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ABSTRACT Effects of nutraceuticals on the intestinal microbiota are receiving
increased attention; however, there are few studies investigating their effects on
broiler meat production. The aim of this study was to implement feeding strategies
and carry out a comprehensive trial examining the interplay between natural biologi-
cally active compounds such as carotenoids, anthocyanins, fermentable oligosaccha-
rides, and synbiotics and the gastrointestinal tract microbiota. Our feeding program
was applied to an intensive production system with a flock of 1,080 Ross 308
broilers. Aging induced significant changes through the feeding experiment.
Nutraceuticals were shown to modulate broiler intestinal diversity and differen-
tially enriched Lactobacillus, Enterococcus, Campylobacter, and Streptococcus in the
core microbiome during the different stages of broiler rearing. Additionally, they
did not remarkably affect animal growth performance; nevertheless, a positive cor-
relation was found between body weight and Corynebacteriales and Pseudomonadales.
Furthermore, a diet high in carotenoid, fermentable oligosaccharide, and anthocyanin
contents affected the number of beneficial genera such as Faecalibacterium,
Lactobacillus, Blautia, and Ruminococcus. With this comprehensive trial, we
revealed that nutraceuticals induced modulations in broiler gastrointestinal tract micro-
biota. We believe that plant-derived immunostimulants, recycled from plant food waste
products, can supplement antibiotic-free broiler meat production.

IMPORTANCE In this trial, nutraceuticals were manufactured from waste products of
food industry processing of Hungarian red sweet pepper and sour cherry and incor-
porated into the diet of poultry to investigate their effects on broilers’ growth and
the broiler gastrointestinal tract microbiota. To avoid the generation of food waste
products, we believe that this approach can be developed into a sustainable, green
approach that can be implemented in commercial antibiotic-free poultry to provide
safe and high-quality meat.

KEYWORDS antibiotic-free meat production system, symbiotic-dysbiotic microbiota,
bacterial 16S rRNA gene sequencing, carotenoids, anthocyanins, fermentable
oligosaccharides, probiotics

During the past 2 decades, the poultry industry has become one of the most effi-
cient protein production systems, and it forms the basis of global protein produc-

tion (1). Intensive breed selection was invented to develop chickens that convert feed
into muscle mass more efficiently (2). Modern chicken breeds such as Ross 308 require
less forage to achieve their desired increase (approximately 70 to 80�) in weight (35 g
to ;3 kg) throughout the production period (35 to 42 days) (3). This extreme growth
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rate can be associated with a range of pathological conditions (3–5), including hyper-
tension, heart failure, insulin resistance, and increased susceptibility to infections (6–8).

The gastrointestinal tract (GIT) microbiota plays an important role in the overall
health and function of the host (9–11). The GIT microbiota is the focus of major
research efforts in meat production animals (12) since it has a positive impact on the
immune system (12–14), GIT physiology (14, 15), nutrition (11, 16), and detoxification
of certain compounds and productivity (16, 17). It also has an important role in the
poultry industry, requiring animals capable of growing rapidly (18, 19).

There is growing evidence that alterations in poultry GIT microbiota composition
have a pivotal role in the development of metabolic disorders (15, 20, 21). The diversity
of the microbiota is one of the key determinants in resistance to invading pathogens
(22). Higher microbial community diversity is related to a healthier host status, whereas
a significant loss in complexity is associated with various diseases and susceptibility to
pathogen colonization (16, 23–25). Shifts of the GIT microbiota toward beneficial bac-
teria could improve the health conditions of the host.

Through the past 80 years, antibiotics have been widely used to support the immu-
nocompetence of birds against infectious diseases (26, 27). For animals that grow to a
great degree, application of a subtherapeutic dose of antibiotics was generally shown
to improve health and productivity (28). The routine and irresponsible use of such
additives is associated with undesired consequences, such as depletion of the benefi-
cial intestinal microbiota and emergence of antibiotic-resistant microbial pathogens
(29, 30). The lateral exchange of genetic material across bacteria contributes to the
spread of antimicrobial resistance and broadly disseminates harmful, antibiotic-resist-
ant bacteria across the globe. This dramatic impact has been a serious threat to both
human and veterinary medicine (31). Antibiotic resistance was identified by the World
Health Organization (WHO) as one of the most significant global threats to public
health, and their use as growth promoters was banned by the European Union (32, 33).

Health-promoting probiotic bacteria can ferment prebiotics that are undigestible
and nonabsorbable for the host and convert them to lactic acid and short-chain fatty
acids (SCFAs) (33–38). SCFA-producing bacteria may directly enhance the absorption
of some nutrients and hence have a direct influence on metabolic functions. (39–41). It
was already proven that the deterioration of community diversity and the associated
alterations in SCFAs can be restored by alternative treatment strategies in both
humans and animals (42), some of which may alleviate disease symptoms (36). These
probiotic-based dietary supplements are increasingly considered to be effective in
replacing antibiotics (43, 44). Furthermore, it is also suggested that a probiotic-
enriched diet influences the intestinal absorption of broilers, thus improving produc-
tion performance (45). Additionally, numerous studies emphasize the importance of
prebiotic fibers, which can enhance the effects of live beneficial microorganisms (e.g.,
lactic acid bacteria; Lactobacillus and Bifidobacterium) (46).

Herbal medicines are receiving widespread attention, especially in developing
countries, because of their antibacterial properties and improvement of performance
and food safety (36, 37, 47–51). There is growing evidence that complex, bioactive
compound-rich plant extracts increase digestive enzyme secretion and nutrient
absorption and decrease the feed-to-gain ratio in meat-type chickens (15, 18, 48,
52–58).

More recently, nutraceuticals have become the focus of farm animal production.
These nutraceuticals are rich in plant-derived immune stimulants such as phytochemi-
cals, vitamins, and minerals (59). Several pre-, pro-, and synbiotic-based functional
medicines have already been explored thoroughly and have demonstrated the ability
to rebalance dysbiotic intestinal flora and preserve animal health (60). In this trial, we
focused on natural, bioactive compounds (carotenoids, anthocyanins, functional oligo-
saccharides, and synbiotics) obtained from reprocessed plant-based food industrial
waste materials and investigated their modulatory effect on the broiler gastrointestinal
tract.
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By enriching the diet of a flock of 1,080 Hungarian broilers with nutraceuticals, we
investigated their effect on microbiota community diversity and alterations in the
baseline symbiotic microbiota. We also managed to unravel compositional shifts in the
GIT microbiota and investigated how these might relate to the growth performance of
Ross 308 broilers.

RESULTS
General description of sequencing results. The 16S rRNA gene-based (V3-V4

region) amplicon sequencing was carried out on the Illumina MiSeq platform, generat-
ing a total of ;11 million reads by processing 96 broiler fecal samples with a mean
count of 86,4706 24,361 reads per sample. Quality filtering with the DADA2 software
resulted in an average denoised read count of 42,7636 13,425 per sample, and after a
merging process, the read count dropped to an average of 41,0856 12,991 reads per
sample. At the end, the average number of nonchimeric reads was 27,7786 7,622 per
sample.

Effects of nutraceuticals on body weight. The effects of dietary supplements on
broiler growth body weight (BW) were monitored throughout the feeding trial (Fig. 1).
At the beginning, the average BW values for birds were 38.46 1.6 g, while by the end
of this experiment broiler chicken reached 2,6936 64.8 g on average (see Table S1 in
the supplemental material). No significant differences were noticed in body weight
when comparing treatment groups (carotenoid [CAR], fermentable oligosaccharide
[fOS], synbiotic [SYN], anthocyanin [ANTH]) to controls (basal diet [BD], b-glucan
[BGLU]). However, by the end of the broiler productive life span, a moderate but not
significant decrease in body weight was registered due to anthocyanin-based dietary
supplementation in comparison to controls (ANTH BW, 2,5906 264 g, versus BD and
BGLU BW, 2,7426 222 g).

Significant associations were found between broiler body weight and the GIT
microbiota. We managed to unravel alterations induced by age (prestarter, starter,
grower, finisher) and treatment (BD, BGLU, CAR, fOS, SYN, ANTH) for 11 orders in the in-
testinal microbiota of Ross 308 broilers, finding remarkable correlations with body
weight (Fig. 2). Alterations in the strengths and directions of correlations were
obtained. In this study, out of the 11 orders, there were 6 (Bacillales, Clostridiales,
Corynebacteriales, Enterobacteriales, Micrococcales, Rhizobiales) where moderate posi-
tive (age- and/or diet-specific) associations were detected with BW (r value. 0.4). We
estimated that during the first two phases of the feeding experiment strong and/or
moderate positive correlations were found between BW and the orders Corynebacteriales,
Bacillales, Clostridiales, and Micrococcales (Fig. 2a). Interestingly, in the case of the order
Rhizobiales, adverse, age-dependent correlations were found between starter and grower
phases. In the case of the finisher phase, only weak or very weak correlations were found.

FIG 1 Overview of feeding and sampling strategies. Broiler chickens were fed a commercial maize-soybean-based basal diet (BD) that was formulated for
prestarter (days 1 to 9), starter (days 10 to 21), grower (days 22 to 31), and finisher (days 32 to 42) production periods. BD negative control (basal diet with
no dietary supplement) and the following dietary treatments were provided as mash feed: BGLU positive control (BD including b-glucan), CAR (BD
including carotenoids), fOS (BD including fermentable oligosaccharides), SYN (BD including synbiotics), and ANTH (BD including anthocyanins).
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When examining the effect of diet alone on the correlation values of these orders,
we found strong positive (r value. 0.6) associations between the orders Bacillales,
Corynebacteriales, Enterobacteriales, and Micrococcales and BW in ANTH-treated birds
(Fig. 2b). Moderate negative (r value , 20.4) correlations were found between BW and
Enterobacteriales in BGLU-treated birds. In the case of fOS-treated samples, moderate posi-
tive correlations were found with Micrococcales. Interestingly, Pseudomonadales exhibited
moderate positive correlations with BW under CAR treatment and moderate negative cor-
relations in fOS-treated samples. For the order Bacillales, moderate negative associations
were shown in the CAR group.

Age and treatment induced alterations in alpha and beta diversities. Both alpha
and beta diversity indices were determined to track remarkable conversions in commu-
nity diversities of control (BD, BGLU) and treatment (CAR, fOS, SYN, ANTH) groups
(Fig. 3). Faith’s phylogenetic (Fig. 3a), Chao-1, Shannon, and Simpson (data not shown)
diversity indices were applied to evaluate the species abundance, richness, and even-
ness of the broiler GIT microbiota. Faith’s phylogenetic diversity (PD) indicated a signif-
icant increase in chicken GIT community diversity by the end of the productive life
span (finisher phase), in the cases of fermentable oligosaccharide- (fOS Faith’s PD:
20.36 4.6), synbiotic- (SYN Faith’s PD: 22.56 0.8), and anthocyanin-treated (ANTH
Faith’s PD: 21.86 2.9) birds in comparison to those receiving basal diet (BD Faith’s PD:
11.26 4.0) (Fig. 3a). During the grower and finisher feeding phases, fOS, SYN, and
ANTH treatment caused notable increases in Faith’s PD indices. Shannon and Simpson
diversity indices did not show significant changes throughout the experiment due to
nutraceuticals. In general, certain differences in pattern dynamics were observed in
alpha diversity indices (Fig. 3b). Faith’s PD, Chao-1, Shannon, and Simpson indices
improved steadily with animal growth, while a deterioration was observed in these pa-
rameters during the finisher phase of the experiment. Broadly, during the grower
phase, the highest community diversity was associated with CAR-treated birds, while
by the end of the finisher period the community diversity proved to be the lowest in
the case of animals receiving basal diet. Four beta diversity heatmaps were generated
by measuring Bray-Curtis, Jaccard, and weighted and unweighted UniFrac distances
(Fig. 3c) between the different experimental groups in relation to age and diet.
Distance-based dissimilarity matrices showed that flock development exerted a sub-
stantial influence on overall community variations; thus, a gradual increase in commu-
nity diversity was accompanied by increased heterogeneity of the GIT microbiota.

The baseline GIT microbiota reflects a dynamic equilibrium in livestock.
Estimations of the healthy core microbiota were made for all experimental groups at

FIG 2 Spearman correlations were calculated to measure the extent of aging (prestarter, starter, grower,
finisher) (a)- and diet (BD, BGLU, CAR, fOS, SYN, ANTH) (b)-related associations between BW and orders in the
broiler GIT microbiota. The values of correlations varied from 21 to 11 and indicated the strength of positive
(R$ 0; red) and negative (R, 0; blue) correlations. BD negative control (basal diet with no dietary supplement)
and the following dietary treatments were provided as mash feed: BGLU positive control (BD including
b-glucan), CAR (BD including carotenoids), fOS (BD including fermentable oligosaccharides), SYN (BD including
synbiotics), and ANTH (BD including anthocyanins).
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FIG 3 Community diversity distributions represent differences within and between our experimental
groups. Statistical comparisons among multiple groups were performed with the nonparametric
Kruskal-Wallis test, and intergroup differences were tested with Dunn’s test. (a) Boxplots represent
comparisons of an alpha diversity metric (Faith’s PD diversity index) measured in different experimental
groups. BD negative control (basal diet with no dietary supplement) and the following dietary
treatments were provided as mash feed: BGLU positive control (BD including b-glucan), CAR (BD
including carotenoids), fOS (BD including fermentable oligosaccharides), SYN (BD including synbiotics),
and ANTH (BD including anthocyanins). Asterisks indicate statistical significance: ***, P# 0.001. (b) Line
graphs display the age-specific tendential changes in alpha diversity metrics observed in six experimental
groups colored accordingly. The data shown are the mean values. (c) Sample distances were calculated
on the basis of quantitative (Bray-Curtis, weighted UniFrac) and qualitative (Jaccard, unweighted UniFrac)
dissimilarity-based statistics.
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the phylum, order, and genus taxonomic ranks, by considering taxa (order: 4; genus: 8)
represented in at least 50% of the samples (Fig. 4). Characteristically, fermentable oli-
gosaccharides, synbiotics, and anthocyanins exerted greatest community shifts in the
core microbiota of starter chickens.

Lactobacillales was the most abundant order during the grower period
(83.2%6 17.7%) followed by Clostridiales (11.3%6 17.7%), Enterobacteriales (4.9%6 4.3%),
and Erysipelotrichales (0.5%6 0.9%). In the case of Lactobacillales, the highest relative
abundances accounted for the prestarter feeding period (97.5%6 3.3%). A relatively
lower proportion of Clostridiales was shown in grower animals receiving immunosti-
mulants in the form of b-glucan (BGLU: 7.4%6 10.4%), fermentable oligosaccharides
(fOS: 7.7%6 6.0%), and anthocyanins (ANTH: 7.0%6 5.2%) in comparison to those
receiving the basal diet (BD: 23.3%6 40.4%).

We found eight genera representing the core microbiota of at least 50% of sam-
ples: Lactobacillus (R55.7%6 27.3%), Enterococcus (R19.0%6 23.8%), Streptococcus
(R7.7%6 8.6%), Escherichia-Shigella (R6.9%6 7.9%), Faecalibacterium (R3.5%6 7.1%),
Turicibacter (R1.1%6 2.5%), Romboutsia (R1.7%6 2.6%), and Aerococcus (R0.5%6 1.1%).
The genus Lactobacillus showed a clear dominance during the experiment except in starter
samples (starter: 27.4%6 19.1%) where the relative abundances shifted significantly in
favor of Enterococcus (starter: 36.5%6 18.3%). At the genus level, chicken development
exerted the most explicit effect on the relative occurrence of Enterococcus. In young
chickens, this genus seemed to be the second most abundant (prestarter-starter:
34.7%6 24.9%), whereas in older chicks a drastic fall (grower-finisher: 3.2%6 4.9%)
was observed. By the end of the broiler rearing period, variations in the 50% core
were diminished with the exception of two genera; fermentable oligosaccharides
increased the relative proportions of Enterococcus (finisher fOS, 6.8%6 6.4%, versus
other treatment groups, 2.5%6 2.2%), while nutraceutical treatment generally
increased Faecalibacterium (finisher CAR: 2.9%6 3.5%; fOS: 7.3%6 11.9%; SYN:
3.6%6 2%; ANTH: 12.5%6 10.7%) in comparison to their control levels (finisher BD-
BGLU: 3.1%6 0.4%).

Themost pronounced community taxonomy shifts occurred due to age. Beta di-
versity plots were made to investigate the age (Fig. 5a)- and diet (Fig. 5b)-induced
alterations in community taxonomy. When measuring the age dependency of commu-
nity taxonomy data with unweighted UniFrac metrics, principal-coordinate analysis
(PCoA) resulted in two clusters (cluster 1 and cluster 2) representing different spatial
ordinations between prestarter birds and older (starter, grower, and finisher) broilers

FIG 4 Variations in the healthy core 50% GIT microbiota of broilers over time. Area plots visualizing the core
orders and genera according to age and diet. BD negative control (basal diet with no dietary supplement) and
the following dietary treatments were provided as mash feed: BGLU positive control (BD including 0.5%
b-glucan), CAR (BD including 0.5% carotenoids), fOS (BD including 0.5% fermentable oligosaccharides), SYN (BD
including 0.5% synbiotics), and ANTH (BD including 0.5% anthocyanins).
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(Fig. 5a). Furthermore, starter, grower, and finisher birds continued to cluster less sepa-
rately (Fig. 5a). When marking the samples according to diet, no distinct patterns
became apparent between the treatment groups (Fig. 5b). On the basis of the PCoA
plots, we concluded that age exerted more pronounced community shifts than diet.
Not surprisingly, the prestarter microbiota showed less variation among samples.
Additionally, the prestarter microbiota clustered distinctly in comparison to the micro-
biota at later time points of the experiment.

To decipher key taxa representing significant shifts during different stages of broiler
production, the differentially abundant linear discriminant analysis effect size (LEfSe)
method was used to perform class comparisons among feeding phases in chickens
without any treatment (BD) (Fig. 5c). We found 32 bacterial clades that were signifi-
cantly enriched with respect to age. These clades included 6 orders, Rhizobiales (a2),
Enterobacteriales (a5), Corynebacteriales (c), Micrococcales (f), Bacillales (m), and
Bacteroidales (i); 12 families, Rhizobiaceae (a1), Enterobacteriaceae (a4), Corynebacteriaceae
(b), Dermabacteraceae (e), Bacteroidaceae (h), Staphylococcaceae (l), Aerococcaceae (o),
Leuconostocaceae (q), Streptococcaceae (s), Christensenellaceae (u), Clostridiaceae (w), and
Peptostreptococcaceae (x); and 14 genera, Corynebacterium(a), Turicibacter(a0), Escherichia-
Shigella(a3), Brachybacterium(d), Bacteroides (g), Jeotgalicoccus (j), Staphylococcus (k),
Aerococcus (n), Weissella (p), Streptococcus (r), R7 group (t), “Candidatus Arthromitus” (v),
Faecalibacterium (y), and Ruminococcus (z). During prestarter phase, great increases were
seen in the order Rhizobiales, and during starter phase, the orders Corynebacteriales,
Actinomycetales, and Enterobacteriales increased remarkably. Notable gains in the orders
Bacillales and Lactobacillales were seen during both starter and finisher stages. The order
Clostridiales was enriched in grower and finisher birds. More accessions were identified in
the order Bacteroidales during the grower phase. Finally, compelling rises were seen during
the finisher phase in Erysipelotrichales.

Immunostimulant-driven alterations in family taxonomy. By considering the 31
most abundant families (relative % frequencies . 0.1), we managed to explore remark-
able alterations in taxonomic data during the four phases of the feeding period
when comparing BGLU- and nutraceutical-treated birds (CAR, fOS, SYN, and ANTH)
to nontreated controls (BD). A composite heatmap was created to show distortions in
the relative abundance data normalized to that of BD animals (Fig. 6). During the
prestarter phase, we observed remarkable increases in Bifidobacteriaceae due to
synbiotics and anthocyanins, while fOS supplementation resulted in higher levels
of Peptostreptococcaceae. Nutraceuticals increased Clostridiaceae and Lachnospiraceae.
Additionally, greater abundances were observed in Erysipelotrichaceae and Ruminococcaceae
in anthocyanin-challenged animals. Immunostimulants decreased the levels of
Enterobacteriaceae, Leuconostocaceae, and Staphylococcaceae in comparison to their
levels in the negative control (BD). In fOS-treated starter birds, remarkable increases
were shown in Bacteroidaceae, Barnesiellaceae, Brevibacteriaceae, and Clostridiaceae
accompanied by decreases in Bifidobacteriaceae and Burkholderiaceae. During the grower
phase, carotenoids increased Barnesiellaceae and Bifidobacteriaceae and decreased
Aerococcaceae, Clostridiaceae, Enterococcaceae, Moraxellaceae, and Peptostreptococcaceae.
In grower animals, solid increases in Campylobacteraceae, Planococcaceae, and
Pseudomonadaceae and decreases in Bacteroidaceae, Helicobacteraceae, and
Marinifilaceae were registered due to anthocyanins. In the finisher phase, impres-
sive decreases were encountered in Brevibacteriaceae in all of the treatment
groups. Enrichments in Helicobacteraceae occurred through fOS, SYN, and ANTH
treatments. Additionally, an increase was detected in Akkermansiaceae due to
BGLU, SYN, and ANTH.

Alterations in the occurrence of SCFA-producing bacteria. Among a range of
metabolites produced by the beneficious gastrointestinal tract microbiota, short-chain
fatty acids (SCFAs) have received increased attention because of their important role in
disease prevention and recovery (61). In this trial, appreciable alterations were found in
the proportions of some genera associated with SCFA production (Fig. 7).

The genus Faecalibacterium significantly decreased due to fOS in grower (fOS,
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FIG 5 Beta diversity distributions summarizing the differences in community composition caused by aging (a) and diet (b). Beta diversity
relationships are summarized in two-dimensional scatterplots. Each point represents a sample, and distances between dots are representative of
differences in microbiota compositions. (c) Linear discriminant analysis effect size (LEfSe) identifies bacterial clades involved in significant taxonomic
shifts. The cladogram depicts the phylogenetic distribution of microbial lineages in fecal samples obtained from broilers. (b) A list of 32 significantly
enriched bacterial clades; including 6 orders, Rhizobiales (a2), Enterobacteriales (a5), Corynebacteriales (c), Micrococcales (f), Bacillales (m), and
Bacteroidales (i); 12 families, Rhizobiaceae (a1), Enterobacteriaceae (a4), Corynebacteriaceae (b), Dermabacteraceae (e), Bacteroidaceae (h), Staphylococcaceae
(l), Aerococcaceae (o), Leuconostocaceae (q), Streptococcaceae (s), Christensenellaceae (u), Clostridiaceae (w), and Peptostreptococcaceae (x); and 14 genera,
Corynebacterium (a), Turicibacter (a0), Escherichia-Shigella (a3), Brachybacterium (d), Bacteroides (g), Jeotgalicoccus (j), Staphylococcus (k), Aerococcus (n),
Weissella (p), Streptococcus (r), R7 group (t), “Candidatus Arthromitus” (v), Faecalibacterium (y), and Ruminococcus (z), organized with respect to diet and
age. BD negative control (basal diet with no dietary supplement) and the following dietary treatments were provided as mash feed: BGLU positive control
(BD including 0.5% b-glucan), CAR (BD including 0.5% carotenoids), fOS (BD including 0.5% fermentable oligosaccharides), SYN (BD including 0.5%
probiotics), and ANTH (BD including 0.5% anthocyanins).
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0.9 %6 0.3%, versus BD, 9.3%6 1.8%; P, 0.05) and increased due to ANTH in fin-
isher (ANTH, 5.2%6 1.4%, versus BD, 1.6%6 1.6%; P, 0.05) chickens. The altera-
tions in the relative frequencies of Lactobacillus (R38.8%6 24.1%) were age rather
than diet related; however, during prestarter phase, the genus Lactobacillus showed
significantly (P, 0.05) higher levels in birds fed a basal diet (prestarter BD:
72.2%6 15.9%) than in carotenoid (CAR: 31.1%6 19.4%)-, fermentable oligosaccha-
ride (fOS: 24.3%6 18.1%)-, and anthocyanin (ANTH: 14.7%6 9.0%)-treated animals.
Fermentable oligosaccharide, synbiotic, and anthocyanin treatments had relative
increases in several genera by grower phase. The elevating frequencies of
Lactobacillus during the grower phase of broiler production might be associated
with the antipathogenic characteristics of the members of this genus. The butyrate-
producer genus Subdoligranulum increased significantly (P, 0.001) due to carote-
noids in comparison to basal diet and synbiotics fed in prestarter animals (CAR,
5.8%6 7.1%, versus BD, 0.2%6 0.3%; SYN, 0.1% 6 0.1%). Further significant
increase was detected in the relative frequency of Subdoligranulum due to antho-
cyanin treatment relative to birds fed basal diet in finisher birds (ANTH:
2.8%6 1.6%; BD: 0.8%6 0.9%; P, 0.05). Notably, the genera Streptococcus, Blautia,
and Ruminococcus were barely (,0.25%) prevalent in prestarter birds. During the
finisher stage of broiler meat production, anthocyanin treatment significantly
increased the abundance of Blautia (finisher ANTH, 1.3%6 0.4%, versus BD,
0.1%6 0.2%) and Ruminococcus (finisher ANTH, 0.1%6 0.05%, versus BD, 0%6 0%)
relative to those of the negative control. The synbiotics exerted a beneficial effect
on the Bacteroides population. Remarkable increases in the relative proportions of
this genus were found in starter (SYN, 2.2%6 2.3%, versus other, 0.1%6 0.3%) and
finisher (SYN, 0.09%6 0.08%, versus BD, 0%; P, 0.05) animals.

FIG 6 Annotated heatmap showing the extents of the estimated differences with the normalized log2 fold change of the specified family abundances
(relative % frequencies . 0.1). The red scale represents the dominance of the family due to dietary supplementation, log2 (supplemented/nonsupplemented
diet). 0, whereas the blue scale represents values of increases in favor of negative controls, log2 (supplemented/nonsupplemented diet), 0. BD negative
control (basal diet with no dietary supplement) and the following dietary treatments were provided as mash feed: BGLU positive control (BD including 0.5%
b-glucan), CAR (BD including 0.5% carotenoids), fOS (BD including 0.5% fermentable oligosaccharides), SYN (BD including 0.5% synbiotics), and ANTH (BD
including 0.5% anthocyanins).
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Shifts in taxa involved in lipid metabolism. The intricate interconnections of the
genera Lactobacillus (62, 63), Enterococcus (64), Bifidobacterium (65), Clostridium (66),
Bacteroides (67), and Peptostreptococcus (68) regulate primary bile salt synthesis and
secondary bile salt metabolism of the host (69). In order to investigate nutraceutical-
induced community shifts connected to primary and secondary bile salt metabolism,
taxonomic heat trees have been made in order to reveal effects of nutraceuticals on
taxa involved in lipid metabolism (Fig. 8). Noticeably, ANTH decreased while CAR, fOS,
and SYN increased the class Bacteroidia relative to BGLU and BD. ANTH decreased the
relative abundance of the family Lactobacillaceae to those in both of the control
groups (BD, BGLU). A slight increase was observed in Enterococcaceae frequencies due
to nutraceuticals. Appreciable losses were detected in Clostridium due to fOS, SYN, and
ANTH in comparison to BD.

Diet-induced compositional differences can affect microorganisms involved in
carbohydrate metabolism. Both Bacteroides and Firmicutes are associated with SCFA
synthesis (1). The end products of dietary fiber fermentation have been shown to exert
multiple beneficial effects on mammalian energy metabolism by enhancing the
absorption of some nutrients (39–41). According to previous publications, elevated
Firmicutes levels can be associated with increased nutrient absorption, whereas
Bacteroidetes enrichment usually correlates with enhanced hydrolysis of glycogen,
starch, and polysaccharides promoting feed utilization and digestion of the host (1, 70,
71). The Firmicutes-to-Bacteroidetes (F/B) ratio is important for the optimal nutritional
requirements of the host (56). Under our experimental settings, a total of 7 phyla were
identified. Among these, Firmicutes (R89.5%6 7.8%), Proteobacteria (R7.3%6 7.0%),
and Bacteroidetes (R1.3%6 2.7%) were the most predominant, followed by Actinobacteria,
Proteobacteria, Tenericutes, and Verrucomicrobia. F/B ratio was biased more by age
than diet (Fig. 9a). Differences in the Firmicutes-to-Bacteroides ratios may reflect alter-
ations in (poly)saccharide utilization of flocks. Characteristically, log2 F/B ratios repre-
sent a remarkable decrease in the course of the broiler production (prestarter phase,

FIG 7 Shifts in the relative abundances of short-chain fatty acid-producing genera: Faecalibacterium, Lactobacillus, Subdoligranulum, Butyricicoccus,
Streptococcus, Bacteroides, Blautia, and Ruminococcus. Age-related distributions of dedicated short-chain fatty acid-producing genera through four
phases of broiler rearing: prestarter phase, starter phase, grower phase, and finisher phase. Violin plots show the influence of diet on the distribution
of the short-chain fatty acid-producing genera. Asterisks indicate statistical significance: *, P # 0.05; **, P# 0.01. BD negative control (basal diet with
no dietary supplement) and the following dietary treatments were provided as mash feed: BGLU positive control (BD including b-glucan), CAR (BD
including carotenoids), fOS (BD including fermentable oligosaccharides), SYN (BD including synbiotics), and ANTH (BD including anthocyanins).
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10.52; starter phase, 9.02; grower phase, 5.25; finisher phase, 5.05). The values were
highest during the prestarter phase and then decreased significantly by the end of
the feeding trial (P, 0.05). The highest log2 F/B ratio was detected in BGLU birds,
7.14 (Firmicutes, 92.0%, versus Bacteroides, 0.7%), while it proved to be the lowest
in anthocyanin-treated samples, 4.89 (Firmicutes, 83.6%, versus Bacteroides, 2.8%).
Anthocyanins increased while carotenoids decreased the proportion of Proteobacteria.
Epsilonbacteraeota, Tenericutes, and Verrucomicrobia were also detectable but with very
low abundances (#1%).

We also considered genera involved in carbohydrate metabolism that may include
potential avian-pathogenic organisms (such as Enterococcus [72], Clostridium [24, 25],
and Helicobacter [73]). The probiotic genera Bacillus and Eubacterium showed the high-
est occurrence for the treatment with ANTHs (Fig. 9b). Regarding its age-related distri-
bution, the genus Bacillus was least abundant during the prestarter phase and reached
its highest abundances during the starter phase (prestarter, 0.008%6 0.02%; starter,
0.05%6 0.14%) of the experiment, while the genus Eubacterium (prestarter, 1.3%6 3.3%,
versus others, 0.5%6 0.7%) was the most abundant genus during the prestarter phase of
the experiment. The genus Corynebacterium, which can include strains causing serious out-
breaks of avian infections, was not detected during the prestarter phase but peaked at the
starter phase (starter, 1.8%6 0.6%, versus grower, 0.2%6 0.5%; finisher, 0.5%6 0.4%;
P, 0.05). Alistipes, whose members are important in the fermentation of dietary fiber, was
scarce in abundance during this experiment and detected during only the grower phase
(grower: 0.1%6 0.3%) and in birds receiving basal diet (BD: 0.09%6 0.2%) and carotenoid
(CAR: 0.1% 6 0.2%) supplementation. Our data indicated that in comparison to the basal
diet, nutraceuticals had decreased relative abundance of Helicobacter (nutraceuticals,
0.2%6 0.3%, versus BD, 0.3%6 0.8%); anthocyanins increased the abundance of
Campylobacter (ANTH, 0.4%6 1.6%, versus other, 0.05%6 0.1%), Bacillus (ANTH,
0.16 0.1%, versus other, 0.01%6 0.05%), and Eubacterium (ANTH, 1.7%6 0.4%, ver-
sus other, 0.5%6 0.6%); carotenoids increased Eggerthella (CAR, 0.02%6 0.07%,
versus other, 0.004%6 0.01%); and the genus Clostridium was not detected in CAR-
and ANTH-treated birds. We noticed a significant increase in Campylobacter and
Helicobacter during the grower (P, 0.001) and finisher (P, 0.001) phases of the
experiment. Clostridium was mainly detected during the prestarter phase. In the

FIG 8 Differentially abundant taxonomic heat trees revealed the effects of nutraceuticals on taxa involved in lipid metabolism. The Metacoder differential
heat tree illustrates the variation in microbiome phylotypes between experimental groups. The annotated tree on the left functions as a map for the
unlabeled trees. Colored taxa represent the extents of log2 differences in taxon abundances: green represents higher abundance in BD or BGLU, while
brown means higher abundance in nutraceutical-treated groups. Nodes in the heat tree correspond to phylotypes, as indicated by node labels, while
edges link phylotypes in accordance with the taxonomic hierarchy. Node size corresponds to the number of operational taxonomic units (OTUs) observed
within a given phylotype. BD negative control (basal diet with no dietary supplement) and the following dietary treatments were provided as mash feed:
BGLU positive control (BD including 0.5% b-glucan), CAR (BD including 0.5% carotenoids), fOS (BD including 0.5% fermentable oligosaccharides), SYN (BD
including 0.5% synbiotics), and ANTH (BD including 0.5% anthocyanins).
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case of Enterococcus, a significant decrease was observed during the last two phases
(grower-finisher, 2.3%6 2.1%, versus prestarter-starter, 27.6%6 21.4% P, 0.001) of the
experiment. In the case of Eggerthella, significant increases (P, 0.01) were detected during
the starter phase.

Attention was also paid to the estimated relative proportions of relevant species
involved in lipid and carbohydrate metabolism, such as those involved in avian infec-
tions (Fig. 9c). Noticeably, b-glucan-treated samples showed the highest species diver-
sity for lactic acid bacteria, covering eight Lactobacillus strains. Levels of the beneficial
Lactobacillus aviarius and Lactobacillus salivarius, which is one of the main suppliers of
the enzyme bile salt hydrolase (BSH) (74) and is also known to provide protection

FIG 9 Shifts in taxa involved in carbohydrate metabolism. (a) Donut plots represent the diet-induced distortions in the main phyla. Firmicutes-to-Bacteroides
ratios (log2 ratio of F/B relative % frequencies) are also indicated. (b) Bar charts represent rearing while polar plots (values in the pie portions indicate
relative frequencies) show diet-related trends in relevant genera: Campylobacter, Enterococcus, Clostridium, Bacillus, Eggerthella, Helicobacter, Eubacterium,
Alistipes, and Corynebacterium are involved in carbohydrate metabolism and pathogenesis. (c) Bubble chart showing 22 dedicated species, where bubble
sizes correspond to relative abundance values. BD negative control (basal diet with no dietary supplement) and the following dietary treatments were
provided as mash feed: BGLU positive control (BD including 0.5% b-glucan), CAR (BD including 0.5% carotenoids), fOS (BD including 0.5% fermentable
oligosaccharides), SYN (BD including 0.5% synbiotics), and ANTH (BD including 0.5% of anthocyanins).
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against colonization by Salmonella and other pathogens, were observed in all experi-
mental groups. L. salivarius showed enrichment in the control animals (BD-BGLU,
15.2%6 17.8%, versus nutraceutical groups, 7.5%6 9.2%), whereas L. aviarius showed
remarkable increases due to synbiotics (SYN: 14.7%6 15.6%) and anthocyanins (ANTH:
6.8%6 9.2%). Lactobacillus alvi, which is frequently obtained from chicken fecal and
intestine (75), was also represented uniformly and showed increases in anthocyanin-
treated samples (ANTH, 0.11%6 0.2%, versus other groups, 0.01%6 0.04%).

Noticeably, a rise in the bacterial diarrheal gastroenteritis-causing Campylobacter
jejuni (ANTH, 0.5%6 1.6%, versus others, 0.05%6 0.1%) was shown in anthocyanin-
fed animals without changes in chicken welfare. We detected the anaerobic
Anaeromassilibacillus senegalensis having a short exposure time under aerobic condi-
tions (76) in all of our experimental groups with a similar frequency (R0.1%6 0.4%),
which can reflect adequate sample handling and processing. Bacteroides gallinaceum,
which was previously isolated from the ceca of a healthy broiler, seems to play an im-
portant role in the digestive system (77). However, it was traceable only in carotenoid
(CAR: 0.1%6 0.3%)- and anthocyanin (ANTH: 0.1%6 0.2%)-treated samples. Butyrate-
producing Butyricicoccus desmolans was traceable only in very low proportions in all
sample sets. The lowest level of the newly described anaerobic, non-spore-forming,
fatty acid-producing Traorella massiliensis (76) was observed in higher abundance
among birds treated with anthocyanin (ANTH, 0.4%6 0.9%, versus other, 0.03%6 0.1%).
Additionally, the short-chain fatty acid producer Pseudomonas fragi (78) showed relatively
high abundance in anthocyanin-fed birds (ANTH: 0.3%6 0.5%).

Microbial interconnections induced by nutraceuticals. To identify nutraceutical-
induced interconnections within the broiler intestinal microbiota, we estimated the
extent to which relevant families tended to change together. Relative proportions of
taxa were correlated in terms of Spearman’s method (Fig. 10). We identified divergent
abundance patterns by using data for the 15 most abundant families in nutraceutical-
induced treatment groups throughout the four phases of the experiment (Fig. 10a). In
general, similar correlation patterns were revealed between CAR-SYN- and fOS-ANTH-
treated samples. We focused on two areas. (i) First, we attempted to find correlations
between families throughout the four feeding phases of the experiment. We found 13
statistically significant positive (prestarter: 5; grower: 2; finisher: 6) and 15 negative
(prestarter: 4; starter: 2; grower: 1; finisher: 8) associations throughout the experiment
(Fig. 10b). (ii) Second, we identified very strong correlations between families in that
were exclusive to specific diets (Fig. 10c). Characteristically, anthocyanin-treated sam-
ples showed by far the highest number of unique family matches (8 positive versus 6
negative correlations). As such, Desulfovibrionaceae showed very strong negative corre-
lations with Lactobacillaceae (r value: 20.97), Streptococcaceae (r value: 20.97), and
Peptostreptococcaceae (r value: 20.97) in ANTH-treated samples. Concurrently, the fam-
ily Desulfovibrionaceae correlated very strongly with Bacteroidaceae (r value: 0.97),
Barnesiellaceae (r value: 0.97), Clostridiaceae (r value: 0.97), Erysipelotrichaceae (r value:
0.97), and Ruminococcaceae (r value: 0.97) in these samples. In SYN-treated samples, a
very strong negative association was found between Sphingomonadaceae and
Streptococcaceae (r value: 21). The peculiar fingerprint of the fOS-supplemented diet
showed a very strong negative association between Moraxellaceae and Beijerinckiaceae
(r value: 20.97). In animals fed fOS, very strong positive interrelations were detected
between Rikenellaceae and Clostridiales (r value: 0.97), Rikenellaceae and Burkholderiaceae
(r value: 0.97), and Rikenellaceae and Acidaminococcaceae (r value: 0.97). Furthermore, very
strong connections were detected between Streptococcaceae and Barnesiellaceae (r value:
0.97), Aerococcaceae and Peptostreptococcaceae (r value: 1), and Chitinophagaceae
and Bacillaceae (r value: 0.97). The CAR characteristic fingerprint showed very
strong positive correlations between Xanthobacteraceae and Chitinophagaceae (r value:
0.91), Xanthobacteraceae and Bifidobacteriaceae (r value: 1), and Beijerinckiaceae and
Streptococcaceae (r value: 0.97). Additionally, the family Bifidobacteriaceae showed a strong
positive association with Chitinophagaceae in CAR-treated birds (r value: 0.91).
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FIG 10 Spearman correlation plots indicating nutrient-induced interconnections between members of the broiler
GIT microbiota in relation to four phases of broiler rearing. Color intensities indicate values of correlation
coefficients, i.e., the strengths of associations between dedicated families. The values vary from 21 to 11,
indicating the strength of positive (r value. 0) and negative (r value, 0) correlations. (a) Divergent abundance

(Continued on next page)
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DISCUSSION

An extraction technology was developed (34) that is able to recycle plant-based
food industrial waste to extract its bioactive compounds (anthocyanins from sour
cherry and carotenoids and fermentable oligosaccharides from red sweet pepper) and
conserve their beneficial, health-promoting effects. Based on this invention, our prior
aim was to develop forage enriched in nutraceuticals and to investigate the effect of
these natural feed additives on the broiler GIT microbiota.

The feeding program of this trial was applied according to the norms widely used
in Ross 308 chicken production (34). Based on our findings, bioactive compound-
enriched diets have been shown to strengthen the positive correlations between body
weight and the beneficial orders Bacillales, Rhizobiales, and Corynebacteriales, which
are associated with increased nutrient absorption through the improvement of the in-
testinal epithelium integrity (79, 80). We found that, under our experimental condi-
tions, a nutraceutical-enriched diet did not significantly improve body weight, support-
ing the estimations of other data (81, 82). Additionally, our data did not support that
probiotics enhance animal growth, which might be explained by a number of different
environmental and genetic factors (36). Nutraceuticals did not significantly increase
the relative proportions of Lactobacillaceae and Bifidobacteriaceae, which were previ-
ously reported to amend the utilization of prebiotic oligosaccharides in chicken (24,
83–86). Furthermore, we theorize that the noticeable decrease in intestinal Clostridium
and Bacteroides of anthocyanin-treated birds may be associated with alterations in bile
biotransformation through which the microbiota impacts host fat digestion and utiliza-
tion. Notably, we did not observe any decrease in the body gain rate of anthocyanin-
treated birds (ANTH finisher phase, 2,5906 280 g, versus BD, 2,7586 264 g).

A combined age-related view of the healthy, baseline GIT microbiota was also
achieved at the phylum, order, and genus taxonomic ranks of baseline bacteria at dif-
ferent stages of Ross 308 broiler production. This showed that the broiler GIT micro-
biota was dominated by two core phyla: Firmicutes (93.0%6 6.9%) and Proteobacteria
(6.9%6 0.9%).

We also investigated the effects of different dietary supplements on GIT community
complexity through the production of Ross 308 Gallus gallus forma domestica. Based
on our results, remarkable increases were detected in Faith’s index due to fOS, SYN,
and ANTH diet in relation to those of both controls (BD, BGLU). According to our esti-
mations, the fOS-supplemented diet increased Faith’s index, which was consistent with
the results reported by Shang et al. (35). Furthermore, in accordance with a previous
study (87), we found that carotenoids did not exert significant effects on community
complexity. Probiotics are increasingly applied to animals in poultry industries, too (39,
88). Additionally, based on our findings, b-glucan supplementation did not exert a re-
markable influence on community diversity. Similar to previous reports, our data indi-
cated that the composition of the broiler GIT microbiota diversifies remarkably as the
GIT microbial population becomes more complex in aging broilers (39, 89). An increase
in community alpha diversity makes symbiotic communities more discordant, which
was also supported by Bray-Curtis, Jaccard, and weighted and unweighted UniFrac dis-
tances. Notably, the present study revealed that appreciable beneficial effects of nutra-
ceuticals manifested mostly by the end of the broiler productive life span, as the diver-
sity started to decrease. This may suggest that dietary supplementation has a lesser

FIG 10 Legend (Continued)
patterns are shown by considering the taxonomy data of the 15 most abundant families in nutraceutical treatment
groups throughout the four phases of the experiment. BD negative control (basal diet with no dietary supplement)
and the following dietary treatments were provided as mash feed: BGLU positive control (BD including b-glucan),
CAR (BD including carotenoids), fOS (BD including fermentable oligosaccharides), SYN (BD including synbiotics),
and ANTH (BD including anthocyanins). (b) Matched pairs of families showing very strong correlations in relation to
aging and diet. Gradient colors represent extents of positive and negative correlations. There were 13 very strong
(r value. 0.8) positive (prestarter phase: 5; grower phase: 2; finisher phase: 6) and 15 negative (prestarter phase: 4;
starter phase: 2; grower phase: 1; finisher phase: 8) associations detected throughout the four rearing phases of the
experiment. (c) Unique, diet-specific matches showing very strong correlations in family taxonomy.
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impact on a more diverse symbiotic microbiota. Higher microbial diversity is commonly
related to a healthier host status, whereas a lack of sufficient diversity in microbial
community structures has been associated with intestinal diseases (10, 90–94).
Furthermore, imbalance of the gut microbiome composition and significant losses in
GIT diversity often lead to the elimination of beneficial bacteria and accompanying
increases in pathogenic bacteria (95).

Additionally, we managed to investigate how nutraceuticals can shift the abundan-
ces of potential zoonotic strains. The final 2 weeks of the broiler production period is
associated with elevated mortality and production losses due to localized or systemic
bacterial infections. In addition to the genetic background, the performance and meat
production of domestic animals (e.g., broilers) are influenced by water and feed quality,
energy and nutrient content of the diet, and their relative proportions, as well as vari-
ous environmental factors (ambient temperature, humidity, air speed, ventilation tech-
nique, herd density in the barn, and, moreover, environmental stress) (96, 97).

Identifying symbiotic and dysbiotic taxa is not a straightforward task, and there are
no obvious “good or bad guys” in complex microbial communities. However, it is
essential to consider the problem of livestock contamination for both sanitation and
economic reasons (85). In our experimental system with 1,080 animals, the mortality
rate proved to be very low (0.56%); nonetheless, no significant differences in lethality
patterns were observed between our experimental settings.

In this study, the Firmicutes-to-Bacteroides ratio was lowest in anthocyanin-fed ani-
mals, which was accompanied by a decrease in body weight in comparison to that of
the controls. The potential pathogen genus Bacteroides encodes a high number of pro-
teins involved in polysaccharide and monosaccharide metabolism, decreases colonic
pH, and improves the function of epithelial cells (98). The increase in Bacteroides fre-
quencies in the starter flock due to synbiotics supposedly modulated their polysaccha-
ride metabolism since members of this genus are generally associated with the degra-
dation of starch and glucan (76). However, these suggestions were not supported by
our data. Acetate and propionate are mainly produced by Bacteroidetes, while
Firmicutes are the main butyrate supplier (37, 99, 100). The highest ratios for
Bacteroides gallinaceum were detected in samples receiving carotenoids and anthocya-
nins, while Bacteroides dorei was traceable only in CAR-, fOS-, and SYN-fed birds.
Notably, in prestarter and finisher broilers, anthocyanins increased the levels of the
beneficial bacteria Lachnospiraceae and Ruminococcaceae, which are usually associated
with improvements in feed conversion (51). Furthermore, during the finisher phase,
anthocyanins increased the levels of Akkermansiaceae, Bacteroidaceae, and Barnesiellaceae,
which are in turn linked to more efficient intestinal absorption of compounds, as described
previously (101). This might be suggestive of improvements in growth parameters; how-
ever, these were also not strengthened by our data.

The beneficial effects of nutraceuticals manifested in the increasing proportions of
the butyrate producers Lachnospiraceae and Ruminococcaceae in finisher chickens. For
colonocytes, butyrate is an important energy source that is largely metabolized in the
epithelial mucosa (102). Mucin-degrading Akkermansia species are usually associated
with intestinal health, due to their competitive exclusion of other, less beneficial bacte-
ria that adhere less effectively to the mucosal surface (103, 104). Additionally,
Akkermansia was previously shown to decrease visceral fat deposits; thus, their abun-
dance might be associated with decreases in body weight gain (103–105). However, in
this study, no significant associations were found between Akkermansia and broiler
weight. Anthocyanins enhanced the frequencies of the important butyrate producer
genus Eubacterium (40, 106, 107), while fermentable oligosaccharides and synbiotics
increased the relative abundance of the genus Clostridium during the prestarter feed-
ing period, which might be associated with beneficial effects on animal GIT health
(108).

In addition to involvement in carbohydrate metabolism, some members of the gen-
era Helicobacter, Clostridium, and Enterococcus are important pathogens (86) that
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colonize the gastrointestinal tract of chickens, causing gastroenteritis (73), necrotic en-
teritis (24, 25), and enterococcal spondylitis (72). Notorious members of the genus
Clostridium also have beneficial physiological effects on various biological responses
by synthesizing essential vitamins and micronutrients (thiamine, riboflavin, nicotina-
mide, pantothenic acid, biotin, etc.), neurotransmitters (biogenic amines), and second-
ary bile acids for the host (102, 109, 110). Furthermore, certain members are also
known polyphenol producers, exhibiting antioxidant activity and decreasing inflamma-
tion (111). Lipoglycans of Clostridium and Enterococcus spp. are known to trigger
inflammatory responses and insulin resistance (112). In the case of Clostridium, the
highest ratios were noted in prestarter birds, treated with b-glucan, fermentable oligo-
saccharides, and synbiotics, whereas the highest abundances of Enterococcus were reg-
istered in prestarter and starter birds where nutraceuticals, especially fermentable oli-
gosaccharides and anthocyanins, boosted their frequencies in comparison to controls.
Previous studies reported decreased Campylobacter and Clostridium colonization meas-
ured in broilers fed fructans (113). According to our data, the proportion of the family
Campylobacteraceae was significantly decreased in finisher animals receiving immu-
nostimulants relative to those receiving the basal diet. In carotenoids-fed birds,
Eggerthella increased remarkably, whereas immunostimulants (BGLU and nutraceuti-
cals) were able to decrease the abundances of the genus Helicobacter. Interestingly, in
chickens fed anthocyanins, a noticeable increase was registered for the bacterial diar-
rheal gastroenteritis-causing C. jejuni without affecting chicken welfare. Of note, C.
jejuni can also be involved in the maintenance of intestinal epithelial integrity and the
modulation of anti-inflammatory and antitumor effects (35, 57, 114). Although the spe-
cific mechanisms have not been fully elucidated, phytonutrients rich in antioxidants
can reduce pathogenic stress (115). The Gram-negative, rod-shaped, opportunistic
pathogen Alcaligenes faecalis, which can trigger infections by colonizing the respiratory
tract (116), was not traceable in broilers receiving either b-glucan or nutraceuticals.

The most widely used probiotics are members of the relevant acetate-producing
genus Lactobacillus (22, 117), which has also been reported to positively affect the gut
health of poultry by reducing inflammation and controlling enteric bacterial infections
through regulating mucin composition (16, 17, 75, 99). In this trial, carotenoids were
shown to positively modulate the abundances of the genus Lactobacillus in grower
and finisher animals, which might also affect certain enzymatic activities of the oligo-
saccharide transport system of lactobacilli (118). These data are consistent with the
results of other studies reporting Lactobacillus as a major beneficial bacterium showing
increases in broilers fed fructans (37, 38). In control samples, elevated levels were
measured for Lactobacillus salivarius in relation to that in treatment groups, which can
be associated with enhanced induction of anti-inflammatory responses of chicken (99).
Furthermore, the age-related oscillating patterns of the genus Lactobacillus might also
be congruent with deconjugated bile acid concentrations in broiler chickens (51, 119).
Both human and animal studies found an association between the accumulation of lac-
tic acids and disease states, such as colitis and gut resection (120, 121). In our study,
taxonomic heat trees indicated that anthocyanins remarkably decreased the relative
abundance of the family Lactobacillaceae.

The most pronounced negative correlations between butyrate-producing genera
such as Butyricicoccus and Ruminococcus and lactic acid-producing Lactobacillus have
been revealed in anthocyanin-treated animals. According to our assumptions, this
might be associated with improvements in epithelial intestinal barrier functions that
are caused by decreasing lactic acid buildup and increasing osmotic load (122).
Interestingly, a strong negative correlation was revealed between the lactate- and ace-
tate-producing Bifidobacteriaceae and lactic acid-producing Staphylococcaceae (r value:
20.97) in animals fed anthocyanins. In finisher animals, very strong negative correlations
were detected in birds fed nutraceuticals between Lactobacillaceae and Bacteroidaceae,
whose members are known to improve metabolic efficiency and reduce colonization by
undesirable microbes (36, 117, 120).
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Conclusions. We report the following main results based on our data. (i) Time
exerted a great influence on the chicken microbial community structure. There was a
tendential increase in broiler GIT community diversity as chickens aged. Subsequent
deviation from diversity can be alleviated by treating birds with fermentable oligosac-
charides, synbiotics, and anthocyanins. (ii) Great emphasis was also placed on how tax-
onomy data correlate with enhanced bird body weight. Nutraceuticals resulted in
strong positive correlations between body weight gain and the orders Bacillales,
Corynebacteriales, Enterobacteriales, Micrococcales, and Pseudomonadales. (iii) The 50%
core taxonomy data revealed the relations between the symbiotic broiler Ross 308
microbiota and age and diet. Fermentable oligosaccharides, synbiotics, and anthocya-
nins were shown to exert the greatest community shifts, especially during the
prestarter and starter phases. (iv) In general, Enterobacteriaceae (prestarter, starter),
Akkermansiaceae (finisher), Brevibacteriaceae (starter, finisher), Staphylococcaceae
(prestarter), Bacteroidaceae (starter, grower), Bifidobacteriaceae (starter, grower),
Campylobacteraceae (grower, finisher), Helicobacteraceae (finisher), Planococcaceae
(grower, finisher), and Pseudomonadaceae (grower, finisher) were identified as key taxa
representing significant shifts (mean log2 fold change j$2j) in community taxon com-
positions due to nutraceuticals. (v) There were alterations in relative frequencies of
commensal beneficial, short-chain fatty acid-producer bacteria and conditioned patho-
gens. The Firmicutes-to-Bacteroides ratio (F/B) proved to be the highest in b-glucan-
treated animals and the lowest in anthocyanin-treated animals. Coincidentally, antho-
cyanins were shown to increase Faecalibacterium, Blautia, and Ruminococcus in finisher
birds remarkably relative to BD. Generally, fermentable oligosaccharides, synbiotics,
and anthocyanins exerted a positive impact on Faecalibacterium, and the difference
was more pronounced by the end of broiler rearing. Impressive alterations in Lactobacillus
were mostly age related. Carotenoids were shown to increase Bifidobacteriaceae and
Barnesiellaceae but reduce Enterococcaceae and Clostridiaceae in grower phase. (vi)
Spearman’s correlations identified mutual interconnections, i.e., very strong age- and
diet-related associations of the symbiotic broiler gastrointestinal microbiota. Very
strong positive correlations were revealed between body weight and the families
Campylobacteraceae-Planococcaceae (CAR), Streptococcaceae-Beijerinckiaceae (CAR),
Peptostreptococcaceae-Aerococcaceae (fOS), Burkholderiaceae-Rikenellaceae (fOS), Bacillaceae-
Nitrosomonadaceae (SYN), Ruminococcaceae-Bifidobacteriaceae (ANTH), and Clostridiaceae-
Desulfovibrionaceae (ANTH) for individual nutraceuticals.

This is a unique and comprehensive trial that highlights the health benefits of bio-
active compounds of recycled food waste products as potential dietary adjuncts for an-
tibiotic-free broiler meat-production systems. Based on our observations, a nutraceuti-
cal-enriched diet did not degrade chicken development and delivered promising
results in stimulating GIT health.

Additionally, this study also improves our knowledge about the effects of carote-
noids, fermentable oligosaccharides, anthocyanins, and synbiotics on the composition
of the broiler gastrointestinal tract microbiota.

MATERIALS ANDMETHODS
Birds and housing. A total of 1,080, 1-day-old Ross 308 mixed-sex broilers from a commercial hatch-

ery in Hungary were used. The experiment was carried out on the experimental farm of the University of
Debrecen. All broilers were housed in the same shed. Chickens were kept in floor pens covered with
wood shavings in a thermostatically controlled house at a stocking density of 650 cm2/bird and reared
under standard management conditions. Sampling procedures were carried out in accordance with the
local (University of Debrecen) ethics committee’s approved guidelines (DEMAB/12-7/2015).

Experimental design and dietary treatments. One-day-old Ross 308 hybrid chicks were randomly
placed into 6 experimental groups (3 replicates/treatment, 60 birds/pen). The experiment was started at
day 1 of age and lasted until 42 days. Each group was fed one of the following 6 diets: basal diet (BD),
without any added supplements; basal diet including 0.5% b-glucan (BGLU); basal diet including 0.5%
carotenoids (CAR); basal diet including 0.5% fermentable oligosaccharides (fOS); basal diet including
0.5% synbiotics (SYN); basal diet including 0.5% anthocyanins (ANTH). BD (negative) and BGLU (positive)
were the control groups, and CAR, fOS, SYN, and ANTH were the treatment groups. Broilers were fed a
commercial maize-soybean-based basal diet (BD) free of antibiotics according to four feeding periods:
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prestarter (1 to 9 days), starter (10 to 21 days), grower (22 to 31 days), and finisher (32 to 42 days). All
diets were fed in mash form. The compounds and nutritional composition of BD are given in Table 1.
The composition of nutrients in each basal diet was planned to satisfy nutritional requirements of broiler
chickens according to the National Research Council (NRC) (123). Feed and water were available ad libi-
tum during the entire experiment. Broilers were weighed at 1, 10, 21, 32, and 42 days of age. As growth
performance parameters, average body weight (BW) was calculated. Mortality was monitored; it was
very low (0.56%), and there was no association between mortality and feed treatments. No veterinary
treatment was required for the entire duration of the experiment.

Determination of natural feed additives. Carotenoid (CAR) supplementation was determined as
described by Remenyik et al. (124) and Csernus et al. (34) (see Fig. S1 in the supplemental material).
Carotenoids were extracted from Hungarian red sweet pepper powder (in 1 to 5 g) using dichloro-
ethane-acetone-methanol as the solvent mixture in a 2:2:1 ratio. The mixture was agitated in an ultra-
sonic water bath for 30min and purified through Munktell-292 filter paper (VWR International,
Debrecen, Hungary). For further purification, a 0.22-mm polytetrafluoroethylene (PTFE) syringe filter (TPP
Techno Plastic Products AG, Switzerland) was applied. Afterward, the filtered sample was vaporized at
40°C at 20 kPa and then dissolved in a high-performance liquid chromatographic (HPLC) reagent (isopro-
panol-acetonitrile-methanol at 55:35:10) (Merck, Darmstadt, Germany). HPLC separation was conducted
on a Phenomenex Kinetex column (2.6mm, XB-C18, 100 Å, 100� 4.6mm) (Phenomenex, Torrance, CA,
USA) with the following two solvents: A, 11% methanol, and B, isopropanol-acetonitrile-methanol
(55:35:10, vol/vol/vol %). Step elution was performed with the following settings: 0 to 3min 100% sol-
vent A, 15 to 20min 20% solvent A, 25 to 45min 100% solvent B, and 48 to 50min 100% solvent A. For
detection, a diode array detector (DAD) and a 0.6-ml/min flow rate were applied. The sample was
injected in a 10-ml volume, and the DAD detection was applied at 460 and 350 nm. The HPLC profile and
carotenoid compounds with the greatest areas are provided in the supplemental material (Fig. S1).

Fermentable oligosaccharide (fOS) supplementation was performed as described in the work of
Csernus et al. (34) (Fig. S2). Hungarian red sweet pepper was also applied to extract fermentable oligo-
saccharides (fOS) with high arabinogalactose content. To assess the composition of oligosaccharides, an
HP 5890 gas chromatograph (GC) was applied with an SP-2380 capillary column (30 m by 0.25mm,
0.2mm). Samples were lyophilized and extracted with trifluoracetic acid-acetic acid-water (5:75:20) as
the solvent. Oligosaccharides were turned into alditol-acetate. After the reduction step, sugars were
shifted to sugar alcohols (alditols), which removed interfering isomers and anomers. Reduction was per-
formed with NaBH4 at alkaline pH. Acetylation was also performed with acetic anhydride in pyridine. The

TABLE 1 Ingredients and chemical composition of the basal diet

Ingredientsa

Diets

Prestarter (day 1–9) Starter (day 10–21) Grower (day 22–31) Finisher (day 32–42)
Corn, % 33 34 33 32
Wheat, % 27 29 31 32
Soybean meal, solvent extracted (46.0% CP), % 29 24 20 16
Soybean meal, extruded (46.0% CP), % 4 6 4 4
Sunflower meal, extracted, % - 1 3 4
Feed yeast, % 1 - - -
Distillers’ dried grains with solubles, % - 1 3 5
Plant fats, % 2 1 3 4
Premix, % 4 4 3 3
Total, % 100 100 100 100

Energy and nutrient contents of the diets
Dry matter, % 89.06 89.03 89.15 89.15
AMEn poultry, MJ/kg 12.23 12.47 12.81 13.01
Crude protein, % 21.58 20.28 19.05 18.28
Crude fat, % 4.61 4.83 6.22 6.83
Crude fiber, % 3.37 3.51 3.7 3.88
Lysine, % 1.37 1.27 1.17 1.09
Methionine, % 0.57 0.54 0.53 0.49
Methionine1 cysteine, % 0.94 0.9 0.87 0.83
Calcium, % 0.85 0.73 0.71 0.67
Phosphorus, % 0.63 0.55 0.52 0.49
Phosphorus utilization, % 0.45 0.42 0.40 0.35
Sodium, % 0.17 0.16 0.16 0.16
Sodium chloride, % 0.282 0.252 0.242 0.244
Vitamin A, mg/kg 12,500 12,500 12,500 8,750
Vitamin D3, mg/kg 3,000 3,000 3,000 2,100
Vitamin E, mg/kg 50.001 50.001 50.001 35
Lasalocid sodium, mg/kg 82.500 82.500 82.500
aCP, crude protein; AMEn, apparent metabolizable energy, n = corrected for zero nitrogen balance.
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feed gas was nitrogen at a 1.2-ml/min flow rate. The injector temperature was set to 300°C, and split ra-
tio was 1:20. A flame ionization detector (FID) was used for identification of oligosaccharides. The GC
profile and the identified monomer units of oligosaccharides are provided in the supplemental material
(Fig. S2).

The synbiotic (SYN) supplement contained probiotics (Bifidobacterium bifidum, Bifidobacterium infan-
tis, Bifidobacterium lactis, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus buchneri,
Lactobacillus casei, Lactobacillus paracasei, Lactobacillus plantarum, L. salivarius, and Lactobacillus lactis),
prebiotics (fructo-, xylo-, and mannooligosaccharides and arabinogalactan) (Fig. S3), vitamins (B group
vitamins and vitamins C, D2, D3, E, and K2), unsaturated fatty acids (v -3, v -6, and v -9), mineral and trace
elements (sodium, potassium, calcium, iodine, and phosphorus), and lactose. The GC profile and the
identified monomer units of oligosaccharides are provided in the supplemental material (Fig. S3).

Anthocyanin (ANTH) supplementation was determined as described by Nemes et al. (125) (Fig. S4).
Anthocyanins were extracted from Hungarian sour cherry. Cherries were deseeded and homogenized,
and then methanol-water-acetic acid solution in a 25:24:1 ratio was utilized to extract anthocyanins. The
sample was mixed with a magnetic stirrer (MSH 300, BioSan, Riga, Latvia) for 1 h. Filtering and centrifu-
gation were performed at 10,000 rpm for 5min, and then a simple fractionation was carried out in pre-
conditioned tubes (Superclean ENVI-18 SPE tubes). For preconditioning, 5ml of methanol (MeOH), 5ml
of H2O, and 1ml of fruit sample were used. The elution was conducted with methanol containing 20%
H2O and vaporized at 40°C. The sample was dried in vacuum to powder. A VWR-Hitachi
ChromasterUltraRs ultra-HPLC (UHPLC) instrument (Hitachi, Tokyo, Japan) was used for anthocyanin pro-
file determination with a Phenomenex Kinetex column (2.6mm, XB-C18, 100 Å, 100� 4.6mm)
(Phenomenex, Torrance, CA, USA). Two solvents were applied for a step elution, A (MeOH) and B (3% for-
mic acid), with the following parameters: 0min, 15% solvent A; 0 to 25min, 30% solvent A; 25 to 30min,
40% solvent A; and 30 to 40min, 50% solvent A. UV-visible (UV-VIS) detection was applied at 534 nm,
the flow rate was kept at 0.7ml/min at 25°C, and the injection volume was 10ml. The UHPLC profile and
the main anthocyanin compounds are included in the supplemental material (Fig. S4).

Sample collection. Fecal samples were collected at 7, 19, 31, and 40 days of age (prestarter, starter,
grower, and finisher sampling periods, respectively). In every experimental group (BD, BGLU, fOS, CAR,
SYN, and ANTH), 4 fecal samples (1 pullet and 1 cockerel, 2 fecal pools) were collected over the whole
experimental period. Fecal samples were collected freshly into specific, sterile, DNase-free stool transpor-
tation bowls and immediately placed on ice for a maximum of 3 h. Unprocessed samples were kept at
280°C until further use.

Sample preparation and mechanical cell lysis. Bacterial cell suspensions (BS) were prepared from
7 g of each broiler stool sample. Then, 7ml of sterile PBS buffer (Thermo Fisher Scientific, MD, USA) was
added to each of the samples, and they were homogenized for 4min (by vortexing at 350 rpm) (126).
The samples were centrifuged for 5min at 500� g. Supernatants were collected, and the washing step
was repeated 2 times. Supernatants were centrifuged for 20min at 13,000� g. Finally, the supernatants
were discarded, and the bacterial pellets were dissolved in 3ml of sterile PBS buffer. One-milliliter ali-
quots of BS were added to PowerBead tubes (Qiagen, Hilden, Germany) for mechanical cell lysis.
Bacterial cell disruption was performed with a MagNA Lyser instrument (Roche Applied Sciences,
Penzberg, Germany) set to 5,000 rpm for 30 s.

DNA extraction. Total bacterial genomic DNA was extracted with the conventional isolation
method. A total of 800ml of sample lysate was mixed with 800ml of phenol-chloroform-isoamyl alcohol
(25:24:1) (Thermo Fisher Scientific, MD, USA) and vortexed thoroughly for approximately 20 s. After ho-
mogenization, the samples were incubated at room temperature for 3min and centrifuged for 10min at
16,000� g. After phase separation, the upper aqueous layer was carefully collected into a new sterile
DNase- and RNase-free Eppendorf tube. For DNA precipitation, a mixture of 1ml of glycogen (20mg), 7.5
M NH4OAc (ammonium acetate in 0.5� volume of the sample), and 100% EtOH (ethanol in 2.5� the vol-
ume of the sample) was added to the supernatant. The samples were incubated at 220°C overnight and
then centrifuged for 30min at 16,000� g at 4°C to pellet the DNA. The supernatant was carefully dis-
carded without disturbing the pellet, and 70% EtOH was added to the sample and shaken by hand for
20 s. Then, the samples were centrifuged at 4°C for 5min at 16,000� g, and the supernatant was care-
fully removed. This washing step was repeated 2 times. The DNA pellet was dried at room temperature
and then resuspended in 40ml of nuclease-free water. DNA concentrations were determined using a
Qubit fluorometric quantitation double-stranded DNA (dsDNA) assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) on a Clariostar microplate reader (BMG Labtech, Ortenberg, Germany). DNA quantity
and quality were ascertained using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).
DNA integrity (shearing/fragmentation) was measured on a 4200 TapeStation system (G2991AA; Agilent
Technologies, Santa Clara, CA, USA). The eluted DNA samples were stored at 220°C.

Negative and positive DNA purification controls. To minimize laboratory contamination, sterile
surgical gloves and face masks were used and all DNA extraction steps were performed with sterile or
sterilized equipment under a class II laminar airflow cabinet. Negative isolation control (NIC) experiments
were simultaneously conducted by substituting samples with PCR-grade water. Eluted NIC samples were
used for V3-V4 PCR, and indexing was performed under DNA-free UV-sterilized AirClean PCR worksta-
tions/cabinets. At each PCR cleanup step of the library preparation, NIC amplicons were also validated
on a 4200 Tape Station system (G2991AA; Agilent Technologies, Santa Clara, CA, USA) using Agilent
D1000 ScreenTape (5067-5365) and Agilent genomic DNA (gDNA) reagents. Host background nucleic
acid contamination was also monitored with real-time PCR using the glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) (Sigma-Aldrich, Missouri, USA) forward primer 59-GTCTCCTCTGACTTCAACAGCG-39
and reverse primer 59-ACCACCCTGTTGCTGTAGCCAA-39 on eluted gDNAs (126).
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Library construction and sequencing. Standard library preparation was performed according to
the Illumina (San Diego, CA, USA) 16S metagenomic sequencing library preparation protocol (15044223
Rev. B). The V3 and V4 hypervariable regions of the bacterial 16S rRNA gene were sequenced with an
Illumina MiSeq benchtop sequencer generating amplicons of ;460bp by using universal primers (341F-
59 CCTACGGGNGGCWGCAG 39 and 785R-59 GACTACHVGGGTATCTAATCC 39 flanked by Illumina over-
hang adaptor sequences [forward overhang: 59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-39;
reverse overhang: 59-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-39] [Sigma-Aldrich, Missouri, USA]).
After completion of the PCR with 2� KAPA HiFi HotStart ReadyMix, dual indexing of the samples with
adaptor sequences (i7-N7xx-12 and i5-S5xx-8) was performed using the Illumina (San Diego, CA, USA)
Nextera XT index kit (FC-131-1001/2). PCR cleanups and amplicon size selections were carried out with
KAPA Pure Beads (KAPA Biosystems) based on the technical data sheet (KR1245-v3.16) of the manufac-
turer, resulting in final libraries with entries of ;580 to 630 bp. Every time, verifications were performed
with PCR Agilent D1000 Screen Tape (5067-5582) and D1000 reagents (5067-5583). The 16S amplicon
libraries for each sample were quantified with qPCR, normalized with respect to amplicon sizes, and
pooled into a single library in equimolar quantities. Finally, 5ml of a pooled 4 nM DNA library was used
for sequencing on the Illumina MiSeq platform. The library pool was denatured with 0.2 M NaOH and
diluted to 8 pM. Sequencing was carried out with a MiSeq reagent kit v3-618 cycle (MS-102-3003) follow-
ing the manufacturer’s protocols (Illumina, Inc., San Diego, CA, USA). Paired-end sequencing (2� 301 nu-
cleotides [nt]) was performed on an Illumina MiSeq platform with a 5% PhiX spike-in quality control
(PhiX control kit v3-FC-110-3001).

Sequence processing and analysis. Illumina BaseSpace software was used to demultiplex the
paired-end reads and construct FASTQ files. The sequencing data were analyzed using Quantitative
Insight Into Microbial Ecology (QIIME 2, v 2019.7) (127). Adaptor sequences (CTGTCTCTTATACACATCT)
were found and trimmed from the 39 end of the reads with Cutadapt software integrated in the QIIME 2
pipeline. DADA2 software was used for quality trimming and filtering and for chimera removal.
Sequences were clustered into amplicon sequencing variants (ASVs), with 97% similarity in sequences
(128). The trimming parameters were set as follows: for the forward reads, 1 base was cropped from the
start and the length was set to 300 bases; for the reverse reads, 9 bases were cropped from the start of
the reads and the length was set to 223 bases.

Bioinformatic analyses. Multiple sequence alignment was performed with the MAFFT software
(129), and reads were taxonomically classified using the naive Bayesian classifier trained on the SILVA
(ver132) (130) reference database by selecting mapping points according to the forward-reverse primer
set that was used for amplifying the 16S rRNA V3-V4 regions of the bacterial community (341F, 806R).
Phylogenetic trees were constructed with the FastTree plugin (131). The QIIME2 pipeline was applied to
perform alpha and beta diversity tests. For sample normalization, an 11,500 read depth was set. In the
case of alpha diversity, Shannon’s index (132), Faith’s phylogenetic diversity index (133), Simpson even-
ness (134), and the Chao-1 index (135) were calculated in the QIIME2 pipeline. For beta diversity analysis,
weighted/unweighted UniFrac distances (136) and Bray-Curtis dissimilarities (137) were measured.
Alpha diversity differences were compared using the Kruskal-Wallis test. Beta diversity group signifi-
cance was calculated with permutational multivariate analysis of variance (PERMANOVA) pseudo-F sta-
tistical test. These statistical tests were used to compare diversity between treatments; significance was
P, 0.05. QIIME2 artifact files were exported from the pipeline and converted to TSV files that were used
with different visualization packages. Heatmaps were generated in Python (ver3.6.5) with the Seaborn
package (0.10.0); area and donut plots were constructed with pandas (0.25.3) and matplotlib (3.1.3)
packages. Boxplots, violin plots, and line plots were constructed using GraphPad Prism statistical soft-
ware. R (v 3.6.2) was used to visualize bubble plots and polar plots. A differential heat tree was created
with the Metacoder R package (138). In the case of differential heat trees, differences were determined
using a Wilcoxon rank sum test. LEfSe analysis was performed with bioBakery tools developed by the
Huttenhower lab (139). Spearman correlation matrices were calculated and visualized with R statistical
software using the corrplot package (https://github.com/taiyun/corrplot).

Data availability. All sequence data used in the analyses were deposited in the Sequence Read
Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under PRJNA633979. Sample IDs, metadata, and corre-
sponding accession numbers are summarized in Fig. S1.
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FIG S1, PDF file, 0.2 MB.
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TABLE S1, PDF file, 0.1 MB.
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