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During physiological epithelial-mesenchymal transition (EMT), which is important for

embryogenesis and wound healing, epithelial cells activate a program to remodel their

structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased

invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance

to therapeutics. However, cellular plasticity that navigates between epithelial and

mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears

to be even more important for cancer progression. Besides other core EMT transcription

factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play

important roles in both physiological and pathological EMT. Often mentioned in unison,

they do, however, differ in their functions in many scenarios. Indeed, Slug expression

does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example,

Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment

and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and

in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we

highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT

factor” in basal epithelial cells and stem cells with focus reports that demonstrate

co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may

cooperate in normal mammary gland and breast cancer/stem cells and advocate for

functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like

epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the

basal epithelial cell phenotype.

Keywords: mammary gland, breast cancer, epithelial-mesenchymal transition (EMT), E-cadherin (CDH1), Slug

(SNAI2), basal, luminal

INTRODUCTION

Phenotypic plasticity refers to the ability of cells to change their phenotype such as transitioning
from epithelial to mesenchymal characteristics or from stem cell to a differentiated state. This
plasticity may be one-directional or reversible and transient or permanent. In addition, cells may
inhabit any state between such defined phenotypes in a stable or metastable manner. The cellular
plasticity of cancer cells relies onmolecularmechanisms from the playbook of normal embryonic or
postnatal development. Themammary gland is a particularly dynamic organ undergoing expansion
and differentiation during pregnancy and early lactation, followed by cell death and remodeling
during the course of weaning (Richert et al., 2000; Shamir and Ewald, 2015). One type of plasticity,
the epithelial-mesenchymal transition (EMT) is an important process for normal development and
tumor biology. During EMT cells lose their epithelial polarization and organization and E-cadherin
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expression is drastically reduced through active inhibition of
gene expression (Micalizzi et al., 2010). Thus, E-cadherin
downregulation is often used as a (surrogate) marker for EMT.
Snail and Slug are two transcription factors that can directly
repress the E-cadherin gene (CDH1) promoter while activating
the promoters of key mesenchymal genes such as ZEB1 and
vimentin (Ye et al., 2015; Xu et al., 2019). For comprehensive
background information, we refer the reader to a number of
excellent recent reviews, which summarize Slug functions and
regulation of expression (Zhou et al., 2019), regulation by
posttranslational modifications (Xu et al., 2019), and the non-
redundant functions of EMT factors (Stemmler et al., 2019).

Snail and Slug are often named in unison as if functionally
synonymous, and expression of Slug alone suggested as
indication of a mesenchymal gene program. However, the
endogenous functions of Snail and Slug can vary significantly, in
part due to differences in DNA-binding affinity and interaction
partners. Thus, Slug and Snail have overlapping (e.g., CDH1,
VIM) as well-distinct sets of target genes (e.g., L1CAM, PTEN)
(Stemmler et al., 2019; Xu et al., 2019). Slug plays a role in
maintaining the structure of the normal mammary gland and
modulates the specific phenotypes of breast cancer subtypes
(Phillips and Kuperwasser, 2014). Overexpression of ectopic Slug
may lead to cellular responses that mimic Snail functions, such as
inhibition of CDH1 gene expression. However, at physiological
levels, Slug and E-cadherin are often co-expressed. Thus, results
from overexpression studies and cell culture paradigms, as has
been noted before (Alves et al., 2009), have created the perception
of Slug as an EMT transcription factor, when many times it is
not. The above-mentioned reviews provide numerous examples
for the role of Slug in EMT.Whether Slug can execute this role in
the absence of its partner Snail, has perhaps not been addressed
in detail. In experimental systems where Slug “inhibits expression
of E-cadherin,” it may be reduced but not abolished (e.g., Leong
et al., 2007). The co-occurrence of Slug and E-cadherin may be
particularly relevant for hybrid EMT and cellular plasticity, which
are being recognized as important factors in cancer progression
(Jolly et al., 2018; Aiello and Kang, 2019; Gupta et al., 2019),
along with the role of E-cadherin in not only the establishment
of metastases but also the process of dissemination (Rodriguez
et al., 2012; Padmanaban et al., 2019; Voglstaetter et al., 2019). In
this Perspective, we want to highlight examples of co-expression
of Slug and E-cadherin and hypothesize on its relevance for
tumor biology.

SLUG PROMOTES THE BASAL CELL
PHENOTYPE AND STEMNESS IN THE
MAMMARY EPITHELIUM: NOT WITHOUT
E-CADHERIN?

The mammary gland epithelium is a bilayer of luminal epithelial
cells and basal/myoepithelial cells that express unique sets
of cytokeratins. Within each layer are subsets of cells with
different characteristics based on e.g., expression of specific
steroid hormone receptors and stem cell or lineage progenitors
properties (Visvader and Stingl, 2014). To our knowledge,
Slug protein expression has not been investigated in normal

human mammary stem/progenitor cells. Mouse models have,
however, provided significant insights about Slug’s function in
development. Slug is expressed in basal mammary epithelial cells
(MECs) and is the only EMT factor that is enriched in both
mouse and (by mRNA) human mammary stem cells (MaSC)
that reside within this compartment (Lim et al., 2010; Guo et al.,
2012; Nassour et al., 2012). Interestingly, SNAI2/Slug mRNA
expression is detectable in human luminal progenitors (albeit
at significantly lower levels compared to basal cells) but not
in their mouse counterpart (Lim et al., 2010). Its functional
significance has yet to be determined but may be relevant for
the development of luminal breast cancer (see below). Slug
plays an important role in maintaining stemness in cooperation
with proteins such as Sox9 and the chromatin modifier LSD1
(Guo et al., 2012; Phillips et al., 2014; Bai et al., 2017). In
addition, Slug determines progenitor cell lineage commitment
and differentiation by actively repressing the luminal cell state
(Phillips and Kuperwasser, 2014). Snail, on the other hand, is
expressed in the mesenchymal stromal fibroblasts surrounding
the mammary duct and not in normal mammary epithelial cells
(Nassour et al., 2012; Ye et al., 2015). P-cadherin (CDH3), the
classical myoepithelial cadherin (Shamir and Ewald, 2015), is a
target gene of Slug and mediates many of its functions (Idoux-
Gillet et al., 2018). E-cadherin is highly expressed in luminal cells,
but Slug expressing basal cells also express E-cadherin (Ye et al.,
2015). E-cadherin localizes to the lateral cell-junctions. Basal cells
and luminal cells are very different in size and shape. Most likely,
normal cells engage feedback mechanisms to regulate the levels
of E-cadherin based on their cell-cell contacts. How should one
compare the “functionally equivalent” amounts of E-cadherin
cell-cell adhesions? For these reasons, here we use the term “E-
cadherin+” to refer to cells that express any detectable amount
of the protein.

Surprisingly, Slug-deficiency does not impair the regeneration
capacity of transplanted mammary tissue fragments although
lineage dynamics were compromised (Nassour et al., 2012).
However, when the tissue was dissociated, the organoid-forming
and gland-reconstituting activities of stem cells are dependent
on Slug (Guo et al., 2012; Phillips et al., 2014). The apparent
paradox might be explained by a pro-survival function of Slug
in stem cells that becomes apparent in the dissociation paradigm
and could also be relevant for cancer stem cell assays. Whether
E-cadherin plays a role in MaSCs is not known (Figure 1).
However, E-cadherin is important for pluripotency in embryonic
stem cells through cooperation with the Wnt signaling pathway
(Pieters and van Roy, 2014). Studies of the mechanisms leading
to expansion of the mammary gland during pregnancy revealed
that a TGFβ2/integrin-αvβ3 pathway induces Slug protein
accumulation in MaSCs without affecting mRNA expression
or overt EMT signatures. Knockdown of αvβ3 in MDA-MB-
231 cells reduced Slug expression and compromised survival of
tumor initiating cells (Desgrosellier et al., 2014). In addition,
Slug has a role in genome maintenance. Slug knockout mice
exhibited premature aging of mammary epithelium with loss of
mammary stem cell activity, luminal differentiation of basal cells,
and increased DNA damage due to replicative stress (Gross et al.,
2019). Conceivably, this function could also contribute to cancer
stem cell maintenance and resistance to chemotherapeutics.
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FIGURE 1 | Schematic of the mammary epithelial stem cell hierarchy depicting the known and proposed relationships of Slug and E-cadherin (see text for details).

Relative differences in expression levels between cells can be assumed but are not depicted. Figure was created with BioRender.com.

Unexpectedly though, Slug knockout impairs MEC death during
post-lactational mammary gland involution (Castillo-Lluva et al.,
2015). The contrast of functions in developmental cell death vs.
promoting cancer cell survival is not unique to Slug but also
seen with STAT3 andC/EBPδ transcription factors (Balamurugan
and Sterneck, 2013; Resemann et al., 2014). In summary, studies
in mouse models demonstrate that Slug determines a basal
MEC phenotype and promotes mammary stem cell self-renewal,
genomic maintenance and cell survival, all of which is at least
compatible with E-cadherin expression.

SLUG AND BREAST CANCER STEM
CELLS: WHICH ONES, AND WHAT ABOUT
E-CADHERIN?

Breast cancer (BC) is classified into subtypes based on expression
of hormone receptors and HER2, which are usually associated
with a luminal cell phenotype. Triple negative breast cancer
(TNBC) lacking expression of these markers presents mostly
with a basal or basal-like BC (BLBC) phenotype. Mesenchymal
markers are enriched in a subset of TNBCs and are correlated
with stemness properties (Dai et al., 2016). Despite controversies
surrounding the cancer stem cell (CSC) theory, the concept has
contributed to the identification of cancer cell plasticity and
important mechanisms underlying tumor progression (Wang
et al., 2015). Various cell surface molecules (e.g., CD44, CD24,
CD133) and combinations thereof as well as ALDH activity
have been used to enrich for cells with stemness properties
and their frequency varies by BC subtype (Rodriguez et al.,
2019). The CD44+/CD24−/low CSCs are mesenchymal-like while
ALDH1+ and CD44+/CD24+ stem cells are epithelial-like. In
node-positive BC, co-occurrence of ALDH1 and Slug in primary
lesions was associated with shorter disease-free survival, though
co-expression at the single cell level was not assessed (Ito
et al., 2016). Transcriptomic analysis of patient-derived xenograft

models showed that SNAI2/Slug mRNA was enriched in the
mesenchymal CSCs “consistent” with its classification as an
“EMT factor” (Liu et al., 2018). However, low levels of mRNA
do not preclude Slug protein expression as shown for HMLER
hybrid E/M cells (Kroger et al., 2019). Slug expression and its role
in distinct types of tumor initiating cells with low proteasome
activity, high STAT3, or SOX2/OCT4 activity has not been
investigated (Vlashi et al., 2013; Wei et al., 2014; Tang et al.,
2015). However, Slug was shown to be important for survival
of integrin αvβ3/Src-induced CSCs that also express E-cadherin
and exist across BC subtypes (Sun et al., 2018). Mesenchymal
CD44+/CD24−/low CSCs do not express E-cadherin but gain
further tumor initiating capacity with the expression of the
epithelial adhesion molecule EpCAM that marks “hybrid E/M”
states (Dittmer, 2018). In BLBC cell lines, the p63 transcription
factor, which is important for MaSCs (Memmi et al., 2015),
promotes invasiveness through Slug without compromising E-
cadherin expression (Dang et al., 2015). It is thus conceivable
that E-cadherin may be important for a subset of breast CSCs. E-
cadherin promotes BC cell mammosphere formation, a measure
of stem cell self-renewal (Manuel Iglesias et al., 2013). E-cadherin
can promote stemness in lung and gastric cancer cells (Tang et al.,
2019; Ye et al., 2020) and signaling pathways that are known to
support CSCs such as by EGFR (Rodriguez et al., 2012; Steelman
et al., 2016), LIFR (del Valle et al., 2013), and Wnt (Pieters and
van Roy, 2014). To our knowledge, the expression and potential
function of E-cadherin in different types of BC stem cells has not
been analyzed to date.

BRIEF UPDATE ON SLUG IN BREAST
CANCER: QUITE BASAL AND TO THE
BONE—ALONG WITH E-CADHERIN?

Not surprisingly, Slug expression is preferentially observed
in basal/TNBC as are mesenchymal and stemness markers.
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Compelling evidences for an important role of Slug in human
breast cancer andmechanistic underpinnings have been reviewed
(Phillips and Kuperwasser, 2014; Zhou et al., 2019). Here, we
want to point out that the majority of basal/TNBC cancers do,
however, not lose E-cadherin expression (Rodriguez et al., 2012;
Horne et al., 2018). In support of the dissociation of Slug from
the EMT processes, expression of Slug protein or E-cadherin
(CDH1) mRNA were not correlated with the activation of a
core EMT gene expression signature in breast cancer (Savci-
Heijink et al., 2019). However, aberrant expression of Slug
explains the emergence of basal tumor phenotypes from luminal
progenitors (Phillips and Kuperwasser, 2014), or conversion of
a luminal to basal phenotype through TGFβ (Sflomos et al.,
2016). Furthermore, Slug contributes to treatment resistance
of luminal cancers in part through promoting a phenotypic
shift to a basal phenotype such as in HER2+ cells (Oliveras-
Ferraros et al., 2012) and ER+ cells (Tsou et al., 2015; Geng
et al., 2016; Alves et al., 2018). In addition, Slug expression
in ER+ BC cell lines also promotes mammosphere formation,
proliferation and invasive properties (Storci et al., 2010; Chimge
et al., 2011; Mendoza-Villanueva et al., 2016; Manne et al.,
2017). Interestingly, although CDH1mRNA levels increased with
Slug knockdown in drug-resistant MCF-7 cells, total E-cadherin
protein levels did not (Alves et al., 2018). A negative feedback
loop between Slug and ER is seen in ER+ breast cancer cell lines,
where estrogen inhibits TGFβ-induced EMT by suppressing Slug
but not Snail expression (Liu et al., 2019). In the context of
RUNX2/TGFβ/Wnt-signaling, a balanced expression of Slug and
ERα is implicated in bone metastasis of ER+ BC cell lines
(Chimge et al., 2011). Furthermore, in TNBC cell lines, Slug
promotes bone metastasis but not lung infiltration (Ferrari-
Amorotti et al., 2014). Given the implications of integrin αvβ3
in bone metastasis of various epithelial cancers (Kwakwa and
Sterling, 2017), above-mentioned role of Slug in the integrin
αvβ3+ breast CSCs that do express E-cadherin (Sun et al., 2018),
and elevated E-cadherin expression in BC bone metastases (Saha
et al., 2007; Matteucci et al., 2013), we hypothesize that E-
cadherin expressing αvβ3+/Slug+ stem-like cells could play a
significant role in breast cancer bone metastasis.

SLUG AND EMT: GUILTY BY
ASSOCIATION?

Without doubt, Slug’s cousin Snail is a potent mediator of EMT.
Slug and Snail are often coordinately expressed (Katoh, 2011),
and Slug can thereby be implicated in EMT as “caught at the
scene.” For example, in breast cancers that show correlation of
Slug and Snail with lymph node metastasis, only Slug expression
was seen in more histologically semi-differentiated structures.
The observation led the authors to the hypothesis (foresight?)
that each drives distinct tumor invasion modes (Come et al.,
2006). Investigations of the mouse MMTV-PyMT tumor model
showed that Snail expressing cells are mesenchymal while Slug
expressing cells exhibited an epithelial phenotype. Despite a
large number of common target genes, only Snail occupied
the promoters of key mesenchymal marker genes (Ye et al.,

2015). In MDA-MB-231 cells, Snail was necessary for binding
of Slug to the ZEB1 promoter and its activation indicating
that Slug alone may not drive EMT in the absence of Snail
(Ye et al., 2015). On the other hand, Slug can attenuate E-
cadherin levels indirectly by post-transcriptional mechanisms
through miR-221 and by promoting protein degradation (Pan
et al., 2016; Anzai et al., 2017). Using oncogene-transformed
human mammary epithelial cells (HMLER), Kroger et al. showed
that Slug protein expression in such epithelial cells was similar
to that in mesenchymal and hybrid E/M cells. Only epithelial
cells expressed E-cadherin. Mesenchymal cells had the highest
levels of ZEB1, while hybrid E/M cells exhibited the most Snail
expression along with CSC activity. Interestingly, hybrid E/M
cells showed significant downregulation of Slug mRNA but no
change at the protein level, suggesting significant stabilization of
Slug protein in these cells (Kroger et al., 2019). While the mRNA
data are consistent with reports that Snail can repress Slug/SNAI2
expression (Sundararajan et al., 2019), such results illustrate
the importance of protein data even when mRNA expression
is downregulated. Indeed, several mechanisms for stabilization
of the Slug protein have been reported (Xu et al., 2019; Zhou
et al., 2019). In the MMTV-PyMT mouse tumor model, Slug+

populations also express E-cadherin and a subpopulation of
Slug+ cells also express EpCAM. Immunocytochemistry showed
at the single cell level that among human basal breast cancer
cell lines, there are various percentages of single and double
positive cells for Slug and Snail protein (Ye et al., 2015). E-
cadherin was not evaluated here, but thesemay be goodmodels to
mechanistically dissect the expression and function of E-cadherin
in Slug+ cells.

The specific position of a cell along the E-M continuum
may depend in part on the expression levels of Snail vs. Slug
and their fine-tuning of E-cadherin expression levels. Mutual
regulation of Snail and Slug has also been described in other
cell types. Snail inhibits Slug in ovarian cancer cell lines, i.e.,
Slug is downregulated during EMT (Sundararajan et al., 2019).
Snail and Slug engage in mutual negative feedback of expression
during bone development (Chen and Gridley, 2013). In oral
squamous carcinoma cell lines, Snail and Slug can engage in
mutual attenuation of expression although both are induced by
TGFβ (Nakamura et al., 2018). Lastly, Slug can support its own
gene transcription in cooperation with Sox9 during embryonic
development, i.e., when SOX9 is induced by BMP and Wnt
signaling, Slug expression self-amplifies (Sakai et al., 2006). These
types of feedback regulation may not only balance their relative
expression levels but play a role in generating a metastable cell
phenotype with Slug/Snail ratios performing the function of an
E/M rheostat and tuning the expression level of E-cadherin.

DISCUSSION: WHAT ARE THE
FRONTIERS?

A comprehensive analysis of Slug’s prognostic/predictive
biomarker potential and correlation with E-cadherin expression
at single cell resolution with well-validated antibodies is still
outstanding. Stratification by subtype and additional clinical
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FIGURE 2 | Model describing expression of E-cadherin and Slug in luminal epithelial, basal epithelial and mesenchymal cancer cells and the proposed qualities of

basal epithelial cancer cells due to co-expression of Slug and E-cadherin. Luminal basal transition (LBT) and basal luminal transition (BLT) are proposed terminologies

in addition to EMT and MET. See text for details. Figure was created with BioRender.com.

criteria and biomarkers will be essential to gain significant
insight. Because nuclear expression of Slug has also been
correlated with cytoplasmic E-cadherin staining (Prasad et al.,
2009), subcellular resolution may be important as well as
consideration of E-cadherin isoforms (Ye et al., 2013; Konze
et al., 2014; Wu et al., 2016). Similarly, sensitive single cell
resolution analysis of Slug and E-cadherin protein expression
among the diversity of cells in the mouse and human mammary
epithelium and breast cancer may bring about new frontiers for
functional studies.

Figure 2 summarizes cancer cell-related hypotheses on E-
cadherin expression in relation to Slug and their potentially
cooperative contribution to cancer progression. Due to the
limited scope of this Perspective, the many other factors that
are known to modulate these phenotypes were not included.
A cell that expresses a moderate level of E-cadherin and Slug
may be in a particular goldilocks state that facilitates these
functions. Increasingly, a role for E-cadherin in cancer cell
dissemination is being recognized (see Introduction). Collective
migration/dissemination is one aspect in which Slug and E-
cadherin may cooperate (Dang et al., 2015), and Slug+/E-
cadherin+ cells may be particularly relevant in metastasis
to the bone. In these contexts, the E-cadherin+ cell may
not be expressing high but still functionally relevant levels
of E-cadherin. As hybrid E/M phenotypes in circulating
tumor cells (CTCs) reveal strong association with tumor-
initiation potential and metastasis (Fabisiewicz et al., 2020),
Slug+/E-cadherin+ cells are likely contributors to disseminating
CTCs as well, perhaps in part through inhibition of anoikis
or E-cadherin’s potential to support stemness promoting
signaling pathways.

The epithelial cadherin EpCAM has received much attention
for its expression and functions in tumor cells (Dittmer, 2018).
It is time that E-cadherin emerges from its shadow and sheds the
prevailing image of being (only) a tumor suppressor. Considering
mesenchymal vs. epithelial state and luminal vs. basal state along
with time of development (of the organ or tumor) and space
(microenvironment), cells navigate at least these six dimensions
to attain a particular phenotype, challenging our need for
classification. Regard for Slug+/E-cadherin+/low cells may in part
address this challenge and contribute to better understanding of
cancer biology.
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