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Abstract: The emergence and spread of vector-borne diseases (VBDs) is a function of biotic, abiotic
and socio-economic drivers of disease while their economic and societal burden depends upon a
number of time-varying factors. This work is concerned with the development of an early warning
system that can act as a predictive tool for public health preparedness and response. We employ a host-
vector model that combines entomological (mosquito data), social (immigration rate, demographic
data), environmental (temperature) and geographical data (risk areas). The output consists of
appropriate maps depicting suitable risk measures such as the basic reproduction number, R0, and
the probability of getting infected by the disease. These tools consist of the backbone of a semi-
automatic early warning system tool which can potentially aid the monitoring and control of VBDs in
different settings. In addition, it can be used for optimizing the cost-effectiveness of distinct control
measures and the integration of open geospatial and climatological data. The R code used to generate
the risk indicators and the corresponding spatial maps along with the data is made available.

Keywords: mosquitoes; malaria; basic reproduction number

1. Introduction

Vector-borne diseases (VBDs) are caused by parasites, viruses or bacteria that are
transmitted by a vector [1]. Mosquitoes, ticks, sandflies, triatomine bugs, tsetse flies, fleas,
black flies, aquatic snails and lice are known to act as vectors of this kind of disease [2]. The
emergence and spread of VBDs in Europe is a function of biotic, abiotic and socio-economic
drivers of disease [3]. Public health decision-making generally requires early warning
output from frameworks that are based on uncertain information [4,5]. Globalization and
climate changes, along with certain socio-demographic determinants can be critical drivers
of VBDs. Hence, observing changes in these drivers can help envision, or even predict,
fluctuations in many infectious diseases [3,6].

Among all the hematophagous arthropod vectors, mosquitoes (Diptera: Culicidae)
are the leading vector of several human diseases. Mosquito-borne diseases (MBDs) include
malaria, West Nile virus, chikungunya and Zika virus [7,8]. Blood meals are necessary
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for mosquito females as the protein source to produce and mature their eggs [9]. This
activity allows mosquitoes to transmit several pathogens and parasites, becoming extremely
important insects for human health [7]. Taking into account the invasive success of several
mosquito species due to worldwide human mobility and trade [10], the development of
early warning and control methods seems imperative [11].

Tropical VBDs such as malaria have attracted much attention due to their impact
on human health [12,13]. Malaria is, perhaps, the most well-studied VBD in terms of its
transmission dynamics and the potential for adaptation. It is known that five species of
Plasmodium cause disease in humans [14]. According to the 2019 World malaria report, an
estimated 228 million cases of malaria occurred worldwide [15]. Malaria is endemic in
more than 100 countries around the world, mainly in sub-Saharan Africa and Asia, and is
transmitted through the bite of the infected female Anopheles mosquito.

Considering the importance of vector-borne diseases in human health, it is imperative
to work towards creating a suitable framework for an early warning system that would
improve our understanding of the connectivity between existing and potential vector-
borne risk areas. In this study, we focus upon malaria in Greece, a previously endemic
disease that was eradicated in the 1950s by coordinated efforts of the WHO and the local
authorities. Sporadic local P. vivax malaria outbreaks during the last decade indicate that
targeted vector control remains imperative for preventing re-emergence. We firstly present
a host-vector spatially explicit model which integrates entomological, geographical, social
and environmental evidence from 12 municipalities of the prefecture of central Greece (see
Table A1 in Appendix A for a description of the population and density information of the
municipalities in the study), in order to guide the mosquito control efforts. To this end, we
focused on the estimation of parameters related to the Anopheles’ population dynamics and
the corresponding risk measures derived from them. In addition, we presented the basis for
an appropriate (semi)-automated, open-source, early warning tool based upon the above
estimates of suitable risk indicators. The ultimate goal of this paper in terms of public
health would be to use the proposed model, as well as the corresponding spatial mapping
of the derived estimates from this model, as an early warning system with meteorological
inputs, thus facilitating improved decision making and disease prevention. The R code
calculating the risk measures and depicting them on spatial maps of this risk is made freely
available on GitHub.

2. Methods
2.1. Study Area and Data Collection

The study took place in 12 municipalities of the prefecture of central Greece (Figure 1).
The study area was about 406.000 ha.

Considering mosquito data collection, we used CO2 traps. Therefore, our data con-
sisted of mosquito female adults, which are the malaria vectors. The traps were set up in
10 areas, consisting of a total of 393 sample-collecting stations in the outskirts of towns and
villages of the prefecture of central Greece (see Figure 1 for a visual inspection of all collec-
tion places). Breeding sites included canals, rice pads, tanks, etc., most of them previously
checked for the presence of mosquitoes using drones. The traps were placed and checked
every 10 to 15 days between 6 March 2018 and 29 August 2018. Genus identification was
performed using the morphological examination of the mosquito samples. The species
Anopheles sacharovi, An. maculipennis, An. superpictus, An. claviger and An. hyrcanus are
the most important species in the study region, accounting for approximately 90% of all
Anopheles species in the region [11]. We, therefore, suppose that all the positive samplings
for Anopheles mosquitoes belong to species that are malaria vectors.

Temperature data were recorded from the meteorological stations of the National
Observatory of Athens (NOA). There were 10 meteorological stations of the NOA recording
temperature data at the study area. For our modeling, we utilized the average temperature
values with a 30-day interval, starting from the first Saturday of each month, between
the March and August of 2018. The inverse distance weighting (IDW) interpolation
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method [16] was additionally used to estimate the average temperatures at the locations
where no measurements were available.

Figure 1. Map of study area.

2.2. The Spatial Predictive Model

In this paper, we present a host-vector model that combines entomological, social,
environmental and geographical data to provide estimates on the average infection number
due to malaria in central Greece (Table A2). The model has been already presented [11] and
here we provide a short summary. In addition to the standard entomological parameters
which are used within the well-established Ross—Macdonald mathematical model [17],
our model takes into account the potential host population in the central Greece region,
related to migrants from regions endemic to malaria [18]. Their prevalence in terms of the
P. vivax is determined from the latest World Malaria Report of the WHO [19].

The transmission risk measures obtained by the model are the basic reproduction rate
of the disease, namely R0, which represents a natural threshold parameter appropriate for
disease control since an outbreak may occur only when R0 > 1. This is indicative of the
potential for disease spread should one infective individual starts an outbreak. In addition,
we estimate the probability of an individual getting infected, τ = Pr(infection), and the
number of expected infections, say E(infections) given by:E(infections) = Pr(infection)×
(# of susceptibles). Those two risk measures are conditional upon an outbreak taking off
and are only meaningful in the event of introducing infected individuals in the area, as
is R0.
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We denote with R̂0,τ̂ the corresponding model-based point (typically median) esti-
mates of these measures and we calculate local R0 estimates for each sample-collecting
station using:

R̂0i =
Veci · bi · c

ri
, (1)

where Vec is the vectorial capacity, that is, the expected number of infective mosquito bites
that would eventually arise from all the mosquitoes that would bite a single fully infectious
person on a single day [20] and is given by:

Veci =
mi · α2

i · exp(−gi · vi)

gi
(2)

In (1) and (2), mi denotes the numbers of mosquitoes in each station i; αi the biting rate,
that is, the percentage of mosquitoes that feed on humans each day; bi the probability a bite
produces infection to a human; ri the average daily recovery rate per day; vi the mosquito
latent period, that is, the number of days from infection to infectiousness; gi the mosquito
mortality rate per day. Especially parameter gi has been shown in previous research [20] to
be dependent on the temperature levels, hence we also utilize recorded and/or interpolated
temperatures for our calculations. Finally, with c we denote the probability a bite turns a
susceptible mosquito to infected, which for our analysis is set to the constant value of 0.5.
The parameters αi, bi, ri and vi were sampled from suitable distributions according to the
relevant literature [17,20,21], whereas gi changes with the temperature levels [20], which
are currently represented by monthly means of temperature [11]. An analytical description
of parameters and relevant distributions utilized for the calculations of risk measures is
included in Table A3 in Appendix A.

In addition to the entomological part of the proposed model, estimation of the external
host component due to the migration is embedded into the risk parameter calculations, by
utilizing an exponential kernel function, Wik, (k = 1,2,3) of the form:

Wik = θ · exp(−θ · dik) (3)

Wik is used to model the spatial part of the potential hosts, with θ being a weight factor.
In (3) dik denotes the distances from larvae areas, measured during the three periods of
potential hosts’ monitoring, k. Subsequently, the estimation of the external host component

due to the migration is approximated by µ̂0i =
3
∑

k=1
µ0ik · Wik. This estimated proportion

of initially infected hosts, µ̂0i, is then multiplied by a pre-specified incidence rate. A
deterministic sensitivity analysis was conducted [11] and the overall qualitative picture
remained unchanged although the quantitative scale varied somewhat.

Finally, estimation of τ̂, should a local outbreak is initiated, is performed by solving
the non-linear equation:

1 + µ̂0i − τ̂i − exp(−τ̂i · R̂0i) = 0 (4)

which only applies for R̂0i ≥ 1. We set τ̂i = 0 when R̂0i < 1.

2.3. Towards a Semi-Automatic Early Warning System Tool

The semi-automatic early warning system tool was developed using the open-access R
software environment [22], which is free and compatible with most common programming
languages. In particular, R was used for all the steps of the process, including constructing
R0 and other risk measure maps. Similar maps, in the case of other infectious viruses,
have been presented elsewhere [23]. A large collection of static maps from various online
sources (e.g., Google Maps provided by Google LLC in California, USA and Stamen Maps
provided by data visualization and cartography design studio in San Francisco, USA) can
be used within R for the effective visualization of the parameters of interest.
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The calculations were facilitated using a variety of software packages. Specifically,
the dplyr package is used to make data frame manipulation in an efficient way and the
ggmap package [24] provides the main methods for accessing and downloading Google
and Stamen maps as well as for generating the data graphs of this work. Furthermore,
the tools used to construct the graphs presented here can be separated into two main
categories by graph form. The first category includes the qmplot function which makes a
quick overview of maps along with data points. Herein, the data points are spatial points
that reflect the measurements upon both terrain-background based maps (Figures 2–4) and
toner-background based maps (Figures A1–A3) and vary in size and in color according to
the values of (Ro), (τ) and (E) respectively. The second category includes the stat_density2d
function which performs a two-dimensional kernel density estimation with an axis-aligned
bivariate normal kernel function (Figures A4–A6). This density function creates a con-
tinuous surface by measuring the contribution of each data point on a map area. This
contribution is smoothed out from a single point into a region of space surrounding the
point. The kernel density estimate evaluated on a grid is given by:

f̂ (x, y) =
∑
i

φ
(

x−xi
σx

)
· φ

(
y−yi

σy

)
n · σx · σy

(5)

where density ϕ is the standard normal distribution and diag
(
σx

2,σy
2) is the bandwidth

diagonal matrix which controls the amount and orientation of smoothing induced. The
bandwidth plays the role of the covariance matrix of the bivariate normal kernel [25]. The
output surface shows where point features are concentrated, by measuring the accumulated
intersections of the individual areas. The way of density calculation depends on the
bandwidth that uses a default search radius. In addition, the bins parameter is a control
parameter that defines the number of contour levels. We used 100 bins for the construction
of Figures A4–A6. Code for implementing all the methods in the paper is provided at
https://github.com/valadis/EWS_spatial_maps_R_code.git.

Figure 2. Map depicting the risk of malaria transmission in the form of R0.

https://github.com/valadis/EWS_spatial_maps_R_code.git
https://github.com/valadis/EWS_spatial_maps_R_code.git
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Figure 3. Map of risk of malaria transmission, computed by the EWS model (τ estimates).

Figure 4. Map of risk of malaria transmission, computed by the EWS model (E estimates).

3. Results

In Figures 2–4, the risk maps for the risk parameters of interest are depicted (Table A4
in Appendix A presents descriptive statistics of the estimated risk measures). These maps
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are based on the coordinates of the data points with the intensity of each risk measure
varying with color.

The risk map in Figure 2 depicts the risk as expressed by the median basic reproduction
number R0 for each area, whereas Figure 3 presents the estimated probability of getting
infected, τ. Figure 4 shows the number of expected infections E, as estimated by the spatial
predictive model.

These visualization maps were created using the ggmap function of ggmap package.
Alternative presentations based on other functions such as the qmplot option are also avail-
able in the ggmap package. Appendix A includes alternative visualizations of our results,
including maps of point estimates using alternative terrain representations (Figures A1–A3)
or heat-maps (Figures A4–A6) and different options may suit different users based upon
their needs.

Values of the R0 above 1 (Figure 2), indicate where the greatest potential for risk is
located. The highest risk is primarily located in the area of Lamia, with R0 reaching values
as high as 4. The probability of getting infected from low to high (zero to 0.75) was depicted
in the map of Figure 3 and the Lamia region was found to have the highest risk. However,
the map also suggests the non-negligible probability of infection (τ estimates between 0.25
and 0.5) in the largely dispersed rural areas of the prefecture. As these rural areas have
low populations, the expected number of infections is relatively low as shown in Figure 4,
revealing the complementary characteristics of the different risk measures. The highest
number of potential infections is concentrated in the wider region of Lamia.

In addition to the risk maps based upon the estimated parameters such as the basic
reproduction number R0, our approach enables the presentation of the corresponding
uncertainty of the estimated parameters (or functions thereof) by way of depicting the
associated variability, for example, via the variance or standard deviation. For example,
the risk map of malaria transmission based on R0 (Figure 2) can naturally be combined
with a variability map of the parameter (see Figure 5) in order to provide a more robust
tool for the monitoring of transmission of VBDs. This type of combined reporting can be
potentially applied to the other measures of risk assessment. Perhaps more importantly, it
reveals knowledge gaps since high uncertainty suggests that further sampling is required
in those areas in order to reduce this variability.

Figure 5. Uncertainty in R0, in the form of the standard deviation of R0 (based on 1000 samples).
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4. Discussion

Our study introduces a model-based framework that integrates entomological, geo-
graphical, social and environmental evidence in order to examine the potential for malaria
resurgence in Greece. This results towards a semi-automatic open-source tool that can be
used for the monitoring and early warning of mosquito-borne diseases, such as malaria
and West Nile virus. The early warning system takes into account the spatial distribution of
risk via suitable mathematical modeling to generate appropriate maps that can adequately
describe the spatial variation in risk.

The results suggest that five to six distinct risk areas in the spatial maps with potential
for malaria resurgence can be identified by inspecting the generated graphs. Specifically,
the areas of higher risk are those close to the municipality of Lamia as expected due to
the local rice fields and to a lesser extent in the lowlands around Levadia and Thivae
municipalities wherever the obsolete irrigation system is responsible for a large number
of Anopheles mosquito breeding sites. Generally, the risk of malaria resurgence is greatly
facilitated by the coexisting of people from countries where malaria is endemic and who
are engaged in agricultural work in areas where there are Anopheles mosquito breeding
habitats such as areas with paddies (e.g., municipality of Lamia) and irrigation canals.
These areas can serve as hot spots for the resurgence of malaria.

Considering VBDs as an emerging public health threat worldwide [6,14], we expect our
methodology to have a bearing on the evaluation of the epidemic risks of such diseases in
a given area. Recently, refugee populations are being hosted throughout Europe, including
Greece [26], potentially increasing the risk of vector-borne disease transmission. In addition,
several disease vectors in refugee camps in Greece have been recorded [27], indicating a
possible risk factor for disease transmission. An early warning system for vector-borne
diseases of the sort presented in this paper could be suitable for preventing disease spread.

Our approach could be also used as a tool for the efficient control of mosquito species,
indicating time control periods, preventing their expansion and, therefore, the potential for
disease transmission. Understanding the mosquito spatial distribution is of importance for
public health and a cornerstone for studies aiming to understand their expansion [10,28–31].
Studies dealing with species distribution models may set aside important factors that drive
these models such as the quality of the training data, as well as critical abiotic factors [10].
Our mosquito sampling method consisted of CO2 traps. Consequently, our data involved
only female Anopheles individuals which serve as vectors of malaria, so that we overcame
issues of sex-biased data that may arise by larvae sampling.

Our model accounts, in turn, for temperature fluctuations, which are particularly
important in insect performance [32–34]. Temperature is the main abiotic factor that deter-
mines insect distribution, affecting critical aspects of their life history such as development,
survival, reproduction and life span [35–37]. This results in a further effect on insect
fitness, determining their population dynamics [38–40]. Therefore, via accounting for
temperature fluctuations our model is tailored towards the precise estimation of mosquito
population growth.

Our method has some limitations. It relies on detailed evidence of various types.
Data of this kind may or may not be readily available and some sort of approximation
is often used. However, such issues are reflected in the uncertainty of the risk measures
and the corresponding maps are a natural by-product of the proposed tool. In fact, these
maps offer an opportunity since they suggest where additional sampling should occur in
order to reduce this uncertainty. In addition, most such data are observational data and
do not form part of a randomized controlled experiment. This study represents a typical
example, and appropriate counterfactual scenarios are common in the area, including what
would have happened had no vector control method been applied. These scenarios are
based on established theory though and including the corresponding uncertainty facilitates
scientifically honest reporting and leads to additional data collection as described above.
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5. Conclusions

The threat of a rapidly changing planet includes precarious spatial-temporal change
dynamics associated with VBDs [41]. For example, disease transmission may vary strongly
and unimodally with temperature [6]. This poses new conceptual and practical challenges
in relation to sustainable health resilience, and therefore timely control of VBDs may
act towards this direction. We expect that our attempt towards a semi-automatic early
warning system tool we developed can potentially aid the monitoring and control of VBDs
in different settings. In addition, it can be used for optimizing the cost-effectiveness of
distinct control measures and the integration of open geospatial and climatological data.
Perhaps more importantly, this system can enhance our ability to predict the risk of disease
outbreaks in different climatic conditions. The developed methods can be adapted for
usage in countries with similar vector-borne disease potential. To this end, the R code
producing and depicting the risk indicators is provided in the supplement.
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Appendix A

Alternative representations of risk through spatial maps in R.

Figure A1. Point estimate map of risk of malaria transmission (R0 estimates).

https://github.com/valadis/EWS_spatial_maps_R_code.git
https://github.com/valadis/EWS_spatial_maps_R_code.git
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Figure A2. Point estimate map of risk of malaria transmission (τ estimates).

Figure A3. Point estimate map of risk of malaria transmission (E estimates).
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Figure A4. Heat-map of risk of malaria transmission (R0 estimates).

Figure A5. Heat-map of risk of malaria transmission (τ estimates).

Figure A6. Heat-map of risk of malaria transmission (E estimates).
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Table A1. Population and density data on the 12 municipalities involved in the current study.

Municipality Area Population Population Density Urban Area

Aliartos 258,449,230.96 11,645 45.06 10,329,054
Amfiklia-Elatia 533,074,049.91 11,902 22.33 7,157,762

Domokos 708,266,142.17 15,227 21.50 3,088,636
Thivae 832,281,806.11 34,401 41.33 16,878,756
Lamia 946,708,662.20 71,006 75.00 27,276,528

Levadia 690,056,941.60 33,425 48.44 11,000,844
Makrakomi 837,249,336.29 19,211 22.95 6,073,913

Molos-St. Konstantinos 339,219,708.58 13,048 38.46 8,691,250
Orchomenos 418,237,273.08 13,107 31.34 10,791,795

Stylida 462,005,680.14 13,851 29.98 6,335,263
Tanagra 460,288,037.47 15,086 32.78 32,420,422
Chalkida 425,298,043.46 86,393 203.14 56,371,907

Table A2. Data used in the study.

Data Type Detail Source References

Entomological Number of mosquitoes Trap survey This study

Social Number of immigrants Information collected by
Bioapplications Ltd.

https://www.bioapplications.gr/?lang=en
(accessed on 6 December 2020)

Environmental Temperature Meteorological stations (National
Observatory of Athens)

https://www.meteo.gr/meteomaps/
(accessed on 6 December 2020)

Geographical Maps

National Bank of Meteorological and
Hydrographic Data

(Figure 1)

www.hydroscope.gr (accessed on
6 December 2020)

R Package: ggmap using Stamen
open-source maps

(Figures 2–5, Figures A1–A6)

maps.stamen.com (accessed on
6 December 2020)

Table A3. List of parameters utilized for the calculation of risk measures and their interpretations along with correspond-
ing references.

Parameter or Variable Interpretation Distribution/Value Reference

αi % of mosquitoes that feed on humans/day Uniform (0.01, 0.5) [17,20,21],
bi Probability a bite produces infection to a human Uniform (0.2, 0.5) [17,20,21]
c Probability a bite turns a susceptible mosquito to infected 0.5 [17,20,21]
ri Average daily recovery rate/day Uniform (0.01, 0.5) [17,20,21]
vi # of days from infection to infectiousness in the mosquito Uniform (5, 15) [17,20,21]
mi The ratio of mosquitoes to humans in region i Observed data
gi Mosquito mortality rate/day gi = f (Ti) [20]
Ti Average temperatures Observed data

θ
Spatial parameter for modeling the spatial component of

migrant transmission Observed data

dik Distances of migrant population from the larvae areas Observed data

https://www.bioapplications.gr/?lang=en
https://www.meteo.gr/meteomaps/
www.hydroscope.gr
maps.stamen.com
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Table A4. Descriptive statistics of the estimated risk measures, broken down by Municipality.

Municipality Ro τ E Variation of Ro

Aliartos

Mean 0.162 0 0 0.125
Median 0.048 0 0 0

Std. Deviation 0.190 0 0 0.342
Minimum 0.010 0 0 0
Maximum 0.563 0 0 1

Amfiklia-Elatia

Mean 0.071 0 0 1
Median 0071 0 0 1

Std. Deviation 0 0
Minimum 0.071 0 0 1
Maximum 0.071 0 0 1

Chalkida

Mean 0.004 0 0 0
Median 0.004 0 0 0

Std. Deviation 0 0 0
Minimum 0.004 0 0 0
Maximum 0.004 0 0 0

Domokos

Mean 0.602 0.110 69,400 0
Median 0.602 0.110 69,400 0

Std. Deviation 0.741 0.155 98,146 0
Minimum 0.078 0 0 0
Maximum 1.126 0.220 138,800 0

Lamia

Mean 0.258 0.033 49,316 0.035
Median 0.096 0 0 0

Std. Deviation 0.474 0.148 218,071 0.185
Minimum 0.003 0 0 0
Maximum 4.55 0.989 1,458,600 1

Levadia

Mean 0.111 0 0 0.188
Median 0.036 0 0 0

Std. Deviation 0.184 0 0 0.403
Minimum 0.007 0 0 0
Maximum 0.729 0 0 1

Makrakomi

Mean 0.161 0 0 0
Median 0.161 0 0 0

Std. Deviation 0.191 0 0 0
Minimum 0.026 0 0 0
Maximum 0.296 0 0 0

Molos-St.
Konstantinos

Mean 0.381 0.037 13,960 0.2
Median 0.061 0 0 0

Std. Deviation 0.492 0.083 31,216 0.447
Minimum 0.011 0 0 0
Maximum 1.105 0.185 69,800 1

Orchomenos

Mean 0.172 0.019 9146 0.143
Median 0.062 0 0 0

Std. Deviation 0.303 0.073 39,138 0.356
Minimum 0.005 0 0 0
Maximum 1.228 0.353 201,900 1

Stylida

Mean 0.098 0 0 0.333
Median 0.011 0 0 0

Std. Deviation 0.153 0 0 0.577
Minimum 0.009 0 0 0
Maximum 0.274 0 0 1
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Table A4. Cont.

Municipality Ro τ E Variation of Ro

Tanagra

Mean 0.054 0 0 1.333
Median 0.026 0 0 0

Std. Deviation 0.057 0 0 2.309
Minimum 0.016 0 0 0
Maximum 0.119 0 0 4

Thivae

Mean 0.492 0.048 32,040 0.6
Median 0.385 0 0 0

Std. Deviation 0.384 0.107 71,644 0.894
Minimum 0.118 0 0 0
Maximum 1.129 0.239 160,200 2

Total

Mean 0.243 0.029 40,491 0.076
Median 0.085 0 0 0

Std. Deviation 0.443 0.134 194,946 0.326
Minimum 0.003 0 0 0
Maximum 4.550 0.989 1,458,600 4
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