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A B S T R A C T

Canine inflammatory bowel disease (IBD) is an intractable autoimmune disorder that results in various gas-
trointestinal and systemic symptoms. Mesenchymal stem cells (MSCs), which release immunomodulatory factors
such as tumor necrosis factor-α (TNF-α)-induced gene/protein 6 (TSG-6) and prostaglandin E2 (PGE2), have
been suggested as an alternative therapeutic option for IBD treatment in veterinary medicine. Furthermore,
although it is known that MSCs pre-treated with pro-inflammatory cytokines show enhanced anti-inflammatory
properties via the secretion of soluble factors, the underlying mechanisms of IBD remain unclear. The aim of this
study was to demonstrate the therapeutic effects and corresponding mechanisms of canine adipose tissue-derived
(cAT)-MSCs stimulated with TNF-α in mouse models of IBD. Mice with dextran sulfate sodium (DSS)- or dini-
trobenzene sulfonic acid (DNBS)-induced colitis were injected intraperitoneally with cAT-MSCs pre-treated with
TNF-α. Colitis severity was assessed and colon tissues were collected for histopathological, enzyme-linked im-
munosorbent assay, and flow cytometry analysis. cAT-MSCs stimulated with TNF-α secreted higher concentra-
tions of immunomodulatory factors such as TSG-6 and PGE2, which play a key role in inducing phenotypic
alterations in macrophages. Consequently, TNF-α-pre-treated cAT-MSCs further regulated colonic inflammatory
cytokines such as interleukin (IL)-1β, IL-6, and IL-10, and ameliorated DSS- or DNBS-induced colitis in mice.
Additionally, we demonstrated that M1 macrophages (F4/80+/iNOS+ cells) were decreased in colon tissues
from mice treated with TNF-α-pre-treated cAT-MSCs, whereas M2 macrophages (F4/80+/CD206+ cells) were
increased. These results may suggest a new cell-based therapeutic option for treating IBD.

1. Introduction

Canine inflammatory bowel disease (IBD), which leads to gastro-
intestinal or systemic clinical signs, is diagnosed by ruling out the
possibility of other diseases such as infection or tumor and performing
histopathological assessment (Cerquetella et al., 2010; Craven et al.,
2004). IBD is an intractable autoimmune disease and im-
munosuppressive drugs are used to reduce inflammation (Allenspach
et al., 2006; Dossin and Lavoue, 2011). However, no alternative treat-
ments exist for dogs with IBD that do not respond to the conventional
therapies. Therefore, mesenchymal stem cells (MSCs) that can effec-
tively modulate inflammation might be an alternative therapeutic op-
tion (Iyer and Rojas, 2008).

Recent studies have revealed that soluble factors released by MSCs
such as prostaglandin E2 (PGE2), hepatocyte growth factor, in-
doleamine 2,3-dioxygenase, and TNF-stimulated gene/protein 6 (TSG-
6) contribute to immunomodulation (Bassi et al., 2012; Montemurro
et al., 2016; Teng et al., 2015). Therefore, MSCs exert strong anti-in-
flammatory effects, although injected MSCs did not migrate into in-
flamed tissue in a previous study (Sala et al., 2015). Kang et al. and
Chae et al. also demonstrated that canine and feline MSCs secrete so-
luble immunomodulatory factors (Chae et al., 2017; Kang et al., 2008).
In addition, our previous studies have shown that TSG-6 released from
human and canine MSCs ameliorates colitis in mice (Song et al., 2018;
Song et al., 2017b).

Our previous study demonstrated that canine MSCs pre-treated with
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tumor necrosis factor (TNF)-α and interferon (IFN)-γ exerted enhanced
anti-inflammatory effects in vitro by releasing higher concentrations of
PGE2, an immunomodulatory factor (Yang et al., 2018). Fan et al. also
revealed that human MSCs stimulated with interleukin (IL)-1β showed
enhanced efficacy in mice with colitis (Fan et al., 2012). In addition,
recent studies have demonstrated that MSCs pre-treated with pro-in-
flammatory cytokines showed enhanced secretory abilities (Broekman
et al., 2016; Heo et al., 2011). However, few studies have assessed the
therapeutic effects of pro-inflammatory cytokine-stimulated canine
MSCs.

Therefore, in this study, we used canine adipose tissue (cAT)-MSCs
stimulated with TNF-α, and revealed the therapeutic effects and their
mechanisms in two mouse models of IBD.

2. Materials and methods

2.1. Isolation, culture, and characterization of cAT-MSCs

Canine adipose tissues were obtained from healthy 4-year-old dogs
using protocols approved by the Institutional Animal Care and Use
Committee (IACUC) of Seoul National University performed in ac-
cordance with approved guidelines. The dogs were negative for canine
parvovirus, canine coronavirus, and canine distemper virus infections.
MSCs were isolated and cultured as previously described (Kim et al.,
2016). Briefly, adipose tissue samples were washed five times in Dul-
becco's phosphate buffered saline (DPBS; PAN-Biotech, Aidenbach,
Germany) containing 1% penicillin-streptomycin (PS; PAN-Biotech),
and cut into small pieces in a petri dish. The samples were digested with
collagenase type IA (0.1%, Gibco/Life Technologies, Carlsbad, CA,
USA) for 60min at 37 °C. The samples were neutralized with Dulbecco's
modified Eagle's medium (DMEM; PAN-Biotech) containing 10% fetal
bovine serum (FBS; PAN-Biotech). After centrifuging the adipose tissue
mixture at 1200×g for 5min, the pellet containing MSCs was passed
through a 70-μm cell strainer (Thermo Fisher Scientific, Rockford, IL,
USA) to remove undigested debris. Cells were resuspended in DMEM
containing 10% FBS and 1% PS, seeded onto a cell culture dish at a
density of 3000 cells/cm2, and incubated at 37 °C and 5% CO2. After
5 days, cultures were washed with DPBS to remove non-adherent cells
and incubated with fresh medium. The culture medium was changed
every 2–3 days until cells reached 70–80% confluence. The cells were
then subcultured and seeded at a density of 10,000 cells/cm2 in culture
dishes.

Before experimentation, the cells were characterized using flow
cytometry to evaluate the expression of several stem cell markers. Cells
were suspended in DPBS and monoclonal antibodies against the fol-
lowing proteins: cluster of differentiation (CD)29- fluorescein iso-
thiocyanate (FITC), CD31-FITC, CD34-phycoerythrin (PE), CD73-PE
(BD Biosciences, San Diego, CA, USA), CD45-FITC, and CD90-allophy-
cocyanin (eBiosciences, San Diego, CA, USA). Cell fluorescence was
analyzed with a FACS Aria II system (BD Biosciences). Additionally, the
cells' differentiation abilities were evaluated using Stempro adipogen-
esis, osteogenesis, and chondrogenesis differentiation kits (Gibco,
Grand Island, NY, USA) according to the manufacturer's instructions.
The differentiated cells were stained with Oil Red O, Alizarin Red, and
Alcian Blue.

2.2. TNF-α stimulation of cAT-MSCs

cAT-MSCs at approximately 60–70% confluence were stimulated
with canine recombinant TNF-α (10 ng/mL; PROSPEC Protein
Specialists, NJ, USA) for 24 h. The cells were used for TNF-α-stimulated
cAT-MSC groups.

2.3. Animal experiments, colitis induction

C57BL/6 J mice (male, 5-week-old) were purchased from Nara

Biotech (Seoul, Korea) and housed under standard conditions (con-
trolled temperature, humidity, and light cycle). All procedures invol-
ving mice were approved by the Institutional Animal Care and Use
Committee of Seoul National University (protocol no. SNU-171123-2),
and the protocols were performed in accordance with approved
guidelines. Two different mouse models for IBD were used for this study
(dextran sulfate sodium (DSS)-, and dinitrobenzene sulfonic acid
(DNBS)-induced colitis models), and each colitis model was made as
previously described (Kim et al., 2013; Martín et al., 2014; Morampudi
et al., 2014; Solomon et al., 2010). For the first experiment, colitis was
induced by 3% DSS (36–50 kDa; MP Biomedical, Solon, OH, USA) in the
drinking water from day 0 to day 7, whereas mice offered normal water
were used as the naive group. The following experiments were per-
formed on day 1: cAT-MSCs (2× 106) stimulated with TNF-α in 200 μL
PBS; cAT-MSCs (2× 106) in 200 μL PBS; or an identical volume of PBS
was injected intraperitoneally into the DSS-induced colitis mice. For
this experiment, mice were randomly divided to the following four
groups: Naïve (n=4), DSS+PBS (n=6), DSS+ cAT-MSC (n=6),
DSS+ TNF-α-cAT-MSC (n=6). For the second experiment, DNBS
(Sigma-Aldrich, St. Louis, MO, USA) colitis was induced by rectal ad-
ministration of DNBS (5mg/mouse in 50% ethanol) into mice. Six
hours after DNBS infusion, cAT-MSCs were administered in-
traperitoneally as described above. For this experiment, mice were di-
vided into five groups: Naïve (n=4), Ethanol (sham; n= 4), DNBS
+PBS (n=6), DNBS+cAT-MSC (n=6), DNBS+TNF-α-cAT-MSC
(n= 6). The mice were sacrificed on day 10 (for DSS-induced colitis
experiments) or day 3 (for DNBS-induced colitis experiments), and
colon tissues were collected for further processing.

2.4. Evaluation of colitis severity

The disease activity index (DAI) was determined by a scoring system
described previously (Song et al., 2018). Briefly, the body weight loss
(grades 0–4), stool consistency (grades 0–2), rectal bleeding (grades
0–2), and general activity (grades 0–2) were monitored every 24 h. For
histological analysis, colon tissue samples were fixed in 4% phosphate-
buffered formaldehyde for 48–72 h, followed by embedding in paraffin,
cutting into 4-μm sections, and staining with hematoxylin and eosin.
Ten fields per group were randomly selected and histological ex-
aminations were performed. Colitis severity was calculated using the
previously described scoring system. Briefly, the extent of bowel wall
thickening (grades 0–3), crypt damage (grades 0–3), and inflammatory
cell infiltration (grades 0–2) were examined in a blind manner.

2.5. Enzyme-linked immunosorbent assay (ELISA)

TSG-6 and PGE2 in the supernatants from TNF-α-pre-treated or non-
treated cAT-MSCs were measured using a TSG-6 ELISA kit
(MyBiosource, San Diego, CA, USA) and PGE2 ELISA Kit (Cusabio
Biotech, MD, USA), respectively. Additionally, for in vivo experiments,
total proteins were extracted from colon tissue samples using PRO-
PREP Protein Extraction Solution (Intron Biotechnology, Seongnam,
Korea) and the concentrations of IL-1β, IL-6, and IL-10 were measured
using commercial ELISA kits (all from eBiosciences) according to the
manufacturer's instructions.

2.6. Flow cytometry analysis

To evaluate the mouse macrophage population, the following
monoclonal antibody mixtures were used for the experiments: anti-F4/
80-FITC and anti-inducible nitric oxide synthase (iNOS)-PE, or anti-F4/
80-FITC and anti-CD206-PE (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) were incubated with cells isolated from digested colon tissues.
Flow cytometry was performed using a FACS Aria II system (BD
Biosciences) and analyzed using FlowJo software (Tree Star, Ashland,
OR, USA).
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2.7. Statistical analysis

Data are shown as the mean ± standard deviation. Mean values
among different groups were compared by one-way analysis of variance
using GraphPad Prism software (v.6.01; GraphPad, Inc., La Jolla, CA,
USA). P value< .05 was considered statistically significant.

3. Results

3.1. Phenotypic characterization of cAT-MSCs

Cells isolated from canine adipose tissue were assessed for MSC
characteristics. Flow cytometry analysis showed that stem cell markers
such as CD29, CD73, and CD90 were highly expressed in these cells. In
contrast, there was no detectable expression of hematopoietic markers,
including CD31, CD34, and CD45 (Fig. 1A). Additionally, the cells
could be differentiated into adipocytes, osteocytes, and chondrocytes
(Fig. 1B). According to criteria established by International Society for
Cellular Therapy, the cells used in this study represent MSCs.

3.2. Enhanced secretory abilities for immunomodulatory factors of TNF-α-
stimulated cAT-MSCs

Our previous studies demonstrated that secretory factors from ca-
nine MSCs, such as TSG-6 and PGE2, play a key role in modulating
inflammation. Therefore, cAT-MSCs were stimulated with TNF-α, a pro-
inflammatory cytokine, to produce more immunomodulatory factors.
TSG-6 and PGE2 concentrations determined from the cAT-MSCs pre-
treated with TNF-α were significantly higher than those measured from
the naïve cAT-MSCs (Fig. 1C).

3.3. Improved therapeutic effects of TNF-α-stimulated cAT-MSCs in mice
with DSS- or DNBS-induced colitis

Next, we evaluated whether administering cAT-MSCs or TNF-α-sti-
mulated cAT-MSCs could reduce colitis severity in mice. Consistent
with previous studies, administering cAT-MSCs resulted in a general
reduction in body weight loss, DAI, and colon length shortening in mice
with DSS- or DNBS-induced colitis (Fig. 2A–C, 3A–C). In addition,
further improvement was confirmed in mice with colitis injected with
TNF-α-stimulated cAT-MSCs (Fig. 2A–C, 3A–C).

Additionally, histopathology in the inflamed colon tissue was
evaluated. Colons of mice treated with DSS or DNBS showed severe
submucosal thickening, crypt damage, and infiltration of inflammatory
cells. In contrast, administering cAT-MSCs to mice with colitis resulted
in a slight improvement, which was additionally enhanced by admin-
istering TNF-α-stimulated cAT-MSCs (Fig. 2D, 3D).

3.4. Enhanced anti-inflammatory effects of TNF-α-primed cAT-MSCs on
mice with DSS-induced colitis

We next explored whether cAT-MSCs or TNF-α-stimulated cAT-
MSCs could improve the anti-inflammatory effects in DSS-induced co-
litis. In the colons of mice treated with naïve cAT-MSCs, the production
of IL-1β and IL-6 was significantly decreased, and production of IL-10
was increased considerably compared to that in the colons of mice
treated with PBS, as expected from previous studies. Similar to the
above results, intestinal inflammation was further improved in colons
from mice treated with TNF-α-stimulated cAT-MSCs (Fig. 4A-C).

3.5. Increased alteration of macrophage phenotype in the inflamed colons of
mice treated with TNF-α-primed cAT-MSCs

Given that the cytokines (IL-1β, IL-6, and IL-10) modulated in the
above results are mainly secreted from macrophages, we further in-
vestigated whether cAT-MSCs or TNF-α-stimulated cAT-MSCs could
alter macrophage phenotypes in inflamed colon tissue. Our previous
study demonstrated that TSG-6 secreted from cAT-MSCs could increase
the number of M2 macrophages in the colons of mice treated with DSS.
Consistent with these results, our study showed that the M2 macro-
phage population (F4/80+/CD206+) in colons of DSS-induced colitis
mice treated with cAT-MSCs was significantly increased compared with
that in mice treated with PBS. In addition, the M1 macrophage popu-
lation (F4/80+/iNOS+) was decreased in the cAT-MSCs-treated group.
The phenotypic population of macrophages was further altered in the
TNF-α-stimulated cAT-MSCs-treated group (Fig. 5).

4. Discussion

Recently, a number of studies have shown that MSCs can effectively
ameliorate IBD in rodent models (Gonzalez-Rey et al., 2009; Tanaka
et al., 2008; Wang et al., 2014). Furthermore, administering MSCs as a
therapeutic option for IBD in small clinical trials (both in humans and
dogs) has also shown considerable promise (Kim et al., 2017; Perez-
Merino et al., 2015). Our previous studies have demonstrated that TSG-
6 released from human and canine MSCs plays a crucial role in im-
munomodulation by inducing an M2 macrophage switch (Song et al.,
2018; Song et al., 2017b). In addition, we have shown that canine MSCs
stimulated with TNF-α and IFN-γ released higher concentration of PGE2
which exert anti-inflammatory effects (Yang et al., 2018). Therefore, by
up-regulating the secretion of theses soluble factors, MSCs can enhance
the immunomodulatory effects. Overall, these findings highlight the
efficacy of TNF-α-stimulated cAT-MSCs against DSS- or DNBS-induced
colitis in mice.

In our study, we demonstrated that intraperitoneal injection of TNF-
α stimulated cAT-MSCs resulted in higher therapeutic efficacy than
injecting naïve cAT-MSCs in two mouse models of IBD. For example,
body weight loss and DAI were further improved in the TNF-α-stimu-
lated cAT-MSCs-treated mice by 6% and 20%, respectively, compared
to the improvements in the naive cAT-MSCs-treated group. In addition,
evaluation of colon length and histopathologic analysis highlighted the
increased therapeutic effects of TNF-α-stimulated cAT-MSCs. In addi-
tion, concentrations of inflammatory cytokines in the inflamed colons
were significantly altered in the TNF-α-cAT-MSC group compared with
those in the cAT-MSC group.

Previous studies have revealed that human MSCs stimulated with
pro-inflammatory cytokines (such as TNF-α and IL-1β) can improve the
secretory effects of immunomodulatory soluble factors (Broekman
et al., 2016; Heo et al., 2011). Here, we also showed that TNF-α-sti-
mulated cAT-MSCs released significantly higher concentrations of TSG-
6 (2.5-fold) and PGE2 (3-fold), relative to naive cAT-MSCs. TSG-6 and
PGE2 are well-known immunomodulatory factors secreted from human
and canine MSCs, and recent studies have demonstrated that these
factors play important roles in ameliorating atopic dermatitis, rheu-
matoid arthritis, acute pancreatitis, and IBD (Kim et al., 2016; Kim
et al., 2015; Mao et al., 2017; Shin et al., 2016; Song et al., 2017a).
Consistent with these studies, our results indicated that cAT-MSCs sti-
mulated with TNF-α further reduced DSS- or DNBS-induced colitis by
releasing higher concentrations of TSG-6 and PGE2.

Macrophages are important innate immune cells that play a key role

Fig. 1. (A, B) Cells isolated from canine adipose tissues were characterized before their use in this study by flow cytometry analysis (A), as well as adipogenic,
osteogenic, and chondrogenic differentiation analysis (B). (C) Canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) stimulated with TNF-α released
higher concentrations of immunomodulatory factors such as TSG-6 and PGE2 compared to levels released by naive cAT-MSCs. Results are shown as the mean ±
standard deviation of three independent experiments. ***P < .001.
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in releasing inflammatory cytokines and transferring information to
acquired immune cells such as T cells. It is well-established that two
types of macrophages (M1 and M2) are observed in inflamed tissues
(Mosser and Edwards, 2008; Stout and Suttles, 2004) and these cells
play an important role in regulating inflammatory responses. Melief

et al. demonstrated that human MSCs promote the transition of
monocytes into CD206+ M2 macrophages, and consequently increase
Foxp3+ regulatory T cells (Melief et al., 2013). In addition, recent
studies have revealed that soluble factors (such as TSG-6 and PGE2)
released from human MSCs could promote the M2 macrophage

Fig. 2. Canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) stimulated with TNF-α showed enhanced therapeutic effects on mice with dextran sodium
sulfate (DSS)-induced colitis. Therapeutic abilities of cAT-MSCs were assessed by measuring body weight changes (A), disease activity index (B), colon length (C), and
histopathologic analysis (D). Four to six mice per group were used. Results are shown as the mean ± standard deviation. *P < .05, **P < .01, ***P < .001.

Fig. 3. Canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) stimulated with TNF-α showed enhanced therapeutic effects on mice with dinitrobenzene
sulfonic acid (DNBS)-induced colitis. Therapeutic abilities of cAT-MSCs were assessed by body weight changes (A), disease activity index (B), colon length (C), and
histopathologic analysis (D). Four to six mice per group were used. Results are shown as the mean ± standard deviation. *P < .05, **P < .01, ***P < .001.
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phenotype and reduce inflammation in mouse models of rheumatoid
arthritis, wound healing, and IBD (Shin et al., 2016; Song et al., 2017b;
Zhang et al., 2010). Additionally, we previously demonstrated that
TSG-6 released from canine MSCs can induce M2 macrophage pheno-
typic changes in vitro and in vivo (Song et al., 2018). In this study, TNF-α
stimulated cAT-MSCs increased macrophage alteration to the M2 phe-
notype (F4/80+/CD206+) in the colons of mice with IBD, whereas
numbers of M1 macrophages (F4/80+/iNOS+) decreased in the in-
flamed colons. Consistent with previous studies and our results, TNF-α-
stimulated cAT-MSCs reduced inflammation through altering macro-
phage phenotypic changes by secreting higher concentrations of TSG-6
and PGE2.

Recent studies have suggested other mechanisms by which MSCs
might help reduce colitis severity. For example, MSCs may stimulate

epithelial regeneration (Sémont et al., 2013; Sémont et al., 2006; Valcz
et al., 2011). It is well-established that MSCs upregulate Ki67+ cells in
inflamed tissues (Nakagawa et al., 2015; Wu et al., 2007). In addition,
Chen et al. demonstrated that MSCs increase Lgr5+ intestinal stem cells
in colonic tissues of IBD model mice (Chen et al., 2013). Another po-
tential mechanism of MSC-dependent improvement in IBD involves
microbiome changes. However, in this study, TNF-α-stimulated MSCs,
which release higher concentrations of soluble immunomodulatory
factors, showed further improved colitis in mice (Soontararak et al.,
2018). Therefore, we demonstrated here that the anti-inflammatory
effects of MSCs play an important role in their overall therapeutic ef-
fects on colitis, although MSCs might reduce IBD through various me-
chanisms.

Previous studies have revealed that a high frequency of

Fig. 4. Canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) stimulated with TNF-α decreased expression of pro-inflammatory cytokines (A; IL-1β, B;
IL-6) and increased expression of one anti-inflammatory cytokine (C; IL-10) in colon samples from mice with dextran sodium sulfate (DSS)-induced colitis. Results are
shown as the mean ± standard deviation. *P < .05, **P < .01, ***P < .001.

Fig. 5. Canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) stimulated with TNF-α further decreased the number of M1 macrophages (A; F4/80+/
iNOS+ cells) and increased M2 macrophages (B; F4/80+/CD206+ cells) more so than naïve cAT-MSCs in colons from mice with dextran sodium sulfate (DSS)-
induced colitis. Results are shown as the mean ± standard deviation. *P < .05, **P < .01, ***P < .001.
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intraperitoneally infused MSCs aggregated with immune cells in the
peritoneal cavity (Sala et al., 2015; Bazhanov et al., 2016). In addition,
our previous studies have shown that< 0.5% of intraperitoneally in-
jected MSCs were detected in the heart, lung, liver, spleen, kidney,
brain, and colon tissues (Song et al., 2017b; Song et al., 2018). Based on
these previous studies, it is tempting to speculate that most of in-
traperitoneally infused TNF-α-stimulated cAT-MSCs formed aggregates
and ameliorated IBD at sites distant from the inflamed colon by re-
leasing soluble factors such as TSG-6 and PGE2.

It should be acknowledged that we were not able to perform mi-
croarray screening of TNF-α-stimulated cAT-MSCs, although we eval-
uated increased TSG-6 and PGE2 from TNF-α-stimulated cAT-MSCs.
However, it is well demonstrated that TSG-6 and PGE2 secreted from
MSCs could induce macrophage phenotypic alterations. Therefore, our
findings suggest that increased TSG-6 and PGE2 released from TNF-α
stimulated cAT-MSCs play a key role in reducing inflammation in a
mouse model of IBD.

5. Conclusion

In summary, we demonstrated that TNF-α-stimulated cAT-MSCs
further ameliorated IBD via their enhanced anti-inflammatory effects
over naïve cAT-MSCs. Additionally, we showed that cAT-MSCs pre-
treated with TNF-α could release higher levels of immunomodulatory
factors such as TSG-6 and PGE2, which contributed to induce macro-
phage phenotypic alterations. These results may represent a novel cell-
based therapeutic option for treating autoimmune diseases such as IBD.
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