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Abstract
Parasitic infections potentially drive host’s life-histories since they can have detrimental effects on host’s fitness. Telomere
dynamics is a candidate mechanism to underlie life-history trade-offs and as such may correlate with observed fitness reduction
in infected animals.We examined the relationship of chronic infection with two genera of haemosporidians causing avianmalaria
and malaria-like disease with host’s telomere length (TL) in a longitudinal study of free-ranging blue tits. The observed overall
infection prevalence was 80% and increased with age, constituting a potentially serious selective pressure in our population. We
found longer telomeres in individuals infected with a parasite causing lesser blood pathologies i.e. Haemoproteus compared to
Plasmodium genus, but this only held true among males. Female TL was independent of the infection type. Our results indicate
that parasitic infections could bring about other types of costs to females than to males with respect to TL. Additionally, we
detected linear telomere loss with age, however a random regression analysis did not confirm significant heterogeneity in TL of
first breeders and telomere shortening rates in further life.
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Introduction

Parasitic infections have been reported to impair sur-
vival in a number of taxa (Valkiūnas 2005; Kilpatrick et al.
2010; Murray et al. 2010; Cooper et al. 2012). Detrimental
action of parasites is often delayed, resulting in prolonged

coexistence of parasite and host. This fact motivates a query
for the proximate mechanism mediating long-term conse-
quences (reduced survival) in animals that were able to with-
stand acute infection stage. In the light of current knowledge,
two main mechanisms could be proposed: behavioural (sick
animals often become inefficient in foraging, avoiding preda-
tion or defending territory [Owen-Ashley and Wingfield
2007], during both acute and chronic phase of infection) and
physiological. In the latter case, resources available to the host
can be depleted by the parasite directly and indirectly through
activation of the immune system (Hasselquist and Nilsson
2012). Consequently, a trade-off in host’s resource allocation
is being compromised by the presence of a parasite, potential-
ly resulting in impaired self-maintenance (Sheldon and
Verhulst 1996).

One potential mechanism that could elucidate reduced sur-
vival of infected animals is telomere dynamics. Telomeres,
non-coding DNA repeats, capping ends of chromosomes,
are perceived as a biomarker of viability and quality (Bauch
et al. 2013; Boonekamp et al. 2013). Telomeres shorten with
each cellular division due to incomplete replication on lagging
DNA strand, and as such are associated with the ageing pro-
cess (Monaghan and Haussmann 2006). Indeed, telomere
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shortening with increasing age has been confirmed not only
in vitro in human fibroblasts (Allsopp et al. 1992), but also
across multiple free-living and laboratory animal populations
(Dantzer and Fletcher 2015; but see Hoelzl et al. 2016;
Rollings et al. 2017; Ujvari et al. 2017) and the rate of erosion
may indicate cumulative effects of various stressors (Bauch
et al. 2014). While the impact of catch-up growth, sibling
competition, reproduction or diet composition has been in-
creasingly explored (Geiger et al. 2012; Boonekamp et al.
2014; Sudyka et al. 2014; Noguera et al. 2015), the association
between parasitic infection and telomere dynamics is not well
understood yet. To our knowledge, apart from observational
studies on negative effects of disease on telomere length (TL)
in humans (Kong et al. 2013) and mice (Ilmonen et al. 2008),
very few studies considered the direct relationship between
parasitic infections and telomere dynamics so far. Asghar
et al. (2015) showed that great reed warblers infected with
avian malaria lived shorter and their telomeres eroded at a
faster rate while compared to birds being free of infection.
This study suggests that disease-induced negative effects on
survival may be mediated through telomere degradation.
Other studies also report negative effect of parasitic infections
on TL in siskins and tawny owls (Asghar et al. 2016; Karell
et al. 2017), however some recent studies failed to show such
relationship (Slowinski 2017; Stauffer et al. 2017). This in-
spires further query on assessing telomere dynamics in various
populations in response to parasite-induced diseases.

Avian malaria and malaria-like disease, caused by vector-
borne haemosporidian parasites from genera Plasmodium and
Haemoproteus, are among the most common diseases in bird
populations (Atkinson and van Riper 1991; Scheuerlein and
Ricklefs 2004). The infection becomes chronic in individuals
surviving the initial acute phase of the disease (Valkiūnas
2005). While the life cycle of both parasite genera involves
development in blood cells, Haemoproteus is expected to
cause less damage to blood cells. Merogony (asexual repro-
duction) of Haemoproteus occurs in other tissues, whereas
Plasmodium multiplies also in red blood cells leading to their
disintegration (Valkiūnas 2005; Valkiūnas and Iezhova 2017).
Blood pathologies induced by parasitaemia are expected to
increase demand for new blood cells (Schoenle et al. 2017),
which can be attained through higher number of cellular divi-
sions, possibly leading to pronounced telomere erosion. Due
to the differences in life cycles between the haemosporidian
parasites, lesser impact of Haemoproteus on blood TL is
expected.

Here, we aim to determine the relationship between infec-
tion with blood parasites (from genus Plasmodium and
Haemoproteus) and telomere length (TL) in a wild population
of a small, short-lived passerine, the blue tit (Cyanistes
caeruleus). To this end, we examined if the presence of blood
parasites correlates with TL of host’s red blood cells. We ex-
pected to (i) detect shorter telomeres among infected

individuals while compared to uninfected ones and (ii) find
differences in TL among hosts infected with parasite genera
with varying life cycles, as the action of each parasite is ex-
pected to have diverse direct impact on red blood cells. A
longitudinal setup of our study allowed to test if (iii) red blood
cell telomeres become shorter with chronological age of an
individual and (iv) components of telomere dynamics: first
breeders’ TL and TL erosion rate vary among individuals.

Materials and methods

Study object

The study was performed in a wild population of nest-box
breeding blue tits inhabiting the southern part of the Baltic
island of Gotland, Sweden (see Przybylo et al. (2000) for
detailed study site description). This population provides a
convenient framework for longitudinal studies of age-related
parameters due to relatively high survival rate and recapture
rate (40% and 41% respectively, (Podmokła et al. 2017)). We
have continuously monitored this population since 2002, and
for the present analysis we considered data from breeding
seasons 2008–2015.

The blue tit is a small passerine (~ 12 g) with a maximum
longevity of 12 years recorded in the wild (EURING data-
base). The median lifespan of birds that were observed in
our population as adults is 2 years, and maximum lifespan
recorded in the study period is at least 6 years. Birds seem to
contract infection locally (adult blue tits in this part of Europe
rarely migrate (Smith and Nilsson 1987), and even if they do,
their wintering grounds are devoid of active malaria vectors),
during the activity period of their vectors (May–October):
mosquitoes (Culicidae) in the case of Plasmodium and biting
midges (Ceratopogonidae) and louse flies (Hippoboscidae) in
the case of Haemoproteus (Valkiūnas 2005). Since the
prepatent period of infection usually lasts several weeks
(Zehtindjiev et al. 2008; Asghar et al. 2016) and seasonal
prevalence of parasites is bimodal with the most pronounced
peak in autumn (Cosgrove et al. 2008), the infections that we
observe (all samplings took place in May–June) were gener-
ally chronic, i.e., had to be contracted at least a few months
before the sampling.

Adults were caught while feeding nestlings, 10–14 days
after hatching of their young either with mist nets set in the
vicinity of nest-boxes or self-releasing traps installed inside
nest-boxes. All individuals were ringed, blood sampled, and
then immediately released. Birds were aged on the basis of a
distinctive moult limit visible between the great and the pri-
mary wing coverts (Svensson 1992), and their age was as-
sured on the basis of ringing data. Sex was determined based
on the presence (female) or absence (male) of a brood patch.
Considering the primary importance of longitudinal sampling
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in TL analyses (Nussey et al. 2008), we chose a subset of birds
that were caught at least twice and the first capture took place
in their first breeding season (i.e. 1-year-old birds) to standard-
ise age-related effects across all individuals. Such individuals,
surviving beyond their first reproductive season, are presum-
ably of better quality than the birds dying earlier. However, in
our population, we did not find any effect of infection status
(Podmokła et al. 2017) or TL dynamics (Sudyka et al. 2014)
on survival, therefore we do not expect our results to be prone
to the potential quality-dependent bias in the studied
parameters.

According to our database, 160 individuals were captured
at least twice. From the analyses we had to exclude birds that
underwent an experimental brood size enlargement in their
first breeding season, because we have demonstrated that this
manipulation alters TL in the study population (Sudyka et al.
2014). For some individuals a blood sample was not available,
therefore our final dataset comprised 246 samples belonging
to 112 individuals (up to four samples per individual collected
in yearly intervals in 54 males and 58 females).

Host’s telomere length analysis

Immediately after sampling, whole blood was placed in 96%
ethanol until extracted with the Blood Mini kit (A&A
Biotechnology, Gdynia, Poland; modified for overnight incu-
bation in 37 °C). The DNA concentration and purity was
measured with a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and the in-
tegrity of each sample was confirmed by an electrophoresis on
a 1% agarose gel.

TL was assessed by the real-time quantitative PCR assay
adapted for birds (Criscuolo et al. 2009). We used relative TL,
expressed as the ratio (T/S) of a telomere copy number (T) and
a single control gene copy number (S, which was GAPDH,
(Cawthon 2002)). We used the primers designed for zebra
finch but these have been previously validated for the blue
tit by us (see Sudyka et al. 2014, 2016). To generate a standard
curve for amplification efficiency, each plate included serial
twofold dilutions of a reference DNA (mixed DNA of five
birds not included in the study) run in duplicate from 10 to
0.31 ng for telomere and from 10 to 0.62 ng for GAPDH. The
same DNAwas used as the golden sample to account for inter-
plate variation and run in triplicate on every plate. Mean am-
plification efficiency and the determination coefficient (r2) of
the standard curve were 96% (range 82–109%) and 0.985
(range 0.963–0.990) for GAPDH and 86% (range 77–103%)
and 0.974 (range 0.949–0.993) for telomeres respectively.
Mean intra-plate SD for the Ct values (repeatability as defined
by the MIQE guidelines (Bustin et al. 2009)) was 0.23 (coef-
ficient of variation (100 × SD/mean value), CV = 2.00%) for
telomeres and 0.12 (CV = 0.48%) for GAPDH, whereas inter-
plate CV (reproducibility as defined by the MIQE guidelines)

and SD calculated on the golden sample’s T/S ratios were 17%
and 0.09 respectively. All samples from one individual were
assayed on the same plate to avoid between plate variations
within individual, whereas sexes were evenly distributed on a
plate. If the variation between technical replicates (Ct SD)
exceeded 0.5, all samples for each individual were measured
again. In total, we ran 21 plates. For further details on primers,
reagent concentration, reaction setup and T/S ratio calculation
please refer to Sudyka et al. (2014). From the analyses of TL,
we had to exclude one female due to DNA degradation in the
second sample. As a result for TL, we analysed 244 samples
from 111 individuals (57 females, 54 males). Repeatability for
TL values within individual (calculated with rptR package
(Stoffel et al. 2017)) was R = 0.223 ± 0.081, CI = 0.056–
0.376, P = 0.004.

Malaria status, lineages and infection intensity
analyses

To obtain malaria status, the DNA extracted for TL analysis
was screened for the presence of blood parasites (genera
Haemoproteus and Plasmodium) by amplifying a 478-bp
fragment of the mitochondrial cyt b gene, using a nested po-
lymerase chain reaction (Waldenström et al. 2004). After
confirming the presence of a parasite, we assessed its lineage
by sequencing purified PCR products and aligning DNA se-
quences with the MalAvi database (Bensch et al. 2009).
Intensity of infection (parasite DNA copy number) was then
quantified via qPCR, comparing a focal sample with standard
curves created using full-length cyt b PCR products from
P. circumflexum and H. majoris (as described in (Knowles
et al. 2011). (For more details on primers, reaction setups,
reagent concentrations and instruments, please see Podmokła
et al. (2014a, b)).

Statistical analyses

To study inter-individual longitudinal variation in TL changes
according to malaria infection (parasite-genus wise), we
employed random regression analysis, a type of a linear mixed
model allowing to study inter-individual variation in inter-
cepts (first breeder TL) and slopes (TL loss with advancing
age). To this end, we modelled TL (log-transformed for
normality) as a response variable and fitted age (in years,
defined as a fixed continuous covariate), sex and infection
type as fixed explanatory variables. Infection type was
categorised into three levels: none, Plasmodium and
Haemoproteus; mixed infections with both genera (7 cases)
were included in Plasmodium category because more detri-
mental effects are expected to arise from the action of this
parasite (Valkiūnas 2005); however, we also repeated the anal-
ysis excluding mixed infections and the results remained qual-
itatively the same. We also introduced individual identity to
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account for the same individual being entered more than once
in the analyses, nest identity (some birds attended the same
nest), year of data collection and plate id from TL analyses (to
account for among-plate variance) as random variables. To
test for non-linearity of age effect in initial models, we intro-
duced polynominal (quadratic) age term, but it turned out to be
insignificant, so was culled from the final model. We began
with full models, and then we culled non-significant
(P > 0.05) interaction terms. Additionally, to evaluate infec-
tion status dynamics (response variable: infected vs uninfect-
ed) with individual age (explanatory continuous variable), we
performed an analysis accounting for individual id in random
effects structure. Analyses were performed in R (v.3.3.1) (R
Core Team 2016) using the ASReml-R package (Butler
2009).

Data accessibility Data are available in the online Electronic
Supporting Information and in the online data repository
figshare (Sudyka et al. 2018).

Results

Dynamics of infection prevalence and intensity

Overall, haemosporidian prevalence reached 80% (please see
the Electronic Supporting Information (ESI), Table S1A) and
in 246 samples, we found 216 cases of infection with various
parasite lineages from Plasmodium (7 lineages, prevalence
56.5%) and Haemoproteus genera (3 lineages, 20.3% preva-
lence), whereas 2.8% of birds yielded mixed infection with the
two genera (Table S1B, ESI). Prevalence (proportion of in-
fected individuals) increased with age (estimate for age ±
SE = 0.624 ± 0.239, F1,242 = 6.847, P = 0.009). Among 102
individuals, that were recaptured in the subsequent year, prob-
ability of contracting infection was high (0.71), whereas los-
ing infection was less likely (0.12) (Table S2, S3, ESI). As a
result, prevalence of infection among 1-year-old birds was
73% and it reached 83% in two-year-olds (Table S2, ESI).
Infection with Haemoproteus was generally more intensive
than with Plasmodium (intensity for all present lineages, ex-
cluding mixed infection with both genera, Mann-Whitney
U = 594, N = 186, P < 0.001).

Longitudinal telomere dynamics vs avian malaria

Including a covariance between individual slopes and inter-
cepts did not improve the fit of our model (log(likelihood) of a
model including the correlation = 284.13, and of a model
without the correlation = 283.99, likelihood-ratio test P =
0.597), thus we applied the model without the covariance.
Random regression analysis (Table 1) revealed that the varia-
tions in intercepts (first breeder TL) and among individual

regression slopes (TL attrition rate) were not significant. We
found a significant negative effect of chronological age on TL
(Table 1, Fig. 1). TL was found to be significantly correlated
with malaria infection type; we found longer telomeres in
individuals infected with Haemoproteus compared to
Plasmodium, but this only held true among males (Table 1,
Fig. 2). Uninfected males showed intermediate levels of TL
between the ones infected with the two parasite genera.
Infection type was not related to TL among females
(Table 1, Fig. 2). Telomere attrition rate (telomere shortening
with age) was sex independent (age × sex, F1,100.9 = 1.869;
P = 0.175), and more importantly, it was also not related to
the type of parasitic infection (age × infection type, F2,166.2 =
0.579; P = 0.562), so these interactions were not included in
the final model. We found no association between infection
intensity and TL (model description and results in Table S4,
ESI).

Discussion

In line with our expectations, infection type affected blood
TL. We found that males infected with Haemoproteus had
longer telomeres than males infected with Plasmodium.
Such a finding can be readily explained, considering differen-
tial life cycles of the two genera. Haemoproteus causes less
blood pathologies during its developmental cycle (Atkinson
and van Riper 1991; Valkiūnas 2005), therefore the demand
for new blood cells via telomere shortening cellular divisions
is lower.

Conversely to the previous studies in some bird populations
(Asghar et al. 2015, 2016; Karell et al. 2017), we did not show
that uninfected birds had longer telomeres. Uninfected males
showed intermediate TL between the ones infected with
Plasmodium and Haemoproteus. This lack of effect has al-
ready been reported in other animals (Slowinski 2017;
Stauffer et al. 2017) and adds to the evidence that parasitic
infections do not always entail negative consequences on TL.
In general, the information on the relationship between telo-
mere dynamics and parasitic infections is still lacking, and
comparisons among taxa have to be treated with great caution
since telomere dynamics and telomerase activity varies sub-
stantially within animal kingdom (Olsson et al. 2018).
Alternatively, temporal resolution of our sampling points—
we miss the information on autumn prevalence—could be
not fine enough to detect the differences (expected especially
due to the acute stage of infection (Asghar et al. 2016)). For
example, in humans, malaria infection considerably shortened
telomeres up to 3 months post infection, but after 1 year, TL
was restored (Asghar et al. 2018). It appears that varying re-
sults among studies examining the impact of parasitic infec-
tions on TL may stem from different phases of infection inves-
tigated. Since we demonstrate that Haemoproteus-infected
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males have longer telomeres than the other groups, we would
expect that the rate of their telomere loss is lower. However,
since we did not detect significant differences in shortening
rates and TL as first breeders among individuals (Table 1),
telomere dynamics of these males could have been shaped
prior to the first sampling. To our knowledge, this is the first
study to show diverse relationship of parasite genera varying in
life cycles on TL and stresses the importance of accounting for
ecological structure (parasite genera with different develop-
mental patterns in this case) while addressing parasite–host
interactions. Indeed, it has already been demonstrated that avi-
an malaria can yield multiple effects on their hosts (Lachish
et al. 2011), yet exploring early-life telomere dynamics in re-
sponse to such interactions could be particularly needed.

We show that effect of host interaction with parasite may
also be sex-specific. Unlike males, females infected with
Haemoproteus did not show longer telomeres in the studied
population. It is possible that infection with Haemoproteus,
incurs other types of costs to females than to males. For ex-
ample, anti-malarial treatment reduced Haemoproteus infec-
tion intensity and ultimate fitness cost, i.e. survival only in
females, whereas males did not benefit from such a manipu-
lation (Martínez-de la Puente et al. 2010). While males are
generally more susceptible to parasitic infections, endocrine-

Table 1 General linear mixed
model explaining the effects of
age, sex, and malaria infection
type on telomere length in blue tit
individuals (each sampled 2 to 4
times in yearly intervals).
Significant fixed effects
(P < 0.05) and components for
random effect structure (Z ratio ≥
1.96) marked in italics

Fixed effects Estimates ± SE Z ratio df F. con P

Intercept 0.236 ± 0.045 5.292 1, 18.0 67.530 < 0.001

Age − 0.043 ± 0.014 − 3.129 1, 56.7 9.788 0.003

Sex 0.143 ± 0.056 2.570 1, 104.2 0.683 0.410

Infection type 0.007 ± 0.040 0.180 2, 220.2 1.860 0.158

Sex × infection type 2, 219.5 3.348 0.037

Male × none − 0.116 ± 0.071 − 1.628
Male × Plasmodium − 0.163 ± 0.063 − 2.586

Random effects Component ± SE Z ratio

Individual intercepts (first breeder TL) 0.003 ± 0.003 1.114

Individual slopes
(TL loss with age)

0.001 ± 0.001 1.137

Nest id 0.002 ± 0.007 0.275

Year 0.004 ± 0.004 1.192

Plate id 0.006 ± 0.003 2.056

Residual variance 0.018 ± 0.007 2.427
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Fig. 1 Telomere loss in relation to age in the blue tit. Individual
regression lines (N = 111 individuals, sampled 2 to 4 times) represented
in colours, dots represent sampling events. Overall regression line ± SE
(pooled for all individuals) shown in black on raw data
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Fig. 2 Relative telomere length [the ratio (T/S) of telomere copy number
(T) and single control gene copy (S) in females (dark grey bars) and males
(light grey bars) according to infection type. Raw data ± SE are
shown. Differences among groups (non-adjusted P values)
according to the post hoc pairwise mean difference test with
Holm false-positive rate discovery correction
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immune interactions may cause increased resistance to some
parasites in males (Klein 2004).

We demonstrated that TL decreases linearly with ad-
vancing individual age in both sexes and parasitic in-
fection type does not alter the general pattern. The num-
ber of longitudinal studies in natural populations indi-
cating telomere erosion with age slowly, but persistently
increases (Dantzer and Fletcher 2015; Sudyka et al.
2016). However, the causal involvement of telomeres
in ageing process still remains an open question
(Simons 2015). This discussion is further inspired by
recent longitudinal studies indicating no telomere ero-
sion (Ujvari et al. 2017) or even telomere elongation
with age (Hoelzl et al. 2016), suggesting that divergent
life-histories among taxa may shape lifetime telomere
dynamics. A longitudinal approach is particularly useful
for disentangling within-individual reactions from
between-individual heterogeneity (Nussey et al. 2008).
Although several studies show variability in individual
TL dynamics (Hall et al. 2004; Bize et al. 2009; Heidinger
et al. 2012), here we did not confirm statistical significance of
heterogeneity neither in TL among first breeders, nor in TL
erosion rates. We were only able to detect larger contribution
of first breeders TL, rather than telomere erosion rate, to
overall variation in TL (Table 1). However, it is impor-
tant to note, that the lack of significant differences in
individual starting TL and erosion rates, does not denote
that all individuals share the same erosion rate or have
identical TL as first breeders (the variances are non-
zero), but that we failed to statistically detect these dif-
ferences. Even though the number of individuals that
we sampled appears to be sufficient, the total sample
size falls below the one recommended for individual
heterogeneity modelling (van de Pol 2012). While the
number of replicates within an individual are restricted
by the blue tit’s lifespan, our result motivates and jus-
tifies a query in search for factors contributing to the
phenotypic TL variation among individuals in other
study systems.

To conclude, the idea that TL dynamics may be
shaped by various life’s insults is already well
established (Monaghan and Haussmann 2006) and here,
we showed that parasitic infections may be one of such
TL modulating factors in a wild population of a short-
lived vertebrate. For the first time, we demonstrated the
contrasting associations between two parasite genera
varying in life cycles with blood TL. Consistently with
majority of the studies on endotherms, in the blue tit
telomeres eroded with age on a within-individual level,
and this erosion rate was not significantly variable
among individuals. Since our study provides correlation-
al evidence for sex-specific differences in TL in re-
sponse to different parasite genera, it has to be treated

as a prerequisite for further exploration of the topic. For
example, it could be fruitful to experimentally examine
the impact of varying parasite genera on TL in multiple
body tissues in a sex-specific context.
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