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Breast cancer is a complex, dynamic disease that acquires heterogeneity through various
mechanisms, allowing cancer cells to proliferate, survive and metastasise. Heterogeneity
is introduced early, through the accumulation of germline and somatic mutations which
initiate cancer formation. Following initiation, heterogeneity is driven by the complex
interaction between intrinsic cellular factors and the extrinsic tumour microenvironment
(TME). The TME consists of tumour cells and the subsequently recruited immune cells,
endothelial cells, fibroblasts, adipocytes and non-cellular components of the extracellular
matrix. Current research demonstrates that stromal-immune cell interactions mediated by
various TME components release environmental cues, in mechanical and chemical forms,
to communicate with surrounding and distant cells. These interactions are critical in
facilitating the metastatic process at both the primary and secondary site, as well as
introducing greater intratumoral heterogeneity and disease complexity by exerting
selective pressures on cancer cells. This can result in the adaptation of cells and a
feedback loop to the cancer genome, which can promote therapeutic resistance. Thus,
targeting TME and immune-stromal cell interactions has been suggested as a potential
therapeutic avenue given that aspects of this process are somewhat conserved between
breast cancer subtypes. This mini review will discuss emerging ideas on how the
interaction of various aspects of the TME contribute to increased heterogeneity and
disease progression, and the therapeutic potential of targeting the TME.
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INTRODUCTION

Breast cancer is a complex and heterogeneous disease that accounted for 24.5% of cancer diagnoses
and 15.5% of cancer-related deaths in women in 2020 alone, making it the most commonly
diagnosed and most lethal cancer in women worldwide (1). In Australia, the 5-year survival rate for
those diagnosed with early-stage breast cancer is 91%, but this dramatically decreases to 32% in
patients with invasive metastatic disease (2). Metastasis is a primary hallmark of cancer and is a
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multi-step process that begins with intravasation of cancer cells
from the primary tumour site, migration and survival in the
vascular or lymphatic systems, and is completed following
extravasation and colonisation at a distal site (3, 4). The ability
of cancer cells to survive, progress and metastasise is largely
determined by intratumoral heterogeneity (ITH), which is
dependent on both genetic and environmental influences (5).
Whilst environmental influences encompasses both external and
internal factors, this review will focus on the internal tumor
microenvironment (TME).

The formation of the TME is initiated in response to
metabolic needs of rapidly proliferating cancer cells. At the
heart of this complex network are the tumor cells themselves,
which manipulate surrounding cells through signaling networks
activated by biochemical and biomechanical mechanisms. The
cell types present in the TME include a variety of non-malignant
stromal cells, such as endothelial cells, adipocytes, fibroblasts,
immune cells, and extracellular matrix (ECM) proteins (6)
(Figure 1). They influence cancer progression by contributing
to cellular genomic and biological variations, increasing clonal
evolution, and thus increasing ITH (7, 8). It is thought that
increased ITH is a key feature of cancer cell survival and
progression (6, 9). This mini review will discuss emerging ideas
on how key players of the breast cancer TME influence ITH,
metastasis and therapeutic resistance. Whilst the focus of this
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review will be on the tumor-promoting functions of the TME, it
is important to acknowledge that these factors exist in a relatively
plastic state, and thus are only pro-tumorigenic in optimal
conditions (10).
TUMOR MICROENVIRONMENT
AND HETEROGENEITY

ITH is defined as the genomic and biological variations acquired
from exposure to various microenvironmental elements,
contributing to the phenotypic characteristics of the cancer
and increasing its survival capabilities (7, 8). Whilst it is
known that intrinsic cell heterogeneity exists within a tumor
cell population, greater heterogeneity can be introduced through
environmental influence. Increasing the diversity of TME
components in the peritumor space provides a plethora of
signals to cancer cells, contributing to increased ITH through
genetic and reversible epigenetic modulation (7, 10). For
example, hypoxia has been linked to the regulation of
epigenetic modulators, including G9a histone H3 lysine 9
(H3K9me) methyltransferase (11) and histone demethylase
jumonji domain containing protein 2C (JMJD2C) (12). This
increases the activity of hypoxia inducible transcription factor
(HIF)-1, which contributes to breast cancer progression.
FIGURE 1 | Components of a breast cancer tumor microenvironment. Breast cancer disease progression relies on a complex network of cells and interactions,
termed the tumor microenvironment (TME). This consists of immune cells for the creation of an immunosuppressive environment, recruitment of endothelial cells for
vessel formation, transformation of cancer-associated fibroblasts to participate in paracrine signalling to influence the cancer cells and other TME cells, release of
adipokines from cancer-associated adipocytes and adipose tissue, and the biochemical and biomechanical support from extracellular matrix proteins.
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Furthermore, cancer associated fibroblasts (CAFs) and their
associated ECM products also trigger epigenetic modifications
that influence cancer phenotype.

Stromal-Immune Cell Interactions and
TME Heterogeneity
Initially, tumor-secreted factors recruit and transform
surrounding non-malignant cells into cancer-associated cells,
but these cancer-associated cells also possess their own ability
to influence other TME cell types through dynamic, bi-
directional communication (6). Typically, a range of immune
cells are involved in launching an anti-tumor immune response,
including natural killer (NK) cells, CD8+ and CD4+ T cells and
dendritic cells (DCs) (13, 14). However, these cells can be
exploited by various TME elements to become pro-
tumorigenic. As a tumor begins to expand, its growth is
limited by the increasing hypoxic microenvironment and
decreasing metabolic substrates, triggering an angiogenic
switch via HIF-1 and -2 activation. This results in a range of
physiological effects, including the production of pro-angiogenic
growth factors, such as vascular endothelial growth factor
(VEGF) (15). These factors encourage recruitment and
proliferation of endothelial cells from pre-existing capillary
beds, resulting in the formation of a disorganised and highly
permeable tumor vascular network, allowing for the transport of
more oxygen and nutrients (16). In addition, a VEGF gradient
and interstitial flow from leaky tumor vasculature promotes
lymphangiogenesis, resulting in lympathic endothelial cell
migration in the direction of flow and gradient (17, 18). The
presence of these leaky vessels and the mechanical stress caused
by increasing ECM production by TME components, results in
the transportation of antigen-presenting cells (APCs) from
adjacent tissue. The presence of these antigens stimulates the
recruitment of macrophages and DCs to the tumor site (19).
Whilst normally anti-tumorigenic, secretion of factors by TME
components, such as transforming growth factor (TGF)-ß by
CAFs, has the potential to neutralize the anti-tumor response of
NK cells, neutrophils and macrophages (20), enhancing immune
evasion. Concurrently, the recruitment and enhancement of
immunosuppressive cells, such as regulatory T cells (Tregs)
and tumor-associated macrophages (TAMs), can create an
immunosuppressive TME (21, 22).

Hypoxic breast cancer cells also secrete a variety of paracrine
signaling molecules that can reprogram progenitor cells into
CAFs (23). CAFs represent a major portion of the breast tumor
stroma and are a highly heterogeneous population derived from
various cell types, such as resident fibroblasts, bone marrow cells
and adipocytes (24–26). CAF-secreted factors such as TGF-ß, act
in an autocrine manner to further promote differentiation of
fibroblasts into CAFs (27). These CAF-secreted factors can also
influence the functions of other cell types within the TME (28).
Secretion of stimulating factors, such as IL-6, results in ECM
remodeling and matrix stiffening, providing a physical barrier to
immune cells, particularly T lymphocytes (28), while conversely
increasing the number of infiltrating TAMs (29). Whilst TME
components can reduce infiltration of anti-tumorigenic immune
Frontiers in Oncology | www.frontiersin.org 3
cells, the presence of extracellular vesicles (EVs) has also been
shown to decrease proliferation of CD8+ and CD4+ T cells (30).
In addition to being a CAF precursor, cancer-associated
adipocytes (CAAs) have been associated with breast cancer
progression. The breast is rich in adipose tissue, and the
interaction between the adipocytes and breast cancer cells is
significant in disease progression (31). CAAs exhibit a unique
morphology and phenotype, with smaller and dispersed lipid
droplets, a decrease in volume with a dilated interstitial space,
and alterations in shape (32, 33). These CAAs can be peritumoral
or intratumoral and release various adipokines, such as IL-6 and
leptin. Interestingly, the effect of CAAs differs depending on the
location, with intratumorally located CAAs reflective of
decreased cancer cell proliferation and improved patient
survival (34), whilst peritumoral CAAs are associated with
poor prognosis (33). However, both intra- and peritumoral
CAAs are associated with increased inflammation and
metastasis. It is postulated that the release of adipokines
attracts immune cells, such as monocytes, to the primary
tumor site, which facilitates immune evasion (35, 36).
Ultimately, the recruitment and reprogramming of various
non-malignant cell types creates a diverse TME, which
functions to support and facilitate breast cancer progression.
CONTRIBUTION OF TME TO BREAST
CANCER METASTASIS

Once the TME framework has been established to support the
growth and survival of the primary breast tumor, these various
components can promote the metastatic dissemination of cancer
cells (37, 38). For breast cancer, the major sites of metastasis are
lungs, liver, brain and bone (39), however prior to undergoing
metastasis breast cancer cells release chemokines and cytokines
into the circulation. The premetastatic release of these
chemokine and cytokines creates a favourable premetastatic
niche (PMN), which recruits circulating tumor cells (CTCs) to
the secondary site (37, 40). Thus, it is the combination of both
the primary TME and the PMN that drives metastasis. These two
microenvironments support breast cancer cells in the process of
invasion and intravasation, survival in the lymphatic and
vascular systems, extravasation and successful colonisation.
Once CTCs have reached the distal site, the formation of a
metastatic niche is initiated, which supports the growth of the
secondary lesion (41) (Figure 2).

Formation of the Premetastatic Niche
The formation of the PMN is initiated with local changes and
followed by systemic changes. Initially, vascular leakiness occurs
because of the disorganised tumor-derived vasculature, resulting
in alterations to resident cells, such as fibroblasts, and the
recruitment of non-resident cells, such as bone marrow
progenitors (40). In breast cancer, HIF signalling has been
demonstrated to result in the secretion of lysyl oxidase (LOX),
LOX-like proteins (LOXL2 and 4) and exosomes, which has
previously been shown to be crucial in establishing a
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premetastatic niche in the lungs and bones (42). In contrast,Hif1a
deletion in a PyMT mammary cancer model reduced bone
metastasis but was associated with increased pulmonary
metastasis (43). Previous research has also correlated a hypoxia
transcriptome with both bone (44) and lung (45) metastasis
signatures, suggesting that although there are genetic changes
Frontiers in Oncology | www.frontiersin.org 4
reflected in the transcriptome, there may also be distinctive
signals within the TME that cells respond to in order to
determine the phenotypic response (43). The release of these
factors by the primary tumor can result in ECM remodeling at
the secondary metastatic site, priming the location for bone
marrow progenitor cell colonisation. VEGFR1+ haematopoietic
FIGURE 2 | Contribution of various tumor microenvironment components in the process of metastasis. Breast cancer metastasis relies on various components of the
tumor microenvironment, with the major sites of metastasis being the lungs, liver, brain and bone. Even before breast cancer cells escape from the primary site, several
factors and exosomes have been released into the circulation by the breast cancer cells, which results in deposition of extracellular matrix (ECM) proteins at the distal site
and recruitment of bone marrow progenitors. This creates a favourable pre-metastatic niche (PMN), which is crucial for metastatic dissemination. The TME and PMN
support breast cancer cells in the process of invasion and intravasation, survival in the lymphatic and vascular systems, and the eventual extravasation and successful
colonisation. Once these CTCs have reached the distal organ, the formation of a metastatic niche is initiated, which supports the growth of the secondary lesion.
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bone marrow progenitors, which are mobilised during the tumor’s
angiogenic switch, have also been demonstrated to be crucial in
the initiation of the PMN. The homing of these VEGFR1+ bone
marrow progenitors to the premetastatic site is dependent on the
prior increased deposition of ECM proteins, such as fibronectin,
which binds to its receptor integrin a4ß1 on progenitor cells (40).
More recently, the contribution of exosomes released from breast
cancer cells has been demonstrated to be critical in the formation
of the premetastatic niche for bone metastasis. This was through
the activity of the exosomal derived microRNA-21, which is
involved in the process of bone remodeling (46), which may
suggest that site specific adaptations determine the organ of breast
cancer metastasis.

Invasion and Intravasation
Whilst the formation of this secondary TME is critical for the
deposition of CTCs, the cells must first escape from the primary
site. To successfully intravasate, cancer cells rely on the contribution
of intrinsic cell properties, microenvironmental factors and
mechanical cues (47). A fundamental aspect of metastasis is the
ability of cancer cells to undergo EMT, and this process is facilitated
by various elements of the TME, such as the presence of hypoxia,
infiltrationof immune cells and activity ofCAFs (43, 48). TheseTME
factors are also able to further promote the migratory and invasive
ability of these transformed cancer cells. Cancer cell migration has
been demonstrated to be supported by the expression of focal
adhesion kinase (FAK) in CAFs through the secretion of exosomal
miRNAs (49). In addition, various TME components, such as CAAs
and endothelial cells, can secrete chemoattractants to promote the
movement of cancer cells in the direction of the gradient (17, 36). For
example, a study by Cho and colleagues used a 3D macrofluidic
device todemonstrate the communicationbetween lymphatic vessels
and tumor cells through the CXCL21/CXCR7 axis, with lymphatic
endothelial cells secreting CXCL21, a chemoattract for breast cancer
cells expressing CXCR7, causing invasion ofMDA-MB-231 towards
the lymphatic vessels (17). The secretion of degradative enzymes by
TAMs and EVs, function to lyse surrounding ECM, further
supporting the process of invasion (50, 51). These
microenvironmental factors also have the potential to modify ECM
proteins, which results in ECM stiffening. The stiffening of the ECM
sendsmechanical cues to further perpetuate the activationofCAFs in
a positive feedback loop, and this tissue rigidity is associated with
more aggressive breast cancers, with worse patient prognosis (52).
Rigidity has been associated with upregulation of Mammalian-
enabled (Mena), particularly the MenaINV isoform, which is a
protein that has been shown to be upregulated in invasive breast
cancer cells and associated with invadopodia maturation (52, 53).
Furthermore, the direct contact between anMenaINV overexpressing
breast cancer cell, an endothelial cell and a Tie2high/VEGFhigh

perivascular macrophage is crucial in forming the TME of
metastasis (TMEM), a process required for intravasation (54).

Survival in the Vascular and
Lymphatic Systems
Whilst the newly formed vascular and lymphatic networks can
act as a transport route for cancer cells to secondary distal sites,
Frontiers in Oncology | www.frontiersin.org 5
travelling through these harsh environments exerts selective
pressures that cancer cells must overcome (55). Upon exiting
the primary tumor site, cancer cells experience anoikis, a form of
cell death initiated from the detachment of cells from the ECM
(56). In order to overcome this and become anoikis resistant,
cancer cells can employ various mechanisms, such as
reprograming the metabolism of the TME, decreasing the pH
(57) and upregulating the expression of specific integrins (58).
Once tumor cells enter the vascular system, they activate platelets
to form a thrombus around the cells, protecting cancer cells from
immune surveillance (59, 60). It is thought that this tumor cell
platelet aggregate releases a plethora of platelet-derived factors,
such as TGF-ß1, which has the potential to decrease the
antitumor activity of NK cells (61). Tumor cells that
disseminate through the lymphatic system initially experience
a hypoxic microenvironment, which is overcome by exploiting
the native vasculature of the lymph node (62). To survive in the
lymphatic system, cancer cells must also evade immune
surveillance, which can be achieved through exploitation of the
lymphatic endothelial cell’s ability to scavenge and cross-present
lymph antigens, resulting in removal of autoreactive naive CD8+

T cells (62). Furthermore, the migration of these CTCs through
highly constrictive vessels can via mechanotransduction
mechanisms, result in the activation of various signalling
pathways which may contribute to increased cancer cell
survival, heterogeneity and motility (63, 64).

Extravasation and Colonisation at
Distal Site
The process of metastasis is inefficient, with <0.01% of cells
disseminated from the primary tumor successfully colonising at
a distal site. This process generally occurs within the capillaries,
where they are able to lodge and interact with the endothelium
(55). This interaction with the endothelium can promote the
recruitment of various other cells, such as macrophages, platelets
and neutrophils which aid in the successful metastasis of cancer
cells (65, 66). Furthermore, components of the TME, such as
hypoxia-associated HIF activity of cancer cells, have been
implicated in the process of extravasation. This involves
stimulating the release of factors such as L1 cell adhesion
molecule and angiopoietin-like 4 that promote the adherence
of CTCs to the endothelium of lungs and interferes with
endothelial cell adhesion molecules, respectively, increasing
vascular permeability (67). It is important to note that the
optimum metastatic conditions are tissue specific, an
important consideration when attempting to identify new
treatment options for metastatic disease. For example, CTCs
honing towards the brain secrete factors, such as a-crystallin,
neuroserpin and cathepsin S (68), whereas CTCs with an affinity
for the lungs tend to depend on myeloid cell populations (69).
During the initial formation of any metastatic foci, the cancer
cells remain close to existing vasculature before stimulating
angiogenesis for its own blood supply (68). Once the cells have
successfully colonised, the microenvironment is again altered by
the newly deposited tumor cells, and this is then termed the
metastatic niche (41).
May 2022 | Volume 12 | Article 876451

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tan and Naylor TME Influence on Breast Cancer
Therapeutic Resistance
In addition to its contribution to breast cancer progression and
metastasis, various components of the TME have been
implicated in the therapeutic resistance of breast tumors (70,
71). Brechbuhl and colleagues identified that the contribution of
CAF subpopulations to therapeutic resistance varies, with
CD146+ CAFs in estrogen receptor (ER) positive breast cancer
cells displaying sensitivity to tamoxifen treatment, while CD146-

CAFs were correlated with decreased ER expression in the same
cells and thus increased resistance to tamoxifen treatment (71). A
recent study has identified that there is a novel relationship
between ductal carcinoma in situ and fibroblasts that express
platelet-derived growth factor receptor (PDGFR)a(low)/
PDGFRß(high) through elevated Notch signalling in fibroblasts
(72). This may be due to the paracrine interactions of PDGF-CC
released from breast cancer cells interacting with fibroblasts
through PDGFRs, orchestrating an ERa-negative phenotype
through stimulation of hepatocyte growth factor (HGF),
insulin-like growth factor binding protein (IGFBP) 3 and
stanniocalcin (STC) 1 secretion from CAFs (73). Subsequent
treatment of PeRo-Lum1 cells, a luminal mammary cancer cell
line, with CAF-conditioned medium resulted in decreased cell
sensitivity to tamoxifen through the decrease in ERa expression,
suggesting that the interactions between CAFs and cancer cells
can alter the molecular subtype of breast cancers and ultimately,
endocrine therapy resistance. Furthermore, exosomes can
promote therapeutic resistance by enabling interaction between
TME components as well as through direct interaction with
breast cancer cells (70, 74). Given the major contribution of TME
components to breast cancer progression, some TME targeting
therapeutics have been identified.

Targeting the TME for Breast
Cancer Treatment
Breast cancer was previously viewed as a disease with low
immunogenicity, however recent research demonstrates the
possibility of immunotherapy in the treatment of breast cancer
(75). This is further supported with atezolizumab and
pembrolizumab being recently FDA-approved for use in
combination with chemotherapy for programmed death ligand
1-positive triple negative breast cancers (76). In addition, the
most recent WHO histopathological assessment of breast tumor
guide now includes investigation of tumor-infiltrating leukocytes
and fibrotic foci (77), highlighting the increasing recognition of
the TME in determining disease severity. A recent study by
Harney and colleagues also demonstrated the effects of a potent
Tie2 inhibitor, rebastinib, on a mammary cancer model (78).
Frontiers in Oncology | www.frontiersin.org 6
Independent treatment resulted in reduced Tie2+ macrophages,
TMEM function and angiogenesis, which presented as decreased
mammary tumor growth, metastasis and overall increased
survival, however it was the combination of rebastinib and
paclitaxel that was most effective. Most of the available studies
highlight the success in combining therapies, whether that be
traditional therapies such as radiotherapy and chemotherapy,
with a TME-targeting agent, such as anti-angiogenics and
immunotherapy (76, 78) or two TME-targeting agents (79).
Whilst these studies are a step in the right direction, there is
still much unknown with respect to translating TME targets into
the clinic and thus this should be a focus of breast cancer
research, particularly metastatic breast cancer.
CONCLUDING REMARKS

It is only within the past 3 decades that cancer research has
shifted from primarily focusing on cancer cells to appreciating
that cancer is a complex system with many biological aspects that
contribute to tumor growth and progression (80). Without the
structural integrity of the TME, breast cancer cells would not
successfully grow and metastasise. It is factors released from the
primary TME that establish a premetastatic niche at a distal
secondary site, thus targeting aspects of the TME has the
potential to decrease the prevalence of metastasis, the greatest
contributor to breast cancer mortality rates. In addition, the
components of the TME are somewhat conserved between breast
cancer subtypes, offering a broad-spectrum therapeutic target for
breast cancer.
AUTHOR CONTRIBUTIONS

KT designed the study, was responsible for writing the article and
the creation of all figures. MN designed the study and was
responsible for writing and revising the manuscript. All
authors contributed to the generation of the concepts and
ideas provided.
FUNDING

This work was supported by Cancer Council NSW Research
Project Grant (RG 20-08) and Priority-driven Collaborative
Cancer Research Scheme (Grant #1130499), funded by the
National Breast Cancer Foundation Australia with the
assistance of Cancer Australia awarded to MN.
REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin
(2021) 71(3):209–49. doi: 10.3322/caac.21660

2. NBCF. Breast Cancer Stats 2021. Available at: https://nbcf.org.au/about-
breast-cancer/breast-cancer-stats/.
3. Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next Generation.
Cell (2011) 144(5):646–74. doi: 10.1016/j.cell.2011.02.013
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