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ABSTRACT

The development of single-cell transcriptomic tech-
nologies yields large datasets comprising multi-
modal informations, such as transcriptomes and im-
munophenotypes. Despite the current explosion of
methods for pre-processing and integrating multi-
modal single-cell data, there is currently no user-
friendly software to display easily and simultane-
ously both immunophenotype and transcriptome-
based UMAP/t-SNE plots from the pre-processed
data. Here, we introduce Single-Cell Virtual Cytome-
ter, an open-source software for flow cytometry-like
visualization and exploration of pre-processed multi-
omics single cell datasets. Using an original CITE-
seq dataset of PBMC from an healthy donor, we il-
lustrate its use for the integrated analysis of tran-
scriptomes and epitopes of functional maturation in
human peripheral T lymphocytes. So this free and
open-source algorithm constitutes a unique resource
for biologists seeking for a user-friendly analytic tool
for multimodal single cell datasets.

INTRODUCTION

The recent development of techniques for single cell RNA
sequencing (scRNAseq) has resulted in an accrual of scR-
NAseq datasets comprising thousands of cells from many
lineages, tissues, physiological conditions and species. The
classical representation of such datasets is based on their
dimensionality reduction e.g. by t-stochastic neighborhood

embedding (t-SNE) or uniform manifold approximation
and projection (UMAP). In such steps, all cells are plotted
according to their transcriptomic similarity with immediate
neighbours and the overall community of cells, forming sep-
arate groups or clusters. The lineage, status and hallmarks
of such cells and clusters are then identified by their expres-
sion levels of single genes, chosen for their hallmark expres-
sion patterns, e.g. expression of the CD14 gene for mono-
cytes, or of the MKI67 gene for proliferating cells. Neverthe-
less, both technical noise from the data acquisition process,
and massive gene dropouts impair detection of many genes
in scRNAseq datasets. Consequently, mapping the expres-
sion level of a single gene in a t-SNE map is generally less
informative than mapping the enrichment of a correspond-
ing multi-gene signature.

We recently developed Single-Cell Signature Explorer, a
tool which scores gene signatures by their UMI to total cell
UMI ratio in each single cell from large datasets (1). This
tool further overlays UMAP or t-SNE maps of the dataset
with heatmap-encoded single cell scores of any multigene
signature. By allowing the user to see how these scores vary
across all cells, it provides a visualization of any transcrip-
tomic hallmark in the dataset. For example, this tool returns
scores interpreted by user for identifying B versus non-B
cells among peripheral blood mononuclear cells (PBMC).
It may likewise help to infer single cell lineages, cell hall-
marks or any metabolic and proliferative status from col-
lective gene expression levels (1).

However, formal identification of most cell lineages re-
lies upon cell surface expression of canonical protein mark-
ers rather than on transcriptome-based inference. This is-
sue was addressed by incepting the Cellular Indexing of
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Transcriptomes and Epitopes by Sequencing (CITEseq) (2),
which allows simultaneous detection of single cell tran-
scriptomes and antibody-labeled surface markers, yielding
both gene expression levels and immunophenotypes from
the same experiment. Several algorithms allow the analysis
of either multidimensional immunophenotypings, e.g. Cy-
tobank (3) or of single cell transcriptomes, such as Seu-
rat (4), iCellR or Loupe Cell Browser (10xGenomics) and
SegGeq™ (flowjo). In addition, Seurat not only allows anal-
ysis of single cell transcriptomes, but also of multimodal
datasets through R-based command lines (https://satijalab.
org/seurat/v3.1/multimodal vignette.html).

So currently, there are several existing methods that are
able to pre-process raw CITE-seq datasets from read align-
ments up to production of tables of cells, genes, epitopes
and UMAP/t-SNE coordinates. These methods can also be
used to analyze such table’s transcriptome and phenotype
data together. But although the pre-processing performed
by skilled bioinformatics analysts will remain a prerequi-
site, there is a growing demand from a broader scientific
audience for user-friendly and open source analytic tools
to finally explore any pre-processed CITE-seq datasets with
simple tools. In this aim here, we introduce Single-Cell Vir-
tual Cytometer, a small software to analyze pre-processed
CITE-seq tables with user-friendly and flow cytometry-
like interface. From any table of pre-processed CITE-seq
dataset, Single-Cell Virtual Cytometer allows to visualize
both cell transcriptomes and epitopes in t-SNE or UMAP,
through flow-cytometry-like gatings, quadrants and selec-
tion of subsets of cells. We examplify its use to character-
ize the gene signatures for stages of functional maturation
of peripheral T lymphocytes using an original CITE-seq
datasets of PBMC from healthy individual. Our tool, imple-
mented as freely available open-source software, represents
a unvaluable resource to fully exploit the expanding uni-
verse of multi-omics datasets necessary to cancer research
and care.

MATERIALS AND METHODS

Single-Cell Virtual Cytometer

Single-Cell Virtual Cytometer is a new tool, part of Single-
Cell Signature Explorer software package (1) dedicated to
high throughput signature exploration in single-cell anal-
ysis. It brings the flow cytometry software capabilities to
single cell analysis. It is able to define and gate cell popu-
lations based on the 2D plot of, for example two antibod-
ies or genes, and to display simultaneously the selected cells
on a UMAP or t-SNE map. There is no limit to the num-
ber of antibodies, genes or other criteria possibly used to
define the plot, including combinations of transcriptomic,
proteomic and signature scores (1). Single-Cell Virtual Cy-
tometer takes a data table as input, using tab-separated text
file format, with the cells tag in rows and genes expression,
antibodies detection levels, signature scores in columns and
at least two columns with (x,y) coordinates for a map, such
as t-SNE or UMAP. Once the data table is loaded, the user
can then select two criteria, such as two antibodies. With
such criteria, a flow cytometry-like contour plot of the en-
tire dataset is drawn. Using a lasso or a box selection tool,
the user can select some cells and immediately see these on

a t-SNE/UMAP map. Single-Cell Virtual Cytometer sup-
ports an unlimited level of successive gatings. Quadrant
gates display the number and % of cells in each quadrant,
and trigger their location on the t-SNE/UMAP. For fur-
ther analyses, it is possible to export separately the codes
of cells gated or defined by each quadrant, as well as their
main statistics.

CITE-seq counter

We developed CITE-seq-counter software to count the
UMI of antibodies tags in raw sequencing reads. CITE-seq-
counter has been developed for Single Cell CITE-seq sam-
ples processed with 10×Genomics technologies. It takes as
input fastq files R1 and R2 from the sequencer, the antibod-
ies barcodes, and a white list of cells obtained from Seurat
(4). Cell and antibody barcode positions are adjustable as
well as UMI positions. Since sequencers can produce errors,
one mismatch is allowed in the barcode and in the UMI.
PCR duplicates (same UMI + barcode) are excluded from
the counts. The software is written in Go, it is fast and the
memory usage is as low as possible. Only the result table and
two sequences R1 R2 are stored in RAM at the same time.

Code availability

Single-Cell Virtual Cytometer was developed in pure
javascript using the graphical libraries plotly.js (5) and
Bulma. It only needs a web browser with javascript enabled
to be executed, with tab-separated text files as input. Files
can be accessed on the GitHub Single-Cell Virtual Cytome-
ter web page.

CITE-seq-counter was developed in Go and pre-
compiled static binaries are available for Linux and Win-
dows.

Generation and pre-processing of PBMC CITE-seq data

Procedures for cell isolation, labeling, CITE-seq exper-
iment, sequencing and pre-processing of the resulting
dataset are described in Supplementary Data section.

RESULTS

Single-Cell Virtual Cytometer for analysis of pre-processed
CITE-seq datasets

Single-Cell Virtual Cytometer is a small software (3Mo)
which does not require any complex installation, and can
be run immediately in a web browser without any pro-
gramming skills. The user can immediately explore any pre-
processed CITE-seq data without mastering any R com-
mand line instructions. Importantly, these input data must
consist in csv tables featuring cells in rows and columns for
genes, antibodies, signature scores or any other quantitative
single cell readout. Indeed, such tables must also have for
each cell at least one set of map (x,y) coordinates from any
dimensionality reduction method. From such pre-processed
CITE-seq data, Single-Cell Virtual Cytometer typically dis-
plays both a flow cytometry-like density plot of cell surface
markers (left panel, referred below to as phenotype panel)
and the corresponding dimensionally reduced map of cells
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based on their transcriptomes (right panel). Based on any
user-defined criteria, the cells selected by gates or quadrants
on left panel’s density plot are interactively displayed on
the right panel showing the corresponding t-SNE/UMAP
(Supplementary data demo video). Setting quadrants in the
phenotype panel automatically triggers display of both per-
centages and counts of cells from each quadrant.

Hence from a CITE-seq dataset analyzed with Single-
Cell Virtual Cytometer, it is possible to select two antibod-
ies to get their density plot across the entire dataset. Us-
ing gates or quadrants from this phenotype plot, the user
can select further a subset of cells to visualize on the tran-
scriptomic map. The cell tags of any selected subset of cells
can be exported as a txt file. Downstream sub-gating and
analysis with other antibodies of selected cells can be reit-
erated without limits. Delineating quadrants on the pheno-
type plot returns both the % and absolute counts of cells
from each quadrant, as well as their respective localization
on the corresponding right side map. The plots and maps
from Single-Cell Virtual Cytometer can be exported in low
and high resolution. Importantly, Single-Cell Virtual Cy-
tometer is very versatile. Its two-panels displays are inter-
active and based on any (x,y) parameters selected by the
user from the drop-down list. Hence this enables users to
select not only any mAb or cell hashtag (Biolegend), but
also any other parameter such as cluster number, sample
annotation index, or dimensionality reduction axes. Hence
instead of the epitopes and transcriptomes in respectively,
the left and right panels, the selection of (t-SNE-1, t-SNE-
2) as left panel parameters allows user to gate, quadrant,
and select cells from a transcriptomic standpoint to further
visualize their respective cell surface markers on the right
panel. The same applies for selection of (cluster, cluster) or
(cluster, gene) as left panels parameters to analyze epitopes
in the corresponding right panel.

Comparison with existing scRNAseq and flow cytometry vi-
sualization tools

Seurat 3.0. Seurat 3.0 (4) is an R package designed for QC
pre-processing, analysis and exploration of single cell RNA-
seq data. The Seurat pipeline enables users to identify and
interpret sources of heterogeneity from single-cell transcrip-
tome measurements, and to integrate diverse types of single-
cell data, performing the so-called multimodal integration.
Seurat has a command line tool able to generate dimension-
ality reduction maps from t-SNE or UMAP, allowing users
to select clusters and subsets of cells. Hence the use of Seu-
rat requires bioinformatics skills that are however no more
needed for using Single-Cell Virtual Cytometer, which was
rather designed for end users more accustomed to flow cy-
tometry.

Loupe cell browser. 3.1.1 is a dedicated visualization and
analysis tool for scRNAseq developed for analysing scR-
NAseq datasets mostly produced by 10×Genomic plat-
forms. It allows importing datasets and visualizing cus-
tom projections of either gene expression or antibody-only
datasets, across t-SNE or UMAP computed by the Cell
Ranger 3.1 pipeline. Despite its ease of use however, this
tool only displays a single dimensionality reduced map fea-

turing the dataset clusters and heatmaps of the graph-based
differentially expressed genes or mAbs. Although this tool
may export images and selection of cells, it lacks the dual
displays of phenotypes and transcriptomes to perform any
simultaneous exploration of CITEseq data.

iCellR. iCellR is a R package for scRNAseq analysis able
to produce interactive graphs for either of transcriptome or
immunophenotype data, but not both simultaneously. To
our knowledge iCellR does not reproduce a flow cytome-
try interface and, similarly to Seurat, is accessible for users
skilled in R.

CytoBank. CytoBank (3) and some other flow cytometry
softwares can import single cell data files after adequate file
conversions, and can be used for visualizing single cell phe-
notype data. CytoBank is also able to produce t-SNE but
its limited capacity to process a maximum of 818 param-
eters is not compatible with current scRNAseq transcrip-
tomic datasets. Furthermore, Cytobank does not display
interactively the density plot subpopulations in the t-SNE,
nor does it allow users to export the cell tags for further use.

SeqGeq-FlowJo. SeqGeq-FlowJo (https://www.flowjo.
com/solutions/seqgeq) is a commercial bioinformatics
platform of 506 Mo for desktop scRNAseq analysis with
an intuitive interface. Under administrator’s authoriza-
tion for it use, it allows to import, analyze and visualize
scRNAseq data with interactive graphs, and to share data
with other analytic applications provided as exchange
plug-ins, such as Seurat, Monocle and the commercial
flow cytometry software FlowJo™, to quote a few. So the
SeqGeq™ platform provides access to several sophisticated
tools performing various types of analyses successively,
but does not display both transcriptomes and epitopes
simultaneously in the same integrated layout as does
Single-Cell Virtual Cytometer.

So currently, while only a few existing open source tools
allow to analyze both types of data together, Single-Cell
Virtual Cytometer presents the advantage of web-based
and user friendly interface for the simultaneous display of
both immunophenotype dot plots and transcriptome-based
UMAP/t-SNE plots. In addition, the computing time to
display the user-selected plots and maps is extremely short.
For example, the time to plot a density plot or to display a
mAb-labeled subpopulation on a t-SNE map is <1 s with
10k cells when running Single-Cell Virtual Cytometer with
an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

The Single-Cell Virtual Cytometer interface

Single-Cell Virtual Cytometer was primarily applied to an-
alyze an original CITE-seq dataset of human PBMC. So
the PBMC from a healthy individual were primarily la-
beled with a mix of 12 TotalSeq™-B ADT (Supplemen-
tary Table S1) at five concentrations respectively labeled by
five HTO (Supplementary Table S2). The stained PBMC
were analyzed for CITE-seq using a 10XGenomics 3

′
chem-

istry V3 platform, sequenced, pre-processed and dimen-
sionality reduction of the transcriptome datasets was per-
formed with UMAP. As QC of the transcriptomic part of

https://www.flowjo.com/solutions/seqgeq
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the CITE-seq dataset, the single cells with outlier counts
of total UMI or number of genes were discarded. For the
QC of the phenotypic part of the CITE-seq dataset, cells
labeled with over-diluted ADT (Supplementary Figure S1)
and cells displaying mutually exclusive phenotypes (e.g.
CD3+CD19+CD14+) were discarded. This finally yielded a
CITE-seq dataset encompassing the epitopes and transcrip-
tomes of n = 5559 PBMC (Figure 1). It was deposited as
GSE144434 in the GEO database. Importantly, analysing
this dataset by either the flow cytometry tool Cytobank or
Single-Cell Virtual Cytometer yielded the same plots and
rates of CD3+CD4+ T and CD3+CD8+ T cells from the
PBMC (Figure 1A and Supplementary Figure S2). How-
ever, only the interface of Single-Cell Virtual Cytometer dis-
plays both the ADT-based phenotype plot and the corre-
sponding transcriptome-based UMAP/t-SNE map (Figure
1B).

Simultaneous visualization of single cell phenotypes and
transcriptome-based signatures from an healthy donor’s
PBMC CITEseq dataset

Any multigene signature can be robustly scored for each
single cell by computing its summed expression ponderated
by that cell’s total transcriptome. We previously developed
Single-Cell Signature Explorer to score likewise multigene
signatures and visualize these signature scores across entire
scRNAseq datasets (1). Hence scores for any signature can
be imported from Single-Cell Signature Explorer to be used
and selected in the (x,y) parameter list of Single-Cell Virtual
Cytometer. We reasoned that the above-depicted possibility
to explore at the same time both epitopes and single gene
expressions opens the additional possibility to visualize si-
multaneously both immunophenotype data and multigene
signatures.

So, the above CITEseq PBMC dataset from one healthy
donor was then analyzed in more details through both a
multigene signature and cell surface markers. We previously
defined a myeloid-specific set of genes most differentially ex-
pressed by a myeloid cell cluster relative to all other PBMC
clusters (1). The single cell scores of a this myeloid cell-
specific signature were computed across the dataset (Meth-
ods) and plotted (1) versus ADT staining for the T-cell sur-
face marker CD3. The T lymphocytes and myeloid cells
were then visualized across the UMAP of the entire dataset
(Figure 2A). The myeloid cells were discarded, while the T
cells were gated and analyzed further for cell surface ex-
pression of the CD4 and CD8 cell surface epitopes. This
delineated the four subsets of CD4+ T (n = 1796), CD8+

T (n = 885), CD4+CD8+ (double positive) T cells (n =
52) and the CD4−CD8− (double negative) T cells (n = 99)
which include the TCR �� T lymphocytes (6–8). These four
T-cell subsets were readily delineated by Single-Cell Vir-
tual Cytometer in the dimension-reduced UMAP of the
PBMC dataset (Figure 2B). Parallel analyses of the cell
surface expression of the CD19 and CD16 epitopes in the
non-T-cell subsets of PBMC identified the B lymphocytes
(CD19+CD16−) (n = 157), the NK cells (CD19−CD16+)
(n = 902) and the monocytes (CD19−CD16−) (n = 1341)
(Figure 2).

To validate these results, a second CITE-seq dataset
for 10k PBMC (3’ chemistry V3) was sourced from the
10XGenomics website, pre-processed with Seurat and both
transcriptomes and epitopes were analyzed with Single-
Cell Virtual Cytometer as above. This allowed to directly
visualize the CD3+ T lymphocytes including their sub-
sets defined by the CD4 and CD8 epitopes, as well as
the non-T-cell subsets of (CD19+CD16−) B lymphocytes,
(CD19−CD16+) NK cells and (CD19−CD16−) monocytes
(Supplementary Figure S3). With this second CITE-seq
dataset, the transcriptome-based and the epitope-based cell
gatings were compared for each of the B, T, NK and myeloid
cell populations, respectively (Supplementary Figures S4A
and B). These comparisons indicated that gatings based
on cell surface epitopes were more exhaustive than those
based on expression of the corresponding single genes,
namely CD19 for B lymphocytes, CD3G for T lymphocytes,
CD16 for NK cells and CD14 for monocytes. In most cases
for which multigene signatures specifying cell types could
be defined however, the multigene signature-based gatings
were equivalent to those based on cell surface epitopes.

Altogether, these results showed that Single-Cell Virtual
Cytometer allows the simultaneous analysis and visualiza-
tion of both transcriptomes and cell surface immunopheno-
types at the single cell level.

Consistence of gene signatures and cell surface phenotype of
peripheral T-cell differentiation at the single cell level

The seminal CITE-seq study delineated naive, memory and
effector subsets of human CD4+ T and CD8+ T lympho-
cytes through CD2 and CD57-based immunophenotypings
(2). However, peripheral T lymphocytes also encompass
few but biologically important CD4−CD8− T cells, such as
the �� T lymphocytes and even fewer, possibly immature
CD4+CD8+ T lymphocytes (9). Furthermore, these lym-
phocytes evolve through more differentiation stages succes-
sively comprising naive (Tn)/stem central memory (Tscm),
central memory (Tcm), effector memory (Tem) and termi-
nally differJe n’ai pas de manip sur des cellules, mais, si
le confinement doit se prolonger au delá de 3 semaines, il
faudrait juste que je rajoute ponctuellement du solvant dans
la nanoLC pour èviter que les tubulures et les joints ne
sèchent.entiated (Temra) lymphocytes (10). These respec-
tive stages are classically defined through cell surface ex-
pression of proteins markers such as CD45RA and CD62L,
IL7Ra and CCR7 (Tn), CD45RO, CD62L, IL7Ra and
CCR7 (Tcm), CD45RO (Tem), and CD45RA (Temra), but
their respective cell surface immunophenotypes and tran-
scriptomes have never been characterized on the same cells
so far.

In a test experiment with the above CITE-seq dataset
and Single-Cell Virtual Cytometer, we now aimed at defin-
ing these differentiation signatures for either of the CD4,
CD8, DP and DN subsets of T cells. The cell surface ex-
pression of CD4 and CD8 markers indicated that T lym-
phocytes comprised n = 1796 CD4+ T cells, n = 885 CD8+

T cells, n = 52 CD4+ CD8+ T lymphocytes and n = 99
double negative T lymphocytes, embedded in distinct ar-
eas of the PBMC dataset UMAP (Figure 2B). These four
subsets of T lymphocytes were then subdivided within Tn,
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Figure 1. The PBMC from a healthy individual were labeled with HTO and ADT mixes, and studied by CITE-seq, prior to pre-processing by Seurat of the
data and analysis of the cell phenotypes using either the flow cytometry software Cytobank or Single-Cell Virtual Cytometer. (A) Comparison of options
performed by either software. (B) Screenshot of the Single-Cell Virtual Cytometer interface displaying selection tools, a phenotype plot (left panel), and
its corresponding transcriptome-based UMAP/t-SNE map (right panel). This panel may also display with colors those cells eventually delineated by gates
or quadrants in the phenotype panel.

Tcm, Tem and Temra based on their cell surface CD45RA
and CD62L markers (Figure 3). In CD4+ T cells, this iden-
tified CD45RA+ and CD62L+ double positive cells corre-
sponding to CD4+ Tn lymphocytes, CD45RA− CD62L+

cells corresponding to CD4+ Tcm lymphocytes, n = 438
CD45RA−CD62L− cells corresponding to CD4+ Tem lym-
phocytes and n = 10 cells that were CD45RA+ CD62L−,
corresponding to the CD4+ Temra lymphocytes. The genes
selectively and differentially upregulated by Tcm versus Tn
cells, by Tem versus Tcm cells and by Temra versus Tem cells
and by Tn versus all other cells were selected (BH-corrected
Wilcoxon P < 0.001). This defined four differentiation sig-
natures which were refined by discarding genes with intra-

group mean <0.1 and relative variance >1. These differen-
tiation signatures were then scored across each single cell of
CD4+ T lymphocyte, and the same procedure was applied
separately for the differentiation signatures of CD8+ T lym-
phocytes, double positive (DP) T lymphocytes and double
negative (DN) T lymphocytes (Supplementary Tables S3–
6). For each of these gated T-cell subsets, these differentia-
tion signatures were consistent with the corresponding cell
surface expression of the CD45RA and CD62L epitopes
(Figure 3).

In a validation tests with Single-Cell Virtual Cytome-
ter, the T cells from the 10×Genomics’ 10k PBMC CITE-
seq dataset were analyzed as above. The CD4+ T, CD8+ T,
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Figure 2. Simultaneous visualization by Single-Cell Virtual Cytometer of cell surface phenotype, gene signatures and cell subsets in the UMAP of 6k PBMC
isolated from an healthy individual and stained with TotalSeq-A™ADT. (A) Left panel: The scores for a myeloid gene signature (CD14, LYZ, ANPEP,
FUT4, S100A2,S100A4-S100A6, S100A8-S100A13, S100B genes, this study) versus CD3 staining levels of 6k PBMC define the T lymphocytes (purple
gate) further shown in the transcriptome UMAP (right panel). (B) Expression of the CD4 and CD8 protein markers by the above-gated T lymphocytes
(left panel) defines four T-cell subsets shown in the corresponding transcriptome UMAP (right panel). (C) Expression of the CD19 and CD16 protein
markers of non-T cells from PBMC (left panel) defines the B, NK and myeloid cell subsets, respectively, shown in the corresponding transcriptome UMAP
(right panel).
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Figure 3. Cell surface phenotype (top) and gene signatures (bottom) of differentiation stages in T lymphocytes among 6k PBMC from an healthy individual.
The gated CD3+ cells were subdivided according to cell surface markers as CD4+ T, CD8+ T, CD4−CD8− (DN) T and CD4+CD8+ (DP) T lymphocytes.
Each of these subset was then gated and analyzed for expression of the cell surface CD62L and CD45RA markers. This dataset did not encompass Tem
cells among the DP T lymphocytes.

CD4−CD8− T and CD4+CD8+ T lymphocytes were identi-
fied by their expression of the CD3, CD4 and CD8 epitopes,
and scored for the above differentiation signatures. Within
this second PBMC dataset, all the transcriptome signatures
of T-cell differentiation were also consistent with their re-
spective differentiation phenotype, here defined by the cell
surface expression of IL7R (CD127) and CD45RA protein
markers (Supplementary Figure S5). Furthermore for each
T cell population, Single-Cell Virtual Cytometer allowed to
visualize simultaneously the four differentiation stages in

the transcriptome-based UMAP of the entire dataset (Sup-
plementary Figure S6). Consistent with these results, the
marker-driven and the transcriptome signature-driven gat-
ings of CD4+ Tcm cells pinpointed the same cell clusterings
in the dataset UMAP (Supplementary Figure S7).

Together, these results extended and validated those ob-
tained with our PBMC CITE Seq dataset, illustrating fur-
ther the advantage of Single-Cell Virtual Cytometer for the
simultaneous analysis and visualization of gene expression
and cell surface epitopes from CITE-seq datasets.



8 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

DISCUSSION

The advent of Cellular Indexing of Transcriptome and Epi-
topes by sequencing (CITE-seq) has brought the major
possibility to jointly explore both gene expression and im-
munophenotypes at the single cell level (2). However, this
decisive innovation does not allow biologists to immediately
visualize its results from the datasets. Importantly, this task
always requires a prior phase of extensive pre-processing
of the raw data performed by several bioinformatic tools,
such as Seurat or CellRanger™, to quote a few. Such prepa-
ration of the data typically involves alignment on genome
and quantifications of reads, normalization of gene counts
across cells, quality control of cells and genes, principle
component analyses, reduction of dimensionality, cluster-
ing and mapping of the dataset. Most current softwares per-
forming this stage of the analyses can indeed analyze both
transcriptomes and epitopes datasets together, but they do
not display both features simultaneously on a user-friendly
interface. Here, we introduce Single-Cell Virtual Cytometer
for this very precise aim: the simultaneous visualization of
both transcriptomes and immunophenotypes from CITE-
seq datasets. This novel tool indeed intervenes only after
the pre-processing of such data. Hence, it is particularly rel-
evant for fully exploiting the distinct modalities measured
within single cells since each readout, e.g. gene, protein or
signature score, is directly plotted across the entire dataset
plot.

Here, by pinpointing the gene signatures of functional
differentiation stages in peripheral T lymphocytes from
healthy individuals, we showed that it permits straightfor-
ward analyses of bimodal data, such as mRNA and cell
surface proteins in circulating T lymphocytes from healthy
individuals. We forecast that likewise, Single-Cell Virtual
Cytometer will prove broadly applicable to the visualiza-
tion of any kind of readout from any multimodal single
cell technology, after adequate integration of the datasets
(11). Its versatility enables users to analyze likewise any kind
of single cell data about chromatin accessibility (12,13),
epigenomics (14), mutations (15), chromosome conforma-
tion (16), RNA modification (17), spatial transcriptomics
(18,19) and spatial proteomics (20,21). Hence, Single-Cell
Virtual Cytometer represents a unvaluable resource for in-
tegrated visualization and analyses of multimodal datasets
at the single cell level.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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