison landscape obtained here, making particular methods unviable and could favor methods that would
otherwise seem inefficient.

Conclusion

This work presents a comparison of several gMRI methods based on an efficiency metric that is the ratio of the
best-case parameter-to-noise-ratio to the maximum achievable SNR, normalized to the square root of the
acquisition time. This allows the performance of different qMRI methods to be quantified and optimized, and
hasbeen used here to compare a range of well-established methods that simultaneously estimate 7; and T,. We
found that methods based on balanced readouts outperformed methods based on spoiled readouts, and that
transient QMRI sequences can be 3—3.5 times more efficient than steady-state alternatives for both 7} and T
mapping in fully-sampled experiments. However, transient sequences which need to capture rapidly fluctuating
signals often deploy highly undersampled acquisition strategies. The manner with which this undersampling is
resolved can reduce the overall efficiency. For example, MRF using zero-filled reconstruction that treats aliasing
artifacts as noise (Ma et al 2013), could easily drop efficiency by a factor of 5, thereby negating the gains offered
by a transient acquisition. More advanced reconstructions will be important to realize the potential gains offered
by MRF.

The concept of an efficiency metric, such as the one proposed in this paper, can capture all aspects of both
acquisition and reconstruction providing a means to assess relative performance and so can help in selection of
optimal gMRI methods.

Acknowledgments

This research was funded in whole, or in part, by the Wellcome Trust [WT 203148/Z/16/Z]. For the purpose of
open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. This work was supported by the Wellcome /EPSRC Centre for Medical
Engineering [WT 203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical
Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London and/or the
NIHR Clinical Research Facility, and funded by the King’s College London & Imperial College London EPSRC
Centre for Doctoral Training in Medical Imaging [EP/L015226/1]. The views expressed are those of the
author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Ethical statement

Healthy volunteer gave written informed consent according to local ethics requirements (Guy’s Research Ethics
Committee, ID01/11/12).

ORCIDiDs

David Leitdo @ https://orcid.org/0000-0001-5853-8602

Rui Pedro A. G. Teixeira ® https://orcid.org/0000-0001-6508-9315
Anthony Price ® https:/orcid.org/0000-0002-6907-7554
Joseph V. Hajnal ® https://orcid.org/0000-0002-2690-5495
Shaihan J. Malik ® https://orcid.org/0000-0001-8925-9032

References

Asslinder J, Glaser Steffen J and Hennig Jiirgen 2016 Pseudo Steady-State Free Precession for MR-Fingerprinting Magn. Reson. Med. 77
1151-61

Asslinder J et al 2018a Low rank alternating direction method of multipliers reconstruction for MR fingerprinting Magn. Reson. Med. 79
83-96

Asslinder J, Novikov D S, Lattanzi R et al 2019a Hybrid-state free precession in nuclear magnetic resonance Commun Phys2 73

Assldnder J et al 2019b Optimized quantification of spin relaxation times in the hybrid state Magn. Reson. Med. 82 1385-97

Asslander ] 2020 A perspective on MR fingerprinting J. Magn. Reson. Imaging 53 676-685

Baudrexel S et al 2018 T1 mapping with the variable flip angle technique: a simple correction for insufficient spoiling of transverse
magnetization Magn. Reson. Med. 79 3082-92

BojorquezJ Z et al 2017 What are normal relaxation times of tissues at 3 T? Magn. Reson. Immaging 35 69—80

Christensen K A et al 1974 Optimal determination of relaxation times of Fourier transform nuclear magnetic resonance. determination of
spin-lattice relaxation times in chemically polarized species J. Phys. Chem. 78 19716

10


https://orcid.org/0000-0001-5853-8602
https://orcid.org/0000-0001-5853-8602
https://orcid.org/0000-0001-5853-8602
https://orcid.org/0000-0001-5853-8602
https://orcid.org/0000-0001-6508-9315
https://orcid.org/0000-0001-6508-9315
https://orcid.org/0000-0001-6508-9315
https://orcid.org/0000-0001-6508-9315
https://orcid.org/0000-0002-6907-7554
https://orcid.org/0000-0002-6907-7554
https://orcid.org/0000-0002-6907-7554
https://orcid.org/0000-0002-6907-7554
https://orcid.org/0000-0002-2690-5495
https://orcid.org/0000-0002-2690-5495
https://orcid.org/0000-0002-2690-5495
https://orcid.org/0000-0002-2690-5495
https://orcid.org/0000-0001-8925-9032
https://orcid.org/0000-0001-8925-9032
https://orcid.org/0000-0001-8925-9032
https://orcid.org/0000-0001-8925-9032
https://doi.org/10.1002/mrm.26202
https://doi.org/10.1002/mrm.26202
https://doi.org/10.1002/mrm.26639
https://doi.org/10.1002/mrm.26639
https://doi.org/10.1002/mrm.26639
https://doi.org/10.1002/mrm.26639
https://doi.org/10.1038/s42005-019-0174-0
https://doi.org/10.1002/mrm.27819
https://doi.org/10.1002/mrm.27819
https://doi.org/10.1002/mrm.27819
https://doi.org/10.1002/jmri.27134
https://doi.org/10.1002/mrm.26979
https://doi.org/10.1002/mrm.26979
https://doi.org/10.1002/mrm.26979
https://doi.org/10.1016/j.mri.2016.08.021
https://doi.org/10.1016/j.mri.2016.08.021
https://doi.org/10.1016/j.mri.2016.08.021
https://doi.org/10.1021/j100612a022
https://doi.org/10.1021/j100612a022
https://doi.org/10.1021/j100612a022

10P Publishing

Phys. Med. Biol. 66 (2021) 15NT02 D Leitdo et al

Cohen O, Zhu B and Rosen M § 2018 MR fingerprinting deep reconstruction network (DRONE) Magn. Reson. Med. 80 885-94

Crawley A P and Henkelman R M 1988 A comparison of one-shot and recovery methods in T1 imaging Magn. Reson. Med. 7 23-34

Deoni S CL, Rutt B K and Peters T M 2003 Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state Magn.
Reson. Med. 49 515-26

Edelstein W A et al 1983 Signal, noise, and contrast in nuclear magnetic resonance (NMR) imaging J. Comput. Assist. Tomogr. 7 391-401

Glover G H 1999 Simple analytic spiral K-space algorithm Magn. Reson. Med. 42 412—5

Gras V et al 2017 Diffusion-weighted DESS protocol optimization for simultaneous mapping of the mean diffusivity, proton density and
relaxation times at 3 Tesla Magn. Reson. Med. 78 130—41

Guénnebaud G and Jacob B 2010 Eigen v3

Hamilton J I and Seiberlich N 2020 Machine learning for rapid magnetic resonance fingerprinting tissue property quantification Proc. IEEE
108 69-85

Hermann I eral 2021 Accelerated white matter lesion analysis based on simultaneous T1 and T2" quantification using magnetic resonance
fingerprinting and deep learning Magn. Reson. Med. 86 471-86

Heule R, Ganter C and Bieri O 2014 Triple echo steady-state (TESS) relaxometry Magn. Reson. Med. 71 230—7

Hu Cand Peters D C 2019 SUPER: a blockwise curve-fitting method for accelerating MR parametric mapping with fast reconstruction
Magn. Reson. Med. 81 3515-29

JiangY et al 2015 MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout Magn. Reson. Med. 74 1621-31

Jones ] A et al 1996 Optimal sampling strategies for the measurement of spin—spin relaxation times J. Magn. Reson. B 113 25-34

Kobayashi Y and Terada Y 2018 Diffusion-weighting caused by spoiler gradients in the fast imaging with steady-state precession sequence
may lead to inaccurate T2 measurements in MR fingerprinting Magn. Reson. Med. Sci. 18 1-9

MaD etal 2013 Magnetic resonance fingerprinting Nature 495 187-192

MaD et al 2018 Fast 3D magnetic resonance fingerprinting for a whole-brain coverage Magn. Reson. Med. 79 2190-7

Nataraj G, Nielsen J and Fessler J A 2017 Optimizing MR scan design for model-based T1, T2 Estimation From Steady-State Sequences IEEE
Transactions on Medical Imaging 36 467—77

O’Donnell M, Gore ] Cand Adams W ] 1986 Toward an automated analysis system for nuclear magnetic resonance imaging: I. Efficient
pulse sequences for simultaneous T1-T2imaging Med. Phys. 13 182-90

Ou X and Gochberg D F 2008 MT effects and T1 quantification in single-slice spoiled gradient echo imaging Magn. Reson. Med. 59 835-45

Pierre EY et al 2016 Multiscale reconstruction for MR fingerprinting Magn. Reson. Med. 75 2481-92

Pipe J G and Zwart N R 2013 Spiral trajectory design: A flexible numerical algorithm and base analytical equations Magnetic Resonance in
Medicine71

Pruessmann K P et al 1999 SENSE: sensitivity encoding for fast MRI Magn. Reson. Med. 42 952—62

Rieger B et al 2017 Magnetic resonance fingerprinting using echo-planar imaging: joint quantification of T1 and T2" relaxation times Magn.
Reson. Med. 78 1724-33

Rieger B et al 2018 Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging Sci. Rep. 8 1-12

Schuh A, Rueckert D and Schnabel ] 2013 Medical Image Registration ToolKit (MIRTK)

Sengupta S Kand Kay S M 1995 Fundamentals of statistical signal processing: estimation theory Technometrics 37 27-81

Shcherbakova Y et al 2018 PLANET: an ellipse fitting approach for simultaneous T1 and T2 mapping using phase-cycled balanced steady-
state free precession Magn. Reson. Med. 79 711-22

Smith S M 2002 Fast robust automated brain extraction Hum. Brain Mapp. 17 143-55

Stolk C C and Sbrizzi A 2019 Understanding the combined effect of k-space undersampling and transient states excitation in MR
fingerprinting reconstructions IEEE Trans. Med. Imaging 38 2445-55

TeixeiraRP A G, Malik S J and Hajnal J V 2017 Joint system relaxometry (JSR) and Cramer—Rao lower bound optimization of sequence
parameters: a framework for enhanced precision of DESPOT T1 and T2 estimation Magn. Reson. Med. 79 234—45

Teixeira R P A G, Malik S J and Hajnal ] V 2019a Fast quantitative MRI using controlled saturation magnetization transfer Magn. Reson. Med.
81907-20

Teixeira RP A G et al 2019b Controlled saturation magnetization transfer for reproducible multivendor variable flip angle T1 and T2
mapping Magn. Reson. Med. 84 1-16

van Valenberg W, Vos FM, Klein S, van Vlie L] and Poot D HJ 2017 Determining the time efficiency of quantitative MRI methods using
bloch simulations. 25th Proc. Intl. Soc. Mag. Reson. Med. (Honululu, HI, 22-27 April, 2017) https:/ /archive.ismrm.org/2017/
1470.html

Welsch G H et al 2009 Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla Magn. Reson. Med. 62 544-9

Wundrak S, Paul ], Ulrici J, Hell E, Geibel M-A, Bernhardt P, Rottbauer W and Rasche V 2015 Golden ratio sparse MRI using tiny golden
angles Magn. Reson. in Med. 75

Wundrak S eral 2016 Golden ratio sparse MRI using tiny golden angles Magn. Reson. Med. 2378 2372-8

Yarnykh V L2007 Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted
radiofrequency field Magn. Reson. Med. 57 192-200

ZhangY, Brady M and Smith § 2001 Segmentation of brain MR images through a hidden Markov random field model and the expectation-
maximization algorithm IEEE Trans. Med. Imaging 20 45-57

Zhao B et al 2018 Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling Magn. Reson. Med. 79
933-42

Zhao B et al 2019 Optimal experiment design for magnetic resonance fingerprinting: Cramér—Rao bound meets spin dynamics IEEE Trans.
Med. Imaging 38 844—61

11


https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.1910070104
https://doi.org/10.1002/mrm.1910070104
https://doi.org/10.1002/mrm.1910070104
https://doi.org/10.1002/mrm.10407
https://doi.org/10.1002/mrm.10407
https://doi.org/10.1002/mrm.10407
https://doi.org/10.1097/00004728-198306000-00001
https://doi.org/10.1097/00004728-198306000-00001
https://doi.org/10.1097/00004728-198306000-00001
https://doi.org/10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
https://doi.org/10.1002/mrm.26353
https://doi.org/10.1002/mrm.26353
https://doi.org/10.1002/mrm.26353
https://doi.org/10.1109/JPROC.2019.2936998
https://doi.org/10.1109/JPROC.2019.2936998
https://doi.org/10.1109/JPROC.2019.2936998
https://doi.org/10.1002/mrm.28688
https://doi.org/10.1002/mrm.28688
https://doi.org/10.1002/mrm.28688
https://doi.org/10.1002/mrm.24659
https://doi.org/10.1002/mrm.24659
https://doi.org/10.1002/mrm.24659
https://doi.org/10.1002/mrm.27662
https://doi.org/10.1002/mrm.27662
https://doi.org/10.1002/mrm.27662
https://doi.org/10.1002/mrm.25559
https://doi.org/10.1002/mrm.25559
https://doi.org/10.1002/mrm.25559
https://doi.org/10.1006/jmrb.1996.0151
https://doi.org/10.1006/jmrb.1996.0151
https://doi.org/10.1006/jmrb.1996.0151
https://doi.org/10.2463/mrms.tn.2018-0027
https://doi.org/10.2463/mrms.tn.2018-0027
https://doi.org/10.2463/mrms.tn.2018-0027
https://doi.org/10.1038/nature11971
https://doi.org/10.1038/nature11971
https://doi.org/10.1038/nature11971
https://doi.org/10.1002/mrm.26886
https://doi.org/10.1002/mrm.26886
https://doi.org/10.1002/mrm.26886
https://doi.org/10.1109/TMI.2016.2614967
https://doi.org/10.1109/TMI.2016.2614967
https://doi.org/10.1109/TMI.2016.2614967
https://doi.org/10.1118/1.595943
https://doi.org/10.1118/1.595943
https://doi.org/10.1118/1.595943
https://doi.org/10.1002/mrm.21550
https://doi.org/10.1002/mrm.21550
https://doi.org/10.1002/mrm.21550
https://doi.org/10.1002/mrm.25776
https://doi.org/10.1002/mrm.25776
https://doi.org/10.1002/mrm.25776
https://doi.org/10.1002/mrm.24675
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
https://doi.org/10.1002/mrm.26561
https://doi.org/10.1002/mrm.26561
https://doi.org/10.1002/mrm.26561
https://doi.org/10.1038/s41598-018-24920-z
https://doi.org/10.1038/s41598-018-24920-z
https://doi.org/10.1038/s41598-018-24920-z
https://doi.org/10.2307/1269750
https://doi.org/10.2307/1269750
https://doi.org/10.2307/1269750
https://doi.org/10.1002/mrm.26717
https://doi.org/10.1002/mrm.26717
https://doi.org/10.1002/mrm.26717
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1109/TMI.2019.2900585
https://doi.org/10.1109/TMI.2019.2900585
https://doi.org/10.1109/TMI.2019.2900585
https://doi.org/10.1002/mrm.26670
https://doi.org/10.1002/mrm.26670
https://doi.org/10.1002/mrm.26670
https://doi.org/10.1002/mrm.27442
https://doi.org/10.1002/mrm.27442
https://doi.org/10.1002/mrm.27442
https://doi.org/10.1002/mrm.28109
https://doi.org/10.1002/mrm.28109
https://doi.org/10.1002/mrm.28109
https://archive.ismrm.org/2017/1470.html
https://archive.ismrm.org/2017/1470.html
https://doi.org/10.1002/mrm.22036
https://doi.org/10.1002/mrm.22036
https://doi.org/10.1002/mrm.22036
https://doi.org/10.1002/mrm.25831
https://doi.org/10.1002/mrm.25831
https://doi.org/10.1002/mrm.25831
https://doi.org/10.1002/mrm.25831
https://doi.org/10.1002/mrm.21120
https://doi.org/10.1002/mrm.21120
https://doi.org/10.1002/mrm.21120
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424
https://doi.org/10.1002/mrm.26701
https://doi.org/10.1002/mrm.26701
https://doi.org/10.1002/mrm.26701
https://doi.org/10.1002/mrm.26701
https://doi.org/10.1109/TMI.2018.2873704
https://doi.org/10.1109/TMI.2018.2873704
https://doi.org/10.1109/TMI.2018.2873704

	Introduction
	Theory
	Zero-filled reconstruction

	Method
	Optimized sequence design
	Efficiency comparison
	Validation experiments

	Results
	Efficiency comparison
	In vivo validation

	Discussion
	Conclusion
	Acknowledgments
	Ethical statement
	References



