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One of the primary factors contributing to death across all age groups is

cardiovascular disease. In the analysis of heart function, analyzing the left

ventricle (LV) from 2D echocardiographic images is a common medical

procedure for heart patients. Consistent and accurate segmentation of the LV

exerts significant impact on the understanding of the normal anatomy of the

heart, as well as the ability to distinguish the aberrant or diseased structure

of the heart. Therefore, LV segmentation is an important and critical task in

medical practice, and automated LV segmentation is a pressing need. The deep

learning models have been utilized in research for automatic LV segmentation.

In this work, three cutting-edge convolutional neural network architectures

(SegNet, Fully Convolutional Network, and Mask R-CNN) are designed and

implemented to segment the LV. In addition, an echocardiography image

dataset is generated, and the amount of training data is gradually increased

to measure segmentation performance using evaluation metrics. The pixel’s

accuracy, precision, recall, specificity, Jaccard index, and dice similarity

coe�cients are applied to evaluate the three models. The Mask R-CNN

model outperformed the other two models in these evaluation metrics. As

a result, the Mask R-CNN model is used in this study to examine the e�ect

of training data. For 4,000 images, the network achieved 92.21% DSC value,

85.55% Jaccard index, 98.76%mean accuracy, 96.81% recall, 93.15% precision,

and 96.58% specificity value. Relatively, the Mask R-CNN outperformed other

architectures, and the performance achieves stability when themodel is trained

using more than 4,000 training images.

KEYWORDS

Convolutional Neural Network (CNN), segmentation, image processing, deep

learning, left ventricle (LV), echocardiography
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of

death throughout the world (1). Every third person is affected

by CVDs each year, according to World Health Organization

(WHO) statistics (2, 3). The gold standard in diagnostic imaging

of the heart is echocardiography and cardiacmagnetic resonance

imaging (CMRI). CMRI provides 3-dimensional visualization of

the heart with a complete analysis of cardiac structure, whereas

echocardiography can examine the function and structure of the

heart (4).

However, when compared to echocardiography, CMRI

has several disadvantages, including limited availability, time

consumption, and cost (5). Echocardiography, on the other

hand, is a non-invasive, low-cost, and non-ionization radiation

technique, making it the most important and accessible imaging

modality for cardiac analysis (6). The assessment of the left

ventricle (LV) structures and functions is an important study

in cardiac analysis (7). Estimating LV size is necessary for

calculating ventricular volume, ejection fraction, wall motion

irregularities, and myocardial thickness (8). It identifies high-

risk patients and predicts future cardiovascular events (9). As a

result, the proper detection of the LV boundary depends on the

LV segmentation, which also makes the analysis and diagnosis

simple. On the other hand, manual LV detection generally

takes a long time, is labor-intensive, and heavily relies on the

experience of cardiologists (10). The structural characteristics

of ventricles make it a difficult undertaking to segment them.

Compared to segmenting organs like the liver or kidney, it is

more challenging (11–13). In order to be quicker, more accurate,

and less operator-dependent, automatic LV segmentation from

echocardiography is required.

Deep learning is widely employed in automatic image

segmentation and also in medical image processing. Due to

its superior performance, deep learning has emerged as the

technology that receives the most attention. Taking into account

the significance of deep learning, this article aims to make

a comparative analysis of three well known deep learning

segmentation architectures, SegNet, FCN, and MaskR-CNN,

for LV segmentation. The results obtained by comparing the

performance of these algorithms on the same dataset can help

to understand these models and to determine which method of

image segmentation is most effective for LV segmentation.

Related work

Various LV segmentation methods, including deformable

models, statistical models (14), and machine learning

approaches, have been successfully used in recent years.

Due to the flexibility in shape representation, deformable

models are the most used method for segmentation in

ultrasound pictures (15–17). To achieve the intended shape,

it employs predetermined curves or surfaces that change the

shape under the influence of internal forces. Additionally, these

deformable models are used to create LV segmentation (18, 19).

The performance of deformable models is enhanced using a

variety of transformation techniques. A pSnake approach based

on 1-D Hilbert transformation was proposed by Alexandria

et al. (20). For reliable and efficient segmentation, S. Zhang

presented a deformable framework (21). The model can handle

significant faults and reserve shape details. The segmentation

of the four main views, including the left ventricle (LV), using

2D echocardiography also uses deformable models (22). A

few new parameters were included in the energy function

to further enhance the performance of deformable models

and achieve high accuracy (23). A new energy function for

segmenting the whole myocardium in various directions was

defined in the enhanced version of (22). The deformable

models are comprehensive and appropriate for segmenting LV,

but they have certain restrictions when it comes to choosing

the right initialization since most of the methods necessitate

human decision-making during the initialization process. These

previous models’ validity negates the effectiveness and capacity

of such strategies. In such circumstances, the parameters must

be reparametrized robustly to recover the boundary accurately.

The statistical deformable models are generative models

that, through optimization during the fitting process, recover

the parametric description of the particular object. Active Shape

Models (ASM) and Active Appearance Models (AAM) have

been the most widely utilized techniques in echocardiography

(AAM). The behavior of the model is created during the training

phase by manually tracing over segmented data. The geometry

and visual representation of the heart anatomy were all included

in the final model. A reliable segmentation of cardiac pictures

in terms of space and/or time is ensured by this single model

(24). Based on AAM, it is suggested to automatically segment

the left ventricle (LV) using a 3D echocardiography approach

and to assess the shape and texture of model generalization.

The suggested model accurately extrapolates the shape model.

However, the texture model struggled in situations where

AAM matching (25) was constrained. Carminati et al. (26)

created a shape model of the LV using the statistical model

on echocardiography data, which was then applied to MRI

scans. These statistical models needed several beneficial training

examples, and from these samples, the model creates the

shape of the item. These models need initialization and shape

assumptions in addition to a large number of useful annotated

photos. The automatic segmentation of LV is further constrained

by its appearance.

Recent research has shown that machine learning

approaches are useful for LV segmentation because they

do not require initialization and do not rely on assumptions

about shape and appearance. Methods based on marginal space

learning have primarily been considered for accurately locating

the myocardial region (27). Similarly, a border fragment model
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has been successfully used to identify extracted contours (28).

The random forest-based machine learning approach has been

used as a discriminative classifier to describe the association

of each voxel to the myocardium (29) and is a popular

machine learning method for LV segmentation (29–31). Deep

learning has attracted attention in image segmentation since

it is a completely automatic method (32–34). Deep learning

techniques, such as Convolutional Neural Network (CNN), have

been used to segment natural images with remarkable results.

Deformable models are also used in conjunction with CNN

to segment the LV from 3D echocardiography to determine

the Region of Interest (ROI) (35–37). Deep learning-based

architecture “Fully Convolutional Network (FCN)” (38) is used

for LV segmentation in CT images, U-Net on MRI images

(39, 40), U-Net on 2D echocardiography images (41), and

another U-Net-based architecture “Anatomically Constrained

Neural Network (ACNN)” (42) is used for 3D images. Leclerc

et al. (43, 44) investigated the performance of U-Net and

the amount of data required to train the network for LV

segmentation using U-Net.

Inspired by the performance of deep learningmethods, three

end-to-end fully automatic segmentation models are designed

to segment the LV. Stated below are the main contributions of

this paper:

1. Implemented the state-of-the-art CNN architectures (SegNet,

FCN, and Mask R-CNN) used for image segmentation.

2. Analyzed these CNN architectures by assessing the

segmentation mask through evaluation metrics.

3. Determined the trade-off between the amount of data and

accuracy using Mask R-CNN architecture.

4. Developed a dataset (for a fair comparison) containing the

apical four-chamber view of the heart and binary mask of LV,

used for training, validation, and testing the network.

Section Introduction introduces the research topic. Section

Related work summarizes the literature used for the LV

segmentation and the contribution of the article. Section

Materials and method describes the dataset employed, the

architecture description of CNN models, network training,

and the evaluation metrics used to evaluate the performance

of these models. Section Discussion presents the results from

applying Segnet, FCN, and Mask R-CNN with 1,000 training

images, followed by analyzing the performance of Mask R-

CNN with increasing training data. The results are discussed in

Section Discussion.

Materials and methods

Dataset

The dataset used in this study was obtained retrospectively

from the National Heart Institute in Kuala Lumpur, Malaysia. It

is made up of 6,000 apical four-chamber 2D echocardiography

images. These images were collected using protocol number

RD5/04/15, which was approved by the National Heart

Institute’s Research Ethics Board in Kuala Lumpur, Malaysia. An

ultrasound system (Philips IE33) with an S5-1 (1.0–3.0 MHz)

transducer was used to perform the 2-D echocardiography. Each

image is 800x600 pixels in size, with a resolution of 0.3mm

x 0.3mm and a frame rate of 30–100Hz. All images were

resized to 512 x 512 to remove the extraneous background. One

thousand images are used to train all of the models for the

comparison of different CNNmodels. To examine the impact of

training data on performance, a dataset with varying numbers of

images, 2,000, 3,000, 4,000, and 5,000, is used to train the model.

However, the number of test and validation images remains

constant (500 test and 500 validation images). Since these test

images were not used in the training process, the trained model

is tested using unseen data.

Network architecture

For LV segmentation, three different CNN models are

used: FCN (fully convolutional Network), SegNet (encoder-

decoder based), and Mask R-CNN. SegNet is intended to be

a fast architecture for pixel-by-pixel semantic segmentation.

SegNet’s decoder upsamples the low-resolution input provided

by previous feature maps. To perform non-linear upsampling,

the decoder employs pooling indices computed during the

max-pooling step of the corresponding encoder. The FCN, on

the other hand, confers several advantages over other models,

including the ability to process variable image sizes and handle

spatial information. Mask R-CNN was chosen for this study,

attributed to its capabilities and robustness for general-purpose

object segmentation.

Fully convolutional network

For image segmentation, the FCN is a well-known CNN

architecture (45). The network is split into two sections:

downsampling and upsampling. Downsampling maps complex

image features and downsampling spatial resolutions using

convolution operations followed by polling. As shown in

Figure 1, the output of this step is of very low resolution.

Each pixel in semantic segmentation must be classified as LV

or background pixel. The un-pooling operation is performed

on the pooling operation’s low-resolution output to obtain the

output mask with the same resolution as the original image.

Un-pooling is the process of converting a single value into a

collection of new values. The deconvolution process reduces

the input image resolutions which impedes the regeneration

of finer details. To overcome this caveat, skip connections are

adopted to acquire sufficient information to generate the finer

segmentation boundaries.
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FIGURE 1

FCN architecture.

FIGURE 2

SegNet architecture.

SegNet

SegNet, one of the popular CNN architectures for

segmentation, consists of an encoder and decoder part

with a pixel-wise classification layer in the final stage.

Object classification is performed by 13 convolutional layers

(13-layer VGG network). The output features are passed

through batch normalized, followed by ReLU, Max pooling,

and stride operations. The decoder layer is designed for

each corresponding encoder layer. Hence, the decoder

consists of 13 layers. A SoftMax classifier is used at the

output of the decoder, yielding the class probabilities

of each pixel (35). The SegNet architecture is shown in

Figure 2.

Mask R-CNN

Figure 3 depicts the general architecture of Mask R-CNN.

The ResNet-50-FPN model and the ResNet-101-FPN model

are used in the first part of the framework to extract feature

maps from images. The backbone network in the model with

ResNet-50-FPN consumes less computational load than ResNet-

101. With no changes to the model or training procedure,

the ResNet-101-FPN achieves higher accuracy. As a result,

ResNet-101-FPN is selected as the framework’s backbone

network. The input image is processed by the backbone

CNN architecture to generate the feature map. This feature

map serves as the input for the subsequent stages. The

Region Proposal Network (RPN) is the framework’s second

component, and it is used to extract region proposals. The

RPN examines the complete image by sliding window technique

and proposes the region that might contain the desired

object. These regions and the boxes generated by RPN on

the image are called anchors, with around two hundred

thousand units of different sizes and aspect ratios. In this

research, different scales from the original RPN network

were used.

Four different scales containing all possible rectangular

boxes were defined: 32 × 32, 64 × 64, 128 × 128, and

256 × 256. Three aspect ratios; 0.5, 1.0, and 2.0 are used

for a total of 15 proposals for each pixel. The feature map

is passed through a 3x3 convolution layer and subsequently

two 1 x 1 convolutional layers. The first 1 x 1 convolutional

layer classifies the anchor as foreground (LV) or background,

and the second convolution layer coordinates the correction
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FIGURE 3

Mask R-CNN architecture.

of the anchor. A small convolutional network determines

the object possibility of each anchor to calculate the anchor

score. The top N high score boxes were chosen as ROI

based on this score. If multiple anchors overlap, the non-

max suppression technique is applied to keep the one

with the highest foreground score. The RPN’s bounding

box refinement steps allow for ROI box size adjustment.

Nonetheless, sigmoid classifiers are limited to inputs of a fixed

size. As a result, ROI-Align is required, which takes the object

proposal and uses bilinear interpolation to compute the feature

map values.

The class and ROI mask are processed by separated network

heads. In this case, only one ROI is defined, along with

foreground and background (FG/BG) classes. With a single

ROI, fully connected layers are used to predict the class

object. The class of an object is determined by the class-

entropy loss function, which calculates class loss. Due to a

major single segmentation class, a sigmoid function is used

as a classifier (LV).

A convolutional network is used in ROI to generate the

mask. Each pixel in ROI is subjected to the sigmoid function,

which produces an output mask. Each ground-truth mask and

predicted mask were defined as 28 28 during training. This small

mask size aids in keeping the mask branch at a low resolution

to conserve memory. The predicted masks were scaled up to the

size of the original ROI at the output.

Network training

The network is trained on a workstation equipped with a

Core i7 Xeon E5-2620 CPU and 11GB Nvidia GeForce GTX

1080Ti GPU. Different hyperparameters are used to train the

model, and finally the network was trained for 50 epochs with

100 training steps per epoch. Initially, the learning rate is set to

0.001 and ends at 0.0001. Stochastic gradient descent is selected

as the optimizer with a momentum of 0.9.

Evaluation metrics

Five hundred images set aside for testing are used to evaluate

the trained network. The trained model segments the LV and

generates test image segmented binary masks. These segmented

binary masks are then compared to the ground truth binary

mask of test images. The Dice Similarity Coefficient (DSC) is

used to assess model accuracy. The overlap-based method used

to calculate the dice similarity index is represented Equation

(1) (46). SGT in the equation represents the ground truth

image, which includes the original LV size and boundary. The

model’s segmented mask is represented by the SSeg. The DSC is

calculated by dividing the intersected regions of two masks by

the total region of both masks. DSC has a range of [0 1], with
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0 representing no similarity or non-overlapping region and 1

representing exact overlapping.

DSC =
2
∣

∣SGT ∩ SSeg
∣

∣

|SGT | +
∣

∣SSeg
∣

∣

(1)

The Equation (2) denotes the Jaccard index (47) (also known

as intersection over union or IoU). The Jaccard index penalizes

over- and under-segmentation more than the DSC.

Jaccard =
SGT ∩ SSeg

SGT ∪ SSeg
(2)

The segmentation performance of the models is also evaluated

using pixel accuracy. It simply calculates the percentage of pixels

that are correctly classified. It is typically calculated for each class

individually as well as for all classes. Equation (3) is used to

calculate the accuracy.

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is True Positive which represents the correctly

classified pixels of the segmented class. The incorrectly classified

pixels of the segmented class are FP i.e., False Positive. Similarly,

TN is a True negative background pixel correctly classified, and

FN is a False Negative indicating the incorrectly classified pixels

of the background.

Three other evaluation metrics; recall, precision, and

specificity are also adopted to evaluate the segmented mask.

Recall, also known as sensitivity or true positive rate, focuses

on the true positive detection capabilities. Specificity, also

called True Negative Rate (TNR), is the percentage of negative

pixels (background) in the ground truth segmentation that

are also negative pixels in the segmentation being tested. The

recall, precision, and specificity are computed by the formulas

presented in Equations (4), (5), and, (6) respectively.

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

Specificity =
TN

TN + FP
(6)

Results

The SegNet, FCN, and Mask R-CNN architectures are

trained using 1,000 training images and the networks are

evaluated using 500 test images. Table 1 shows the average values

of DSC, Jaccard index, pixel accuracy, recall, precision, and

specificity of the three architectures. T
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FIGURE 4

The top row represents the original Ultrasound image and ground truth binary mask. The bottom row shows the segmented results of the

three architectures.

The SegNet results in the lowest average DSC level (0.7651),

Jaccard (0.6195), mean accuracy (0.8455), recall (0.7486),

precision (0.6519), and Specificity (0.6891).

Figure 4 depicts these findings pictorially. The second

row shows the predicted mask output from SegNet, FCN,

and Mask R-CNN, in that order. The SegNet architecture

fails to accurately predict labels for both boundaries and

within the region. FCN outperforms SegNet in predicting

boundaries and inside regions. Compared to SegNet and FCN,

the Mask R-CNN achieves better LV boundary and inside

region segmentation.

The Mask R-CNN is chosen to investigate the impact

of training data size on segmentation performance based on

the results of 1,000 training images presented in Table 1 and

Figure 4. The Mask R-CNN model is evaluated by gradually

increasing the size of the training data. The trained model is

evaluated for each dataset by measuring the evaluation metrics

on 500 test images.

Figure 5 shows the three random samples of the trained

model using 2,000 images. Ground truth binary masks of test

images are shown in the first column, segmented LV in the

second column, and segmented binary mask is presented in the

third column.

Similarly, Figure 6 shows the output of the trained

model using 3,000 images. In comparison to Figure 5, the

results are improved with an average DSC of 0.8945 and

a mean accuracy of 0.9581. Figure 7 shows the results of

4,000 training images. The model was eventually trained

by increasing the training data to 5,000 images. The

model’s performance became saturated, and no significant

improvement in evaluation metrics was observed. The obtained

FIGURE 5

Ground truth binary mask, segmented LV, and corresponding

segmented binary masks (Using 2,000 images).

average DSC and mean accuracy values are 0.9228 and

0.9881, respectively.

The performance of the Mask R-CNN is evaluated by

gradually increasing the training data size. Table 2 shows the

model’s average values for all six evaluation metrics for different

training data sizes. As training data is one of the key parameters

for the performance of deep learning, increasing the training

data improves the average values of evaluation metrics. The

results show that increasing the training data improves Mask

R-CNN performance with better LV segmentation.
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FIGURE 6

Ground truth binary mask, segmented LV, and corresponding

segmented binary masks (Using 3,000 images).

FIGURE 7

Ground truth binary mask, segmented LV, and corresponding

segmented binary masks (using 4,000 images).

Discussion

In the study of the comparison of three different

segmentation models, the SegNet was the only one that

was unable to segment the LV accurately and also could not

correctly segment the LV inside the boundary, as shown in

Figure 4. Due to the small size of its classes and the lack of

convolutional architecture, SegNet has achieved a DSC value

of 0.7651, a Jaccard index of 0.6195, accuracy of 0.8455, recall

0.7486, precision 0.6519, and specificity of 0.6819. The result

reflects the inability of SegNet in capturing the global context of

objects. The FCN achieves superior LV segmentation within the

area, resulting in DSC value of 0.8386, 0.7221 of Jaccard index,

0.9193 accuracy, 0.9646 recall, 0.7328 precision, and specificity

0.7891, which are considerably better than SegNet.

FCN extracts the features through downsampling and

then restores the image features through upsampling. This

technique improves the extraction of features. However, this

sequence of downsampling and upsampling might compromise

segmentation owing to the loss of image detail. Mask R-CNNhas

shown the ability to effectively segment LV due to its architecture

(which first suggests the region containing the LV followed by

applying the ROI Alignmodule for precise localization, and then

finally separating the LV from the ROI as the subsequent step by

a convolutional network). This process improves the accuracy

of segmentation.

The impact of the size of the training data set on the overall

segmentation performance of the model was also investigated in

this research. The Mask R-CNN model is used for this analysis

since among the three models, it exhibited the highest values

across all evaluation metrics. It is observable that there is a

significant performance improvement when the data size is

gradually raised from 1000 to 4000 images, as illustrated in the

Figure 8.

The values DSC, Jaccard, accuracy, sensitivity, recall,

and specificity increases from 0.8831, 0.7907, 0.9457, 0.9681,

0.7937, 0.333, and 0.8157 to 0.9221, 0.8555, 0.9876, 0.9902,

0.9315, 0.9558 respectively. But the performance of the model

trained with 4000 or more input images became consistent.

This is depicted in Figure 8 as the graph of all evaluation

metrics is almost horizontal when data is increased from

4,000 to 5,000 images. It is evident from these results that

the amount of training data has a significant effect on the

performance of the model. However, after a certain number of

training data sets, the performance of the deep learning model

becomes constant.

Conclusion

One of the most important aspects of diagnosing cardiac

disease is LV segmentation. Precise segmentation of the LV

impacts significantly on our understanding toward the normal

anatomy of the heart, as well as our ability to distinguish

the aberrant or diseased structure of the heart. This article

compares the SegNet, FCN, and Mask R-CNN architectures in

segmenting the LV from echocardiography images. All networks

were trained using a self-collected apical four chamber view

of the echocardiography dataset. After training the models

on 1,000 images, the performance of three architectures is

compared. The experimental results showed that the Mask R-

CNN architecture surpassed the SegNet and FCN architectures

with a DSC of 0.8831, Jaccard index of 0.7907, accuracy of

0.9457, a recall of 0.9681, precision of 0.7937, and specificity

of 0.8157. This work also takes into account the influence

of training data size on segmentation performance. Due to
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TABLE 2 Mean with standard deviation values of evaluation metrics using di�erent training data size.

Training data

(Number of images)

DSC (Mean ±

std)

Jaccard index

(Mean ± std)

Accuracy

(Mean ± std)

Recall (Mean

± std)

Precision

(Mean ± std)

Specificity

(Mean ± std)

1,000 0.8831± 0.0356 0.7907± 0.0401 0.9457± 0.018 0.9681± 0.216 0.7937± 0.055 0.8057± 0.033

2,000 0.8945± 0.0365 0.8091± 0.0372 0.9581± 0.018 0.9712± 0.201 0.8398± 0.052 0.8462± 0.057

3,000 0.9071± 0.0281 0.8299± 0.0313 0.9703± 0.016 0.9809± 0.170 0.8730± 0.056 0.899± 0.041

4,000 0.9221± 0.0237 0.8555± 0.0294 0.9876± 0.015 0.9902± 0.165 0.9315± 0.049 0.9658± 0.040

5,000 0.9228± 0.0233 0.8566± 0.2899 0.9881± 0.015 0.9903± 0.163 0.9317± 0.050 0.9660± 0.042

FIGURE 8

Average values of evaluation metrics for di�erent data size used

for training the Mask R-CNN model.

its superior performance among the three models, the Mask

R-CNN model was chosen for analysis. Mask R-CNN was

trained using 2,000, 3,000, 4,000, and 5,000 images, and its

performance improved as the training data size increased. After

4,000 echocardiography images, the model’s performance was

saturated, and no significant changes were observed thereafter.

The evaluation metrics values on the dataset consisting of

5,000 images did not demonstrate a significant improvement.

In future work, this work will be extended to segment the

endocardium and epicardium of the LV, aiming to contribute to

measuring the end-diastolic volume, end-systolic volume, and

ejection fraction.
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