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Expanding biochemical knowledge and illuminating
metabolic dark matter with ATLASx
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Vassily Hatzimanikatis 1✉

Metabolic “dark matter” describes currently unknown metabolic processes, which form a

blind spot in our general understanding of metabolism and slow down the development of

biosynthetic cell factories and naturally derived pharmaceuticals. Mapping the dark matter of

metabolism remains an open challenge that can be addressed globally and systematically by

existing computational solutions. In this work, we use 489 generalized enzymatic reaction

rules to map both known and unknown metabolic processes around a biochemical database

of 1.5 million biological compounds. We predict over 5 million reactions and integrate nearly 2

million naturally and synthetically-derived compounds into the global network of biochemical

knowledge, named ATLASx. ATLASx is available to researchers as a powerful online platform

that supports the prediction and analysis of biochemical pathways and evaluates the bio-

chemical vicinity of molecule classes (https://lcsb-databases.epfl.ch/Atlas2).
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Metabolic “dark matter” designates biochemical processes
where knowledge is still sparse, limiting our general
understanding of metabolism, the discovery of key

disease mechanisms1,2, and the development of medicines derived
from plant natural products3. Metabolic knowledge gaps also
hamper the advancement of bioengineering applications like the
creation of sustainable cell factories for the green production of
commodity chemicals and pharmaceuticals. Key examples of
metabolic dark matter include underground metabolism resulting
from promiscuous enzymatic activity4,5, undetected plant natural
products and their uncharacterized biosynthesis pathways, and
chemical damage of metabolites6.

Given the vastness of these and other unknown metabolic
elements, it is essential to generate hypotheses on potential bio-
chemical functions that guide the experimental discovery of
enzymatic functions and natural products. While genomic,
transcriptomic, proteomic, and metabolomic data have the
potential to generate important hypotheses on metabolic dark
matter, linking these data to metabolic functions remains
difficult7,8, and major gaps in biochemical and metabolic
knowledge remain. As an example, 25% percent of proteins in E.
coli, one of the best studied model organisms, do not have a
function assigned9. In addition, almost 10,000 metabolites in the
Kyoto Encyclopedia of Genes and Genomes (KEGG)10 are con-
sidered to be orphan, meaning that they are not integrated in any
biochemical reaction within KEGG. An unbiased and global
approach is needed to systematically explore the metabolic dark
matter arising from the elasticity of enzymatic catalysis, which
can be achieved by current computational approaches.

Computational approaches to biological questions have
attracted increasing interest over the past few decades. Diverse
computational tools have emerged that can bridge knowledge
gaps in metabolism through cheminformatic predictions of
uncharacterized metabolic reactions, metabolites, and enzyme
functions. Most of these tools have been developed for metabolic
engineering applications, where the objective is to find biosyn-
thetic routes that produce a desired target compound in a host
organism11–15. Identification of these biosynthetic routes is
accomplished by biochemically “walking back” from the target to
precursor metabolites that are produced by, or fed to, the host
organism. This procedure is called retrobiosynthesis and is
implemented in a range of tools such as BNICE.ch16,17, GEM-
Path18, NovoPathFinder19, NovoStoic20, ReactPRED21,
RetroPath22,23, and Transform-MinER24. Retrobiosynthetic
methods rely on the concept of generalized enzymatic reaction
rules. A reaction rule encodes the biochemistry of a substrate-
promiscuous enzyme by describing the pattern of the reactive site
recognized by the enzyme, as well as the bond rearrangement
performed by the enzyme on the substrate. By applying the rule
on a substrate that is non-native to the represented enzyme, the
rule can predict if (i) the substrate can be recognized by the
enzyme, (ii) if the biotransformation can occur, and (iii) the
identity of the product molecule(s). While tools featuring reaction
rules have the power to predict biochemical reactions, their
application is usually limited to a given research or engineering
question.

One exception is the ATLAS of Biochemistry database10, which
attempts to map dark matter in biochemistry by predicting
reactions between metabolites from the KEGG database25.
ATLAS contains ~150,000 hypothetical enzymatic reactions
predicted by the retrobiosynthesis tool BNICE.ch and annotated
with putative enzymes suggested by the enzyme prediction tool
BridgIT26. In contrast to other tools that use automatic rule
generation, the reaction rules in BNICE.ch are designed by
experts based on biochemical knowledge and assigned the cor-
responding three-level Enzyme Commission (EC) number, which

is a numerical coding used to classify enzyme-catalyzed reactions.
The complementary tool BridgIT uses the knowledge of the
reactive site encoded in the BNICE.ch rules to predict enzymes
that can potentially catalyze hypothetical and orphan reactions.
More than 100 reactions predicted by BNICE.ch and stored in
ATLAS were validated in 2019 following their addition to KEGG,
supporting the predictive utility of the ATLAS tool27. In addition,
Yang et al. were able to experimentally validate predicted ATLAS
reactions while designing one-carbon assimilation pathways28,
further demonstrating the value of predictive ATLAS reactions in
metabolic engineering. One major drawback of ATLAS is its
limitation to KEGG compounds, which excludes many drugs and
plant natural products with undefined or putative biological
functions. Predicting enzymatic reactions from biochemical
compounds retrieved from databases other than KEGG will help
expand the scope of our predictions and enhance the application
range and the predictive power of the database.

In the following, we present ATLASx, an online biochemical
resource providing reliable predictions of biochemical reactions
and pathways for synthetic biologists and metabolic engineers.
The ATLASx workflow (Fig. 1) unifies biochemical reactions and
compounds from 14 different database sources into one curated
dataset called bioDB. bioDB holds 1.5 million unique biological
or bioactive compounds and 56,000 unique biochemical reac-
tions, which enable the prediction of a hypothetical biochemical
space. By applying 489 bidirectional, generalized reaction rules
from BNICE.ch onto biological and bioactive compounds within
the database, we predicted around 1.6 million potential bio-
transformations between bioDB compounds. Another 3.6 million
reactions were found to connect bioDB compounds with mole-
cules only found in chemical databases, producing a total of 5.2
million predicted reactions. From these predictions, we char-
acterized the connectivity and reactivity of biologically important
molecules, and we showed that ATLASx pathway predictions
could recover 99% of known biological pathways from MetaCyc.
Finally, we provide access to ATLASx through an online web
interface that features tools for pathway design and network
exploration, which can be accessed at https://lcsb-databases.epfl.ch/
Atlas2. The ATLASx platform can be readily used for the design of
metabolic pathways, and for the exploration and expansion of
biosynthesis pathways. ATLASx distinguishes itself from other tools
and web services by providing a database of predicted reactions at
an unprecedented scale, annotation quality, and user-friendliness
(for a more detailed comparison, see Supplementary Discussion and
Supplementary Table 1). In contrast to other prediction tools that
dynamically solve one problem at a time, the static nature of pre-
dicted reactions stored in a database is an opportunity for experi-
mental scientists to validate the predictions in the short and long-
term future. Finally, ATLASx provides an estimation on the stag-
gering number of unknowns in biochemistry and can thus foster
future research explorations into metabolic dark matter.

Results
bioDB unifies over 1.5 million unique compounds. Current
biochemical databases are heterogenous in their organization, bio-
logical scope, and level of detail, which complicates the comparison
of data across databases. This in turn makes it difficult to reliably
detect biochemical knowledge gaps, as information that is missing
in one database may be present in another resource. To reconcile
the heterogeneity of existing biochemical data sources, we unified
compound data from a variety of biological and bioactive databases
(KEGG25, SEED29, HMDB30, MetaCyc31, MetaNetX32,
DrugBank33, ChEBI34, ChEMBL35) (Supplementary Table 2). The
unification resulted in a reference database, named bioDB, con-
taining 1,500,222 unique 2D structural compound entries.
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The contributions of each database to the total of bioDB
compounds varied significantly. The three biological databases
(KEGG, SEED, and MetaCyc) focus on metabolites and their
enzyme-catalyzed interconversion within metabolic pathways and
networks and contributed 22,447 (1.5%) of the total compounds
within bioDB. The remaining 1,477,775 (98.5%) compounds were
contributed by databases covering all compounds produced by, or
known to interact with, biological systems (i.e., bioactive
compounds). Remarkably, the lion’s share of these bioactive
compounds (1,447,079, or 97%) came from ChEMBL, suggesting
that this database has the most comprehensive definition of
bioactivity. The distinction between biological and bioactive
compounds reflects the level of biochemical knowledge available
for a given compound, i.e., the metabolic interactions of a
compound present in both biological and bioactive databases tend
to be better characterized than the interactions of a compound
only found in a bioactive database. Based on our unification

criteria, we found that the ratio of unique compounds varied
across databases. The KEGG COMPOUND database had the
highest number of unique compounds (80%, 15,064 unique
compounds), while KEGG DRUGS had the lowest ratio (40%,
4514 unique compounds), illustrating the heterogeneity of
curation standards between different resources.

To pave the way for integrating chemicals into biochemical
pathways, we imported all compounds from the chemical
database PubChem36 (77,934,143 unique molecules). PubChem
entries that could not be matched to any existing compound in
bioDB were assigned to the chemical compound space (chemDB)
in our database, regardless of their true origin (i.e., chemical
synthesis, natural biosynthesis, or semisynthetic procedure).
Though some of the 77,934,143 unique compounds from the
chemical space may still be of biological origin, they may not be
labeled as such, or may have the potential to be derived from
biological compounds in a bioengineering setting. This artificial
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Fig. 1 ATLAS workflow applied to known biological and bioactive compounds. 1. Unification- collection of metabolic reactions and biochemical
compounds from different publicly available databases, which were merged into a consistent and duplicate-free database, called bioDB. 2. Curation-
compounds were annotated with molecular identifiers and reactions were annotated with reaction mechanisms. 3. Expansion- generalized reaction rules
from BNICE.ch were applied to bioDB compounds to generate all possible reactions producing known biological or chemical products. 4. Analysis- the
connectivity of the biochemical reaction networks was analyzed before and after reaction prediction, as well as the integration of compounds not previously
connected in known biochemical networks. 5. Distribution- the results were made available online (https://lcsb-databases.epfl.ch/Atlas2). ΔfGʹ°:
estimated Gibbs free energy of formation for compounds under biological conditions.
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classification of biological and chemical compounds presents an
opportunity to re-assign compounds from the chemical space to
the biological space by integrating them into hypothetical
biochemical reaction.

56,000 unique biochemical reactions collected from 9 different
sources. To create a unified reaction database as a reference for
known metabolic processes, 235,698 reactions entries were col-
lected from KEGG, BRENDA37, HMR38, Rhea39, BiGG models40,
SEED41, MetaNetX32, MetaCyc31, Reactome42, and BKMS-
react43, and merged into 56,087 unique bioDB entries (Supple-
mentary Table 3). Surprisingly, many databases contained a high
number of duplicate reactions. We observed the highest ratio of
unique reactions for KEGG (97%), followed by BKMS (95%).
Reactome and BiGG had the lowest percentage of unique reac-
tions (49% and 50%, respectively), indicating that many of the
reactions are structural duplicates. This quantitative assessment
of reaction uniqueness further exposes the heterogenous nature of
biochemical databases, suggesting that the number of entries
provided by the database hosts should be handled with care when
comparing databases, and highlighting the importance of quality
assessment. We therefore checked whether or not the collected
reactions were elementally balanced and associated with an EC
number.

We first searched for reactions containing undefined or un-
processable molecular structures (e.g., polymers, proteins,
compounds describing two or more disconnected structures such
as salts) and other reactions that were not elementally balanced
(mostly missing reaction participants, or their reaction mechan-
ism is not known). We found that 56% (31,711 out of 56,087) of
total reactions were well-balanced (Supplementary Table 4), and
that 46% (25,651) of the reactions had an assigned EC number.
The highest ratio of balanced reactions having an EC number
assigned was found in the Brenda and KEGG database (80% and
67%), while BiGG had the lowest ratio (21%). The comparatively
high number of unbalanced reactions in collections of genome-
scale models is partially explained by gap-filling efforts, where
hypothetical, unbalanced reactions are added to the metabolic
network to ensure model feasibility. This example illustrates how
different applications require different levels, scopes and curation
standards, resulting in heterogeneous data collections. Our
unification and quality assessment of biochemical databases
provides an overview on accumulated biochemical data, and it
compares curation standards, biochemical coverage, overlaps and
consistency across different resources. The resulting unified
biochemical space (bioDB) forms the basis for the subsequent
expansion of biochemical knowledge through reaction prediction.

Reactive sites detected in all biological and almost all bioactive
database compounds. Functional groups, or reactive sites, des-
ignate which parts of a molecule are recognized and transformed
by enzymes, and are important features of biochemically active
compounds. To determine the biochemical reactivity of our col-
lected biological and bioactive compounds, we applied 489
reaction rules from BNICE.ch to search for reactive sites within
the 1,500,222 biological and bioactive compounds in bioDB,
excluding those with more than one disjoint molecular structure
(e.g., salts). We found that 1,498,307 out of 1,500,222 (99.8%) of
collected biological and biochemical compounds had at least one
reactive site (Supplementary Fig. 1a). The remaining 1,915
compounds do not seem to have the biochemical capacity to
participate in any enzyme-catalyzed reaction, but their presence
in biological databases can still be justified through their inter-
action with living organisms (e.g., chemically synthesized

molecules with medical or research applications, Supplementary
Fig. 1b).

The number and types of reaction rules assigned to a
compound is as an indicator for the diversity of functional
groups, or the biochemical versatility, of the molecule. By
screening our database of biological and bioactive molecules for
reactive sites, each compound was assigned a list of reaction rules
that can recognize one or more reactive sites on the molecule,
thus characterizing its biochemical reactivity (Supplementary
Fig. 2). We showed that almost all molecules in bioDB have the
potential to undergo biochemical transformations.

ATLASx predicts 5.2 million hypothetical reactions. To explore
the hypothetical biochemical space and map metabolic dark
matter, we used biological and bioactive compounds within
bioDB as a seed for reaction prediction. Hypothetical reactions
were predicted by applying 489 bidirectional reaction rules from
BNICE.ch to the 1,498,307 compounds with at least one reactive
site in bioDB. Reactions whose products were part of the assigned
biological and bioactive compounds space were stored in the
bioATLAS data collection, and reactions for which at least one
product was only found in the chemical compound space were
stored in chemATLAS. In total, we reconstructed 11,172 of the
metabolic reactions in bioDB, and we predicted 5,236,833
hypothetical reactions from biological and bioactive compounds
(Table 1). Out of these reactions, 1,590,057 (30%) occurred
exclusively between biological and bioactive compounds (bioA-
TLAS), and the remaining 3,646,776 reactions involved at least
one compound from the chemical space (chemATLAS). The
Gibbs free energy of reaction was estimated for 81% of predicted
reactions, and all predicted reactions were assigned a third-level
EC number as defined by the BNICE.ch reaction rule that gen-
erated the reaction, and therefore have defined mechanism.
Additional analyses showed no significant difference in the dis-
tribution of the estimated Gibbs free energy of reaction between
known (bioDB) and predicted (chemATLAS) reactions (Supple-
mentary Fig. 3). Predicted reactions within bioATLAS integrated
56% (844,316 out of 1,500,222) of bioDB compounds. From the
remaining 655,906 bioDB compounds, an additional 163,460
were integrated in at least one chemATLAS reaction, showing the
importance of integrating chemical compounds into biochemical
reaction network prediction. These results are even more
important considering that 1,485,324 compounds in bioDB are
not involved in any known reaction, and thus orphan. Sixty-seven
percent (992,874) of orphan compounds could be integrated into
at least one predicted reaction in ATLASx. We further found that
863,000 compounds, originally only present in PubChem, could
be integrated into the predicted chemATLAS network, meaning
that these molecules are situated only one reaction step away
from a known biological or bioactive compound. This ability to

Table 1 Compound and reaction statistics for bioDB,
bioATLAS, and chemATLAS.

Category bioDB bioATLAS chemATLAS

Compounds
Compounds integrated in
reaction

14,902 1,007,776 1,870,776

Total number of compounds 1,500,222 1,500,222 77,934,143
Reactions
Known reactions 56,087 56,087 56,087
BNICE.ch-curated known
reactions

11,172 11,172 11,172

BNICE.ch-predicted reactions 0 1,578,885 5,225,661
Total number of reactions 56,087 1,634,972 5,281,748
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link orphan and chemical compounds to known biochemistry
highlights the utility of our tool in drug discovery and metabolic
research. These compounds are potential candidates for second-
ary metabolites (e.g., plant natural products), unwanted products
of side reactions (e.g., damaged metabolites44), or bioactive
compounds45 (e.g., drugs, pesticides) with the capacity to be
transformed by enzyme catalysis.

Network analysis of the biotransformation reveals disjoint
components. The connectivity of a biochemical reaction network
can help identify missing biochemical links and serve as an indi-
cator for the comprehensiveness of a knowledge base. According to
the chemical law of mass conservation, a network that represents
perfect biochemical knowledge would be fully connected—every
compound would be connected to every other compound through a
suite of biotransformations. To assess the connectivity of our
reaction networks, we compared network properties of bioDB,
bioATLAS, and chemATLAS using graph theory. Graph theory has
been previously used to analyze the properties of biochemical net-
works, but these analyses were either performed on specific
organisms or restricted to single databases46,47. Here, we estimated
the network properties of known and expanded biochemistry
through state-of-the-art graph-theoretical metrics.

We created graph-representations of each network, where
nodes represent compounds, and edges represent biotransforma-
tions between two compounds (detailed in the “Methods”
section). For each of the three networks, we counted the number
of connected components (i.e., disjoint graphs or islands)
(Fig. 2a), and we found that the total number of components
increased with the network expansion from bioDB to bioATLAS
to chemATLAS (Supplementary Table 5). However, the number
of components relative to the size of the network, represented by
the average number compounds per component, decreased from
22.6 in bioDB to 9.0 in bioATLAS, and increased again to 12.2 in
chemATLAS. This result suggests that disconnected islands
created by integrating bioactive compounds become more
interconnected after including chemical compounds. To further
characterize the networks, we looked at the size distribution of the
different components. We found that all three networks were
dominated by one single giant component followed by a large
number of secondary components that involved at most 515
compounds (Fig. 2b). While the biggest component in bioDB
connected 88% of compounds in the network, this number
decreased to 58% in bioATLAS and increased again to 68% in
chemATLAS. This result supports our first observation, as it
indicates that the integration of chemical compounds into the
network bridges compound islands in bioATLAS into a denser
network in chemATLAS. Our hypothesis is further confirmed by
the diameter metrics. To calculate the diameter of a network, one
needs to find all the shortest paths between all the possible
combination of nodes in the network. The longest shortest path is
called diameter of the network, and the average length of shortest
paths between any two nodes is called the average path length.
Here, we found that the diameter decreased with the expansion
from bioDB (32 steps) to bioATLAS (27 steps), and increased
again in chemATLAS (34-step diameter), suggesting expansion of
the network towards uncharacterized chemistry and integration
of previously disconnected components. The average path length
increased monotonically from 7 in bioDB to 9 in bioATLAS, and
to 12 in chemATLAS, reflecting the continuous growth of the
main component (i.e., the core of biochemical reaction knowl-
edge) during the network expansion process.

Searching for biological pathways within ATLASx. The quest
for biochemical pathway alternatives is a key challenge in the

bioproduction of natural and chemical compounds in chassis
organisms, the elucidation of complex natural product bio-
synthesis, and the study of biodegradation routes. Standard
pathway design pipelines include four main steps: (i) creation of
the biochemical network; (ii) pathway search; (iii) enzyme
assignment; (iv) pathway evaluation in the chassis model48.
While the steps (i) and (ii) are meant to expand the solution
space, steps (iii) and (iv) allow to narrow it down to the number
of pathways that can be tested experimentally (top-1, top-5, top-
10). Steps (i) and (ii) are automated in ATLASx, and step (iii) can
be performed online for a selected pathway by using the inte-
grated BridgIT functionality, making it a valuable tool for the first
three steps in pathway design. To support our claim, we validated
the ATLASx pathway search on a set of well-characterized bio-
synthetic pathways obtained from the MetaCyc database.

For this benchmark, we applied the algorithm implemented in
NICEpath49 to search for pathways within the chemATLAS
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Fig. 2 Graph-theoretical analysis of biotransformation networks. a
Schematic overview of statistics and network properties calculated for
bioDB, bioATLAS, and chemATLAS. Reactions exclusively involving
biological and bioactive compounds (green nodes) are assigned to the
bioATLAS reaction space, and reactions involving one or more chemical
compound (light blue nodes) are assigned to the chemATLAS reaction
space. The main component and the second largest component of the
network are schematically shown (white highlight). The diameter, or
longest shortest path between any two nodes of the main component, has a
length of 8 and is highlighted in red. b The components of each reaction
scope in ATLASx have been extracted and ordered by size. Here, the
number of compounds (nodes) of each component is plotted on a log-log
scale to show the size distribution of disconnected components for bioDB,
bioATLAS, and chemATLAS. For the main component (highest number of
nodes) as well as for the second largest component, exact numbers of
compounds are indicated.
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reaction network, and we examined whether ATLASx could
recover the pathways from the MetaCyc validation set.

We found that out of the 3149 collected MetaCyc pathways, 1131
matched our curation standards (see “Methods”). For each
MetaCyc pathway, we determined the precursor and the target
compound. We then used the pathway search within ATLASx to
extract biochemical routes connecting the precursor to the target,
and we compared the extracted pathways to the original MetaCyc
pathway. We were able to find pathways for 99% (1117 out of 1131)
of precursor-target pairs within the whole ATLASx (Fig. 3a). We
performed the same search within a network containing MetaCyc
reactions only, and we found pathways for 91% of precursor-target
pairs (1030 out of 1131). Within the MetaCyc network, we further
discovered that 85% of native MetaCyc pathways (960 out of 1131)
were among the top 15 pathways according to our ranking scheme
based on atom conservation (Fig. 3b) (see Methods for details). For
the whole ATLAS network, the 15 top-ranked pathways included

the native pathway for the 65% of the MetaCyc pathways (738 out
of 1131), demonstrating that the remarkable addition of millions of
predicted reactions provided the metabolic community with the
tool to obtain pathways with better atom conservation than the
currently reported ones while staying efficient in recovering
the native pathways. We were further interested to see what are
the properties of the pathways that we recover with a low rank. We
found, that in these cases the native pathway had steps with low
atom conservation, which is possible in natural pathways but is
counterproductive for engineering pathways with high yield. For
example, sinapyl alcohol biosynthesis from 4-coumarate includes
substitution of CoA with L-quinate followed by the reverse
substitution after one intermediate reaction step (Fig. 3c). The
addition of L-quinate does not bring any additional atoms to the
final structure, therefore, our algorithm prefers pathways that
are more conservative and therefore we believe are easier to
integrate into the host organism and obtain higher yields.

Rank of the exactly reconstructed MetaCyc pathwaya bPathway presence in the network
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Our evaluation shows that known biochemical pathways can be
diligently reproduced using ATLASx. The pathway search tool is
available online at https://lcsb-databases.epfl.ch/Search2. Users
can adjust the network scope as discussed above, as well as
perform database-specific search scopes for all of the imported
reaction databases.

ATLASx fills metabolic gaps and predicts biosynthesis path-
ways. ATLASx is a resource with wide-ranging practical appli-
cations that include compound classification, metabolic pathway
searches, and gap-filling for metabolic models. To illustrate how
the unification and expansion of knowledge in ATLASx can
inform hypotheses around a given biochemical pathway, we used
the ATLASx web tools to explore and expand a biosynthetic
pathway of interest. As a case study, we chose the biosynthesis
pathway of the anti-fungal and anti-hypertensive compound
staurosporine, a secondary metabolite with a complex molecular
structure (Fig. 4)50. According to KEGG, the biosynthesis of
staurosporine from tryptophan involves 7 reaction steps, most of
them being poorly characterized. To explore the biochemical
vicinity of this pathway, we retrieved all compounds that were
one step away from the original pathway intermediates. Out of
861 potential pathway derivatives, 60 were found exclusively in
bioDB, 407 were contributed by bioATLAS, and the remaining

394 compounds were only integrated when chemATLAS reac-
tions were considered. According to our analysis, most derivatives
(93%, or 799) were detected around tryptophan. Secondary hubs
were found around K-252c and staurosporine, with each hub
contributing 3% (24 compounds) and 3% (22 compounds) to the
total number of pathway derivatives, respectively. Intrigued by
the high number of potential staurosporine derivatives, we
explored the network around this molecule and found 58 deri-
vatives within a distance of four reaction steps (Fig. 4). We found
6 staurosporine derivatives within bioDB (4 of them part of the
original pathway), 18 derivatives only within bioATLAS, and an
additional 34 compounds within chemATLAS. Interestingly, the
network exploration converged, and the only derivatives found
four steps away from staurosporine were located upstream of the
original pathway.

To characterize the potential staurosporine derivatives we
identified, we retrieved the number of patents and citations
associated with the compounds in the extracted network, and we
ranked the compounds by the sum of patents plus citations.
These metrics have been previously established to extract
compounds with high industrial, pharmaceutical and academic
interest51. Among the four top-ranked compounds in the
network, we found that staurosporine itself garnered the most
attention (29,819 patents plus 15,439 citations), followed by
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7-hydroxystaurosporine (1521 patents, 571 citations) and then
K-252c (39 patents, 736 citations), which is part of the
staurosporine synthesis pathway. Midostaurin, a cancer thera-
peutic and protein kinase inhibitor commercially known as
Rydapt52 (158 patents, 570 citations) and was one step away from
staurosporine. While “popularity” estimation of chemicals is one
of many possible ways to organize and rank compounds, other
metrics such as molecular weight, toxicity, or structural similarity
to known pharmaceuticals may be applied depending on the
objective of the study. This example illustrates how to explore the
biochemical vicinity of a compound or pathway within ATLASx,
and to retrieve information (e.g., citations and patents) from
external sources to rank derivatives based on their academic and
industrial relevance.

We further investigated the capability of ATLASx to detect and
bridge knowledge gaps in the biosynthesis pathway of staur-
osporine. Out of the 7 reaction steps in the pathway obtained
from KEGG, only one reaction is linked to an enzyme. The other
6 reactions are orphan (i.e., no enzyme assigned), and half of
these orphan reactions have unknown reaction mechanisms
(Table 2). To show how one can find plausible enzymes(s) for
orphan reactions, we examined each orphan reaction within the
pathway. First, for reactions with assigned BNICE.ch reaction
rules, we applied the computational tool BridgIT to predict
potential catalyzing enzymes. For reaction steps without an
assigned BNICE.ch rule, we searched for pathways that connect
the substrate to the product via alternative sequences of well-
annotated bioDB reactions, or hypothetical BNICE.ch reactions
that provide the basis for robust enzyme predictions with
BridgIT.

The first step of the pathway, the conversion of L-tryptophan
to IPA imine, is identified with the partial EC number 1.4.3.- by
KEGG. The computational tool BridgIT, which uses enzyme
annotations of non-orphan reaction to suggest enzymes catalyz-
ing similar orphan reactions, proposed the enzyme 7-chloro-L-
tryptophan oxidase (EC 1.4.3.23) as the best candidate to catalyze
this first step. This predication was bolstered by a high BridgIT
score of 0.95, which indicates that both substrates have a similar
reactive site and surrounding structure. While the native function
of this proposed enzyme is to convert 7-chloro-L-tryptophan to
2-imino-3-(7-chloroindol-3-yl) propanoate, the activity of this
candidate enzyme on L-tryptophan has been proven in a study by
Nishizawa et al.53. Another orphan reaction in the staurosporine
pathway is the conversion of 3′-demethylstaurosporine to O-
demethyl-N-demethyl-staurosporine (step 6). For this reaction,
BridgIT suggested that an N-formiminotransferase serves as a
catalyzing enzyme (EC 2.1.2.5), although this prediction is
accompanied by a relatively low BridgIT score of 0.34. Finally,
the last step of the pathway is known to be catalyzed by an
O-methyltransferase with EC number 2.1.1.139. In this case,
BridgIT successfully mapped this reaction to itself and found the

corresponding enzyme. Interestingly, we also found one reaction
step in the pathway that could not be reconstructed by any suite
of reaction rules. Although the reaction is known to be catalyzed
by an enzyme of the cytochrome P450 class and assigned the
partial EC number 1.13.12.-, no information on its reaction
mechanism is available from public databases and scientific
literature. We therefore hypothesize that the reaction mechanism
of this enzyme either involves intermediate molecules that have
not been characterized yet, or it harbors reaction mechanism that
has not been observed before in nature.

This showcase exemplifies how BridgIT can be used on top of
the BNICE.ch reaction prediction to find enzymes for hypothe-
tical or orphan reactions and to fill gaps in metabolic pathways
and networks. All of the presented analyses can be performed
using the computational tools available online, in combination
with open-source visualization software as detailed in the
Methods section. We provide public access to our database
through an online search interface, which includes a powerful
pathway search algorithm that can be used for the design of
metabolic pathways. The web access to ATLASx (https://lcsb-
databases.epfl.ch/Atlas2) provides further query tools, such as the
ability to identify all reactions associated to a query compound.

Discussion
This work attempts to map the hypothetical vicinity of known
biochemistry and to address the vast amount of metabolic “dark
matter” by using biochemical reaction principles implemented in
489 generalized reaction rules. Based on 1.5 million known bio-
logical and bioactive compounds unified in bioDB, we predicted
1.6 million biochemically possible biotransformations between
biological and bioactive compounds (bioATLAS). We further
predicted more than 3.6 million reactions that involved com-
pounds from the chemical compound space, resulting in a total of
almost 5.2 million in chemATLAS. From this wealth of infor-
mation, we extracted insightful numbers on the reactivity and
connectivity of biologically relevant molecules.

Assessing the composition of metabolic “dark matter” is by
definition difficult, since we lack a way to quantify the unknowns
a priori. Fortunately, biochemical data collected and generated
from our database allows us to answer a broad range of questions
regarding the biochemical reactivity of compounds, the expansion
of biochemical space from a graph-theoretical perspective, and
the characteristics of our hypothetical reaction network. Potential
applications of ATLASx include the prediction of bioproduction
or biodegradation pathways involved in the transformation of
commodity and specialty chemicals, pharmaceuticals, and plas-
tics. ATLASx can also be used to discover the biosynthesis routes
of poorly characterized secondary metabolites, and systematically
fill in knowledge gaps surrounding metabolic models. For
example, ATLASx can be used to expand the network around all
compounds within a given metabolic model, remove dead-end

Table 2 Pathway reconstruction and gap-filling of the staurosporine biosynthesis pathway with ATLASx.

Step KEGG ID EC number BNICE.ch rule Top BridgIT hit EC (KEGG ID, score) Reconstruction within ATLASx

1 R11119 1.4.3.- 1.4.3.- 1.4.3.23 (R09560, 0.95) Biotransformation with LCSB ID 2600177067
2 R11120 2-step reaction (spontaneous + 1.21.98.2) in bioDBa

3 R11121 1.13.12.- Not reconstructed by any suite of reaction rules
4 R11122 2.4.-.- 3-step reaction in chemATLASb

5 R11123 2-step reaction in bioATLASc

6 R11129 2.1.1.- 2.1.2.5 (R03189, 0.34) Biotransformation with LCSB ID 2600423725
7 R05757 2.1.1.13964 2.1.1.- 2.1.1.139 (R05757, 1.00) Biotransformation with LCSB ID 2600261843

a https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050408,1469435049,1468050416/2806125367,2806150968/0.
b https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050425,1469288899,277921848,1468050433/2603459454,2603467379,2682146339/0.
c https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050433,1469288674,1468050440/2603455158,2682148818/0.
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metabolites, and then examine the expanded model for potential
shortcuts, enhanced predictions, and enzymatic promiscuity.

Since we successfully integrated tens of thousands of chemical
compounds into a biochemical network, we hypothesize that
many compounds are not yet part of any database, even though
they potentially exist in nature or could be created by metabolic
engineering. While the integration and accurate prediction of
hypothetical compound structures remains an open challenge,
ATLASx provides the necessary tools and conceptual framework
to predict hypothetical compounds reliably in the future. In order
to properly meet that future, ATLASx is designed as a dynamic
database, and can be continuously expanded around biochemical
pathways or compound classes of interest. We believe that pre-
dictive biochemistry is crucial for the advancement of synthetic
biology and metabolic engineering, and hope that ATLASx can
provide reliable reaction and pathway predictions for the scien-
tific community.

Methods
We developed a unification algorithm based on canonical SMILES to generate
consistent and duplicate-free data. Data was collected from KEGG25, SEED29,
HMDB30, MetaCyc31, MetaNetX32, DrugBank33, ChEBI34, ChEMBL35,
BRENDA37, Rhea39, BiGG models40, Reactome42, and BKMS-react43 by January
2019. To efficiently store, retrieve, and analyze the increased amount of data, we
created an SQL-based database where we imported the collected data (bioDB). The
compounds were filtered to keep only those that had a defined, single molecular
structure (i.e., no salts, no polymers, no generic molecules with undefined bran-
ches). Compounds were merged using their canonical SMILES as a unique iden-
tifier, which was calculated using OpenBabel54 version 2.4.0. As a result of the
unification procedure, a unique compound entry in bioDB can contain different
resonance forms, stereoisomers, as well as dissociated and charged states of a same
compound. Since ATLASx does not distinguish between stereoisomers, users who
wish to include stereochemical considerations are encouraged to post-process
ATLASx output with external cheminformatic software (e.g., rdkit.Ch-
em.EnumerateStereoisomers module in RDKit) to expand the 2D structures to all
possible 3D stereoisomers structures.

Reactions were unified based on the structure of their reactants and products.
Transport and stereoisomeric reactions were filtered to only keep reactions that
modify the connectivity of atoms within the molecule. Unified compounds and
reactions were annotated with all available identifiers from different databases

Curation of unified compounds and reactions. Compounds were annotated with
the following structural descriptors: chemical formula, molecular weight, InChI,
InChIKey. For the annotation we used OpenBabel54 version 2.4.0. Reactions were
annotated with enzymatic reaction mechanisms obtained from BNICE.ch. We
further estimated the standard Gibbs free energy of the reactions in cellular con-
ditions using the Group Contribution Method (GCM)55.

Reactive site analysis. We used BNICE.ch to determine the reactivity of com-
pounds. For this, we applied all of the 489 bidirectional generalized reaction rules
available in BNICE.ch to the unified set of compounds. The collection of BNICE.ch
reaction rules has been continuously expanded in the past to account for a wider
range of biochemical reaction mechanisms (Supplementary Table 6). Since 2018,
the creation of rules was particularly focused on less common reaction mechanisms
from secondary plant metabolism and biodegradation of organic pollutants. The
BNICE.ch rules rely on a bond-electron matrix (BEM) representation of the
reactive site that will be recognized by the enzyme. A second matrix (difference
BEM) describes the bonds that need to be rearranged in the molecule to form the
product. To determine the potential reactivity of the compounds, we therefore used
the first BEM describing the reactive site of each reaction rule to screen all of the
molecular structures of the compounds for potential reactive sites. Each compound
was assigned all the rules that harbor a matching reactive site for further usage.

For compounds with aromatic rings, all possible kekulé representations were
generated to ensure that no potential reactive site is missed. Since the double bonds
in aromatic compounds can be drawn in different positions, giving rise to different
mesomers, it is important to screen all the different kekulé structures for reactive
sites. It has been shown that different kekulé structures lead to different results in
cheminformatics approaches like docking, molecular-fingerprint construction,
clustering, and any 2D- or 3D-QSAR analysis56.

Prediction of hypothetical reactions. Each BNICE.ch reaction rule was applied to
all compounds recognized by the rule in the previous step, and all the generated
products were analyzed. Reactions only producing compounds that belong to the
biological or biochemical compound space were imported to the database as
bioATLAS reactions, and reactions involving products from the chemical space

were imported as chemATLAS reactions. Importing a generated reaction into the
database involved checking its equation against all the reactions present in the
database. If a reaction was already present, only the reaction rule was added to the
reaction description, otherwise the reaction was imported. For each generated
reaction, the GCM55, as integrated in BNICE.ch, was employed to provide an
estimation of Gibbs free energy of reaction and its error.

Network analysis. Most available methods for network analysis are based on
manually derived reactant-product pairs (e.g., KEGG RPAIR network57), or they
define a set of cofactors to be excluded from the analysis to avoid the generation of
hubs by currency metabolites. Here, we rely on NICEpath, a pathway search tool
proposing a graph representation of metabolic reactions that weighs each substrate-
product pair according the number of atoms conserved between the substrate and
the product49. NICEpath has been previously shown to be able to retrieve relevant
pathways from biochemical networks, and to help in understanding the inherent
properties of biochemical networks (e.g., connectivity, diameter).

To calculate the weights on each pair, NICEpath requires each reaction to be
annotated with a reaction mechanism that allows the calculation of the atom
conservation between the substrate and the product. This condition is met for all
bioDB reactions with assigned reaction rules, and for all predicted reactions in
bioATLAS and chemATLAS. For reactions in bioDB without reaction mechanism
assignment, the atom conservation was estimated by assuming a minimal
rearrangement of atoms in the course of the reaction.

For each pair, the conserved atom ratio (CAR) is calculated with respect to the
reactant (CARr) and with respect to the product (CARp), where nc is the number of
conserved atoms between the reactant and the product, nr is the number of atoms
in the reactant, and np is the number of atoms in the product. Hydrogen atoms are
excluded from the calculation.

CARr ¼
nc
nr

;CARp ¼
nc
np

ð1Þ

To calculate a bidirectional CAR, the mean CARr,p is multiplied with a
correction factor that increases with the difference between the number of common
atoms and the total number of atoms in the molecule.

CAR ¼ CARr þ CARp

2
ð2Þ

For bioDB reactions that could not be annotated with a BNICE.ch reaction
mechanism, nc was estimated as follows: First, the number of conserved atoms was
assumed to be defined for standard cofactors (e.g., NAD+ and NADH conserve
100% of atoms, hydrogen excluded). If no pre-defined cofactor pair could be
identified, we estimated the number of common atoms using the maximum
common substructure algorithm (implemented as FMCS library in RDKit). For the
remaining pairs, the number of conserved atoms was calculated based on the
assumption that the maximum possible number of atoms is conserved between a
given substrate-product pair (e.g., C6O is conserved between C7O and C6O2,
hydrogens excluded). For the remaining reactant pairs, the atom conservation was
assumed to be equal to 0.

To create a weighted, searchable biochemical network, the CAR of a substrate-
product pair is then transformed into a distance between the substrate node and
the product node, and the two are connected by an edge representing the
biotransformation.

Distance ¼ 1
CAR

ð3Þ
The result is a reactant pair network where substrates and products that

conserve more atoms lie closer to each other than reactants that conserve less
atoms. Since a same biotransformation, or substrate-product pair, can occur in
more than one reaction, each edge in the network represents all the reactions that
transform the same substrate to the same product. The resulting atom-weighted
biochemical networks can be searched for metabolic pathways using common
graph-search algorithms. For example, NICEpath uses Yen’s k-shortest loop-less
path search algorithm to retrieve the top k pathways with the highest atom
conservation from the source to the target compound58. Here, we analyze the
atom-weighted networks to derive global properties of known and predicted
biochemistry.

We constructed three networks with different biochemical scopes: The 56,087
reactions in bioDB translated into 62,299 weighted edges connecting 14,914 bioDB
compounds. The bioATLAS network connects 844,337 compounds in 1,590,057
reactions, represented by 2,503,627 edges in the network, and chemATLAS
connects 1,876,992 compounds in 5,248,711 reactions, represented by 5,717,409
edges (Supplementary Table 2). For many types of network analysis, however, an
unweighted graph is required. Since we know that substrate-product pairs with a
very low degree of atom conservation may not be biologically relevant, we used a
cutoff CAR value to decide whether or not to draw an edge between any given
compounds. It has been shown previously that a cutoff of 0.34 in the CAR best
predicts the manually curated reactant pairs of type “main” in KEGG49,57. Hence,
we removed edges with a CAR below 0.34, and we removed the weights from the
remaining edges. The result is a set of unweighted graphs, which can be analyzed
using standard graph analysis algorithms (i.e., extraction of disjoint components,
diameter calculations on disjoint components). The code used to perform the
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network analysis and to create the figures in the manuscript is available at https://
github.com/EPFL-LCSB/ATLASxAnalyses, including documentation to reproduce
the presented results59.

Reconstruction of known reactions with BNICE.ch reaction rules. To estimate
the biochemical coverage of BNICE.ch reaction rules, we assessed how many
bioDB reactions could be reconstructed by BNICE.ch rules. For this, we first
removed reactions missing structural information on their reactants, as well as
isomerase and transport reactions. For the remaining reactions, we checked if the
reaction could be reconstructed by one or several BNICE.ch reaction rules. We
distinguished between exact reconstruction, where reactants and products of the
reaction match exactly, reconstruction of the main biotransformation using alter-
native cofactors, and reconstruction of the main biotransformation using 2 to 4
reaction steps with BNICE.ch rule within ATLASx. For multi-step reconstruction
of reactions, we considered all main reactant pairs (i.e., with a CAR ≥ 0.34) of a
given reaction, and we searched to connect the substrate of the pair to the product.
To do this, we extracted the shortest path within the weighted reaction network of
chemATLAS, considering only BNICE.ch curated reactions. If the substrate and the
product could be connected in k reaction steps, and the product of the CARs along
the path did not drop below the threshold of 0.34, we called the reactant pair
reconstructed in k steps. If the reaction could be split into several “main” reactant
pairs, the pair reconstruction with the highest number of steps was considered for
the reaction reconstruction. Using this workflow, we found that 71.4% of filtered
reactions in bioDB could be reconstructed by BNICE.ch (Supplementary Table 7).
Considering that only 35% of bioDB have a high curation standard (i.e., mass
balanced reactions with EC annotation) (Supplementary Table 4), we consider our
coverage of known reactions as sufficient, and we show that we can propose
reaction mechanisms for known reactions for which the reaction mechanism is still
unknown.

Pathway reconstruction of linear pathways from MetaCyc. MetaCyc pathways
and reactions were downloaded from MetaCyc (https://metacyc.org/smarttables)
on May 25, 2020. The pathways used for benchmarking had to pass the following
criteria: The pathway (i) consists of a minimum of two reactions, (ii) it does not
contain transport reactions and electron-transfer reactions, (iii) it does not contain
reactions that are not listed in the MetaCyc reactions table, (iv) it does not contain
compounds with undefined structure, non-carbon compounds, proteins and pep-
tide polymers, RNA molecules, unknown compounds, (v) it is not circular (as we
are comparing linear pathways), (vi) is not a polymerization pathway (e.g. bacterial
peptidoglycan polymerization), (vii) is not a light-dependent pathway, (viii) is not a
superpathway (i.e., pathway consisting of other pathways with no individual
unique reaction sequence).

The pathways in MetaCyc are reported as a set of reactions and not as a
sequence of compounds. We therefore translated the pathway of reactions into a
pathway of compounds to directly compare the output. For these, we generated a
graph based on the reaction equations: all the compounds of the reactions were
considered as nodes, and biotransformations were introduced into the graph as
edges for every substrate-product pair with the same distance. This is because we
do not have information about the atom conservation from MetaCyc’s sources. At
the same time, we excluded the common cofactors (NAD, ATP, etc.) from the
pathway graph to minimize the possible number of shortcuts. We found the
shortest loop-less linear path between every pair of compounds in this graph, and
we considered the longest of these pathways (therefore the 2 more distant
compounds) as the linear pathway of reference (e.g. longest branch of the
branching pathway). The resulting dataset was further manually checked to exclude
the pathways that were incorrectly extracted in the automatic procedure described
above (Supplementary Table 8). The resulting linear set of pathways was
considered as a reference pathway to benchmark the pathway search algorithm. For
the pathway search we applied the following parameters: as the pathway search
scope we used four different networks, one involving all ATLASx reactions, one
only including reactions that have a BNICE.ch reaction mechanism assigned, only
involving all MetaCyc reactions and one including only MetaCyc reactions that
have a BNICE.ch mechanism. The analysis of respective differences for networks
with and without BNICE.ch mechanism annotation for all reactions is provided in
the main text. Edges with a CAR value below 0.34 were removed from the network,
and the distance between nodes was calculated by Eq. (3).

We first checked whether all the edges of each MetaCyc path are present in the
ATLASx network and therefore the native pathway can be found in ATLASx. Then
we applied the NICEpath pathway search algorithm, which finds the shortest
pathways according to the distance calculated based on CAR49. We searched the
ATLASx network for the pathways between the precursor and target until the
native MetaCyc pathway was encountered. The rank of the pathway within the
network was reported. We also investigated how the length of the reference
pathway from MetaCyc affects the proportion of reconstructed pathways. We
found that even pathways as long as 16 reaction steps could be exactly
reconstructed from the original MetaCyc pathway, and that alternative pathways
for MetaCyc pathways could be up to 26 reaction steps in length (Supplementary
Figs. 4 and 5). These results show that the performance of the pathway search is
not significantly compromised when searching for longer pathways. The code used

to perform the pathway reconstruction and to create the figures in the manuscript
is available at https://github.com/EPFL-LCSB/ATLASxAnalyses, including
documentation to reproduce the presented results.

Pathway expansion. The biosynthesis pathway of staurosporine was obtained
from KEGG (https://www.kegg.jp/kegg-bin/show_pathway?
map=map00404&show_description=show, 12 May 2020). For each intermediate,
the LCSB ID was obtained using the online compound search interface, and the IDs
were compiled into a compound list. The ID list was then used as input to extract
all compounds one reaction step away from the native pathway for bioDB,
bioATLAS, and chemATLAS scopes (https://lcsb-databases.epfl.ch/Atlas2/Analysis,
Analysis 1). The default values were applied (CAR threshold of 0.34, reactions
without known BNICE.ch reaction mechanism included). The resulting network
file for chemATLAS was imported to the open-source graph visualization software
Gephi (.csv file extension required for import). To assign the origin to each
compound in the network, the list of nodes was obtained from the bioDB and
bioATLAS networks, and each node in the chemATLAS network was assigned the
corresponding scope. The node table was imported into the Gephi project, and
nodes were colored in accordance to their scope. Finally, Gephi’s forceAtlas2
algorithm was applied iteratively to the network and the visualization was manually
improved. This analysis can be reproduced by following the user guide available on
our website (https://lcsb-databases.epfl.ch/pathways/downloads/ATLASx/
userguide.pdf).

To assess the “popularity” of the staurosporine derivatives, the number of
publications was derived from PubChem and PubMed, while the number of patent
annotations was extracted from PubChem. The PUG-REST service was used to
retrieve information from the PubChem website (https://
pubchem.ncbi.nlm.nih.gov/) on the number of patents and citations associated to
each compound. We further used the Entrez Programming Utilities (E-utilities)
API service to search the PubMed database for citations by compound name. To
find enzymes for the predicted reaction, the BridgIT tool was used26. BridgIT is
available as a resource on our website (https://lcsb-databases.epfl.ch/Bridgit).

Website. The ATLASx search and analysis tools can be found at https://lcsb-
databases.epfl.ch/Atlas2. The visualization of compounds is achieved by SMILES
viewer, a light-weight JavaScript library developed by Probst and Reymond60 that
visualizes molecular structures in runtime. The pathway search within known and
predicted biochemical network uses the concepts and code developed in
NICEpath49. The Python library NetworkX is used for the pathway search
implementation, and the network statistics were obtained using the Python
libraries NetworkX and SNAP61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings in this work are available within the paper and its
Supplementary Information files. Additional source data that are necessary to reproduce
the analyses and figures presented in this paper are available on the publicly available git
repository (https://github.com/EPFL-LCSB/ATLASxAnalyses). The data stored within
the ATLASx database are available from the authors upon reasonable request. The
following previously published datasets were used in this work: PubChem compound
data (released in 2020, pubchem.ncbi.nlm.nih.gov)56, KEGG database (released in 2018,
www.genome.jp/kegg/)25, ChEMBL database (released in 2020, www.ebi.ac.uk/chembl/
)35, MetaCyc (released in 2020, metacyc.org/)31, Model SEED (released in 2020,
modelseed.org/)62, Drugbank (version5.1.6, go.drugbank.com/)33, ChEBI (released in
2020, www.ebi.ac.uk/chebi/)34, HMDB (Release 4.0, hmdb.ca/)30, MetaNetX (version 4.1,
www.metanetx.org/)32, HMR (version 1.6, metabolicatlas.org/)38, Reactome (released in
2020, reactome.org/)42, Rhea (release 115, www.rhea-db.org/)39, BKMS (released in 2019,
bkms.brenda-enzymes.org/)43, BiGG models (version 1.6, bigg.ucsd.edu/)40, and Brenda
(released in 2019, www.brenda-enzymes.org/)37.

Code availability
The tools used to build, annotate and search ATLASx have been previously published as
BNICE.ch (version 2020)16, BridgIT (version 2022)26 and NICEpath (version 2021,
https://github.com/EPFL-LCSB/nicepath)49, respectively. BNICE.ch and BridgIT use the
OpenBabel library (version 2.4.0)54 for structural format conversion. NICEpath uses the
NetworkX library (version 2.5)63 to represent and search biochemical networks. The code
to reproduce the presented analyses and figures is available at https://github.com/EPFL-
LCSB/ATLASxAnalyses (https://doi.org/10.5281/zenodo.5925282). The python libraries
NetworkX (version 2.5) and the SNAP (version 5.0.0)61 were used for the network
analysis.
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