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Interictal high-frequency oscillations (HFO) detected in electroencephalography
recordings have been proposed as biomarkers of epileptogenesis, seizure propensity,
disease severity, and treatment response. Automatic HFO detectors typically analyze
the data offline using complex time-consuming algorithms, which limits their clinical
application. Neuromorphic circuits offer the possibility of building compact and low-
power processing systems that can analyze data on-line and in real time. In this review,
we describe a fully automated detection pipeline for HFO that uses, for the first time,
spiking neural networks and neuromorphic technology. We demonstrated that our HFO
detection pipeline can be applied to recordings from different modalities (intracranial
electroencephalography, electrocorticography, and scalp electroencephalography) and
validated its operation in a custom-designed neuromorphic processor. Our HFO
detection approach resulted in high accuracy and specificity in the prediction of
seizure outcome in patients implanted with intracranial electroencephalography and
electrocorticography, and in the prediction of epilepsy severity in patients recorded
with scalp electroencephalography. Our research provides a further step toward the
real-time detection of HFO using compact and low-power neuromorphic devices. The
real-time detection of HFO in the operation room may improve the seizure outcome of
epilepsy surgery, while the use of our neuromorphic processor for non-invasive therapy
monitoring might allow for more effective medication strategies to achieve seizure
control. Therefore, this work has the potential to improve the quality of life in patients
with epilepsy by improving epilepsy diagnostics and treatment.

Keywords: neuromorphic system, epileptogenic tissue, spiking neural networks, electroencephalography,
epilepsy, system-on-a-chip

Abbreviations: ADM, Asynchronous delta modulator; ASM, Anti-seizure medication; ECoG, Electrocorticography; EEG,
Electroencephalography; EoI, Event of interest; EZ, Epileptogenic zone; FN, False negative; FP, False positive; FR, Fast
ripple; HFO, High frequency oscillations; iEEG, Intracranial EEG; ILAE, International League Against Epilepsy scale; IQR,
Interquartile range; ISI, Inter-spike-interval; NPV, Negative predictive value; PPV, Positive predictive value; SNN, Spiking
Neural Network; TLE, Temporal lobe epilepsy; TN, True negative; TP, True positive.

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 861480

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.861480
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.861480
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.861480&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/articles/10.3389/fnins.2022.861480/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-861480 May 27, 2022 Time: 14:55 # 2

Burelo et al. Neuromorphic SNN for HFO Detection

INTRODUCTION

Epilepsy and EEG
Epilepsy is the most common severe neurological disease. The
standard initial treatment for epilepsy is anti-seizure medication
(ASM), which results in seizure freedom in about 60% of patients
with epilepsy (Schmidt and Schachter, 2014). For the remaining
patients, in particular those with focal epilepsy, seizure freedom
may be achieved after epilepsy surgery (Ryvlin and Rheims, 2016;
Barba et al., 2020). The main objective of epilepsy surgery is to
remove or disconnect the epileptogenic zone (EZ) (Jette et al.,
2014), which is defined as the region responsible for generating
seizures (Rosenow and Luders, 2001). To delineate the surgical
resection, a variety of electrophysiological and imaging methods
are conducted. Current methods use intracranial EEG (iEEG) and
intraoperative ECoG recordings to delineate the resection area by
identifying epileptiform potentials (i.e., epileptic spikes or spike-
waves) (Jobst et al., 2020). These traditional biomarkers for the EZ
appear in frequencies < 80 Hz. Even though epileptic spikes are
sensitive and easily accessible biomarkers, they have been proven
to lack a stable correlation with the disease activity (Goncharova
et al., 2016; Grewal et al., 2019). Moreover, the current gold
standard for assessment of any therapeutic intervention in
epilepsy is self-reported seizure frequency, i.e., seizure diaries,
which have also often proved to be unreliable (Cook et al.,
2013; Elger and Mormann, 2013; Karoly et al., 2021). Overall,
monitoring the disease state in epilepsy is the key for assessing
the efficacy of ASM as well as for epilepsy surgery in achieving
seizure control. However, since current methods are not reliable,
more practical, and reliable biomarkers are urgently needed.

High Frequency Oscillations as a New
Biomarker for Epileptogenic Tissue
More recently, a biomarker was proposed that appears in
frequencies > 80 Hz: high-frequency Oscillations (HFO)
recorded in the EEG have been proposed as a reliable biomarker
for epileptogenic tissue (Jacobs et al., 2012; Frauscher et al.,
2017; Jiruska et al., 2017; Jacobs and Zijlmans, 2020; Chen
et al., 2021). HFO are generally described as spontaneous EEG
patterns in the frequency band between 80 and 500 Hz that
consist of at least four oscillations that clearly stand out of the
background noise of the signal (Figure 1). Historically, HFO
were first found to delineate the EZ in rat hippocampus, but
their underlying physiology is not yet agreed on (Jiruska et al.,
2017; Chen et al., 2021; Sarnthein et al., 2021). Nevertheless,
the delineation of the EZ using HFO (Frauscher et al., 2017;
Thomschewski et al., 2019) has proven to be highly predictive
of seizure outcome (Fedele et al., 2017b,c,d; Boran et al., 2019b;
Chen et al., 2021; Dimakopoulos et al., 2021) and therefore,
may improve the outcome of epilepsy surgery. Moreover, an
accumulation of recent evidence suggests that HFO are also
measurable by non-invasive scalp EEG (Andrade-Valenca et al.,
2011; Boran et al., 2019c; Kuhnke et al., 2019; van Klink et al.,
2019; Cserpan et al., 2021a, 2022a,b,c; Tamilia et al., 2021;
Noorlag et al., 2022). Therefore HFO are investigated as potential
biomarkers to delineate the EZ but also to monitor disease

FIGURE 1 | Example of an HFO. (A) HFO in iEEG signal as recorded. (B) HFO
in iEEG filtered in the Ripple band (80–250 Hz) and Fast-ripple band
(250–500 Hz). The gray line indicates the presence of an HFO. (C) The
time-frequency transform of the filtered signal shows the HFO as an isolated
peak. (D) Raster plot measured from the artificial neurons of our SNN. Multiple
neurons spiked (blue dots) as they recognized the presence of the HFO
[Modified from Sharifshazileh et al. (2021)].

severity and treatment response (Fan et al., 2020; Jacobs and
Zijlmans, 2020).

Conventional Methods for HFO Detection
Several automatic HFO detectors have been proposed
(Remakanthakurup Sindhu et al., 2020). Examples of these
detectors are the Morphology detector and the Spectrum
detector (Burnos et al., 2016; Fedele et al., 2017b). These
detectors operate in two stages. For the first stage, both detectors
find a baseline by identifying high entropy segments with
low oscillatory activity when the signal is transformed in the
time-frequency domain and mark the events that exceed this
baseline as Event of Interest (EoI). For the time frequency
analysis, the detectors use the Stockwell transform (Stockwell
et al., 1996). In the second stage, the two detectors use different
approaches to classify whether the EoI is an HFO or not. The
Morphology detector marks the EoI as HFO using a predefined
template of the morphology of an HFO (Burnos et al., 2016). The
Spectrum detector assesses the time frequency signature of the
EoI and marks the event as HFO if it exhibited an isolated high
frequency peak (Fedele et al., 2017b). Since these detectors run
in conventional computers, they require the recording data to be
pre-recorded before performing the detection offline. This offline
processing limits the application of HFO in clinical practice.
In this project, we aim for the construction of a compact and
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low-power device that can be used to support the diagnostics of
the disease on-line. To achieve this, we explore the capabilities of
neuromorphic technology.

HFO Detection With Neuromorphic
Technology
Neuromorphic electronic circuits are brain-inspired
architectures that support the implementation of spiking
neuronal networks (SNNs) for solving a wide range of spatio-
temporal pattern recognition problems (Brette and Gerstner,
2005; Bartolozzi and Indiveri, 2007; Indiveri et al., 2011;
Chicca et al., 2014; Indiveri and Liu, 2015; Rubino et al., 2021;
Bartolozzi et al., 2022). Their computation “at the edge” allows
the processing of the signals being measured locally without
requiring bulky computers or the need for internet connection
and cloud servers. A compact embedded neuromorphic
system can be designed to record EEG and detect HFO online
and in real time.

Our goal was to develop spiking neural network architectures
that could exploit the temporal dynamics of the silicon
neurons and synapses implemented in hardware to detect
clinically relevant HFO. To achieve this goal, we performed
experiments with a neuromorphic hardware (Moradi et al.,
2018) to determine its computational properties, its features, and
its limitations. Using this information, we developed models,
architectures, and full custom SNN architectures in software.
For the software simulation of the SNNs, we used the Python
SNN simulator Brian2 (Goodman and Brette, 2008) and the
custom toolbox Teili (Milde, 2018). While accounting for the
dynamics and inhomogeneous parameters of the hardware
counterparts, we could demonstrate that the SNN implemented
in the neuromorphic processor detected clinically relevant HFO.
In a future implementation, this system might provide valuable
information during surgery and simplify the collection of
statistics in long-term epilepsy monitoring.

Outline
In this review, we focus on four related publications (Table 1).
In first simple approach, we used logistic regression to detect

HFO in iEEG (Sharifshazileh et al., 2019). In an improved
approach to detect HFO in iEEG we designed an SNN
in software and validated it on hardware (Sharifshazileh
et al., 2021). We next adapted the SNN to detect HFO
in intraoperative ECoG (Burelo et al., 2021) and scalp
EEG (Burelo et al., 2022). Different from the original
publications, we compare here in detail the multiple analyses
conducted in the different recording modalities (iEEG,
ECoG and scalp EEG).

The structure of this review follows the steps needed to
design a pipeline for the detection of clinical relevant HFO.
In Section “Summary of main results”, we go through the pre-
processing stages. In section “The signal to noise ratio (SNR)
affects HFO detection”, we show how we used logistic regression
to post-process the signal to find HFO and explain the reasons
why we decided to build an SNN to solve this task. In section
“Comparison with the clinically validated off-line automatic HFO
detectors”, we go through the analysis conducted to find the
architecture and parameters of an SNN that could be mapped in
the neuromorphic hardware and could detect clinically relevant
HFO. The Appendices contain specific details on the methods
of the analyses. We briefly summarize the clinical relevance of
our results in Section “Comparison of our neuromorphic SNN
approach to other methods.” Finally, we discuss the challenges of
HFO detection and how our approach is different from others in
the literature in our vision to create a wearable medical device for
epilepsy diagnostics.

RESULTS

Pre-processing Stages
The signal pre-processing stages in our HFO detection pipeline
are amplification, band-pass filtering, baseline detection,
and transforming the continuous signal into spikes using
a signal-to-spike conversion algorithm. The amplification
is only in hardware and thus not further explained here.
The software simulations took into consideration the
characteristics and limitations of the hardware components
built for each specific stage.

TABLE 1 | SNN for HFO detection in different recording modalities.

Publication Modality Content Summary of results

Sharifshazileh et al.,
2019

iEEG Measurements of hardware
components HFO detection in software
using logistic regression

Power consumption of each filter: 0.9 µW
Static power consumption of ADM: 104 nW
Power consumption of the analog headstage:
6.2 µW per channel

Sharifshazileh et al.,
2021

iEEG SNN for HFO detection in software and
in hardware; core SNN; power
consumption of hardware

Prediction of postsurgical seizure outcome in
nine patients with 78% accuracy. Power
consumption of analog headstage for
pre-processing of pre-recorded iEEG: 7.3 µW
per channel. Power consumption of SNN
during HFO detection: 555.6 µW

Burelo et al., 2021 ECoG Simulated SNN for HFO detection; core
SNN and in-band artifact rejection

Prediction of postsurgical seizure outcome in
eight patients with 100% accuracy.

Burelo et al., 2022 Scalp EEG Simulated SNN for HFO detection;
extended SNN for artifact detection

Prediction of active epilepsy in 11 pediatric
patients with 80% accuracy. HFO rate
correlates with seizure frequency (ρ = 0.90).
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FIGURE 2 | The SNN to detect HFO in iEEG, ECoG and the scalp EEG. The input to our SNNs are the UP and DN spike trains generated by converting the signals
into spikes. The core SNN architecture (green box, used for iEEG) for HFO detection consists of input neurons (gray) receiving the input UP-DN spikes from the
filtered signal in HFO band (ripple band and FR band for iEEG, FR band for ECoG, and ripple band for scalp EEG). These inputs project to a second layer of neurons
(green) with different synaptic parameters. The core SNN can also interact with the in-band artifact rejection SNN (purple box, added for ECoG). For this interaction,
the inputs of the core SNN are projected to the dis-inhibitory neuron (purple) using excitatory synapses. This neuron projects inhibitory synapses to a global-inhibitory
neuron (orange), which is continuously inhibiting the second layer neurons. The role of the interneuron and the inhibitory neuron is to avoid the false detection of
sharp transients. The artifact rejection SNN (yellow box, added for scalp EEG) consists of input neurons (gray) receiving the input UP-DN spikes from filtering the
signal above 500 Hz. These inputs project to a second layer of neurons (yellow) with different synaptic parameters. Panels modified from Burelo et al. (2021, 2022)
and Sharifshazileh et al. (2021).

TABLE 2 | Synapse parameters of the SNNs for HFO detection.

Connection Network Name Connection
strength (fA)

Polarity Time constant τ

(ms)
Weight (fA)

1 Input UP spikes to second layer
core SNN

core SNN Sup−coreSNN (7–14) exc (3–6) 1 or 2

2 Input DN spikes to second
layer core SNN

core SNN Sup−coreSNN (7–14) inh Sup−coreSNN−(0.1–
1)

−1 or −2

3 Input UP spikes to dis-inhibitory
neuron

in-band HFO
rejection SNN

Sup−di 21 exc 5 3

4 Input DN spikes to dis-inhibitory
neuron

in-band HFO
rejection SNN

Sup−di 21 exc 5 3

5 Dis-inhibitory neuron to
global-inhibitory neuron

in-band HFO
rejection SNN

Sup−gi 17.5 inh 20 2.5

6 Global-inhibitory neuron to
second layer core SNN

in-band HFO
rejection SNN

Sup−coreSNN 24.5 inh 5 2.5

7 Input above 500 Hz UP spikes
to second layer artifact SNN

artifact detection
SNN

Sup-artifactSNN (7–14) exc (3–6) 1 or 2

8 Input above 500Hz DN spikes
to second layer artifact SNN

artifact detection
SNN

Sup- artifactSNN (7–14) inh Sup-
artifactSNN–(0.1–1)

−1 or −2

For HFO detection in iEEG, we used the neurons in rows 1 and 2. For HFO detection in ECoG, we added the neurons in rows 3–6.
For HFO detection in scalp EEG, we added the neurons in rows 7 and 8.
A connection between two neurons is characterized by the positive (excitatory, exc) or negative (inhibitory, inh) current in fA and the time constant.

Filtering
To detect HFO, we analyzed the EEG signals in different
frequency bands depending on the EEG modality. For the
intraoperative ECoG data, we filtered the signal in the fast ripple

band (FR) (250–500 Hz), in line with previous studies (Wu et al.,
2010; Boran et al., 2019b). For the scalp EEG data, we filtered
the signal in the ripple band (80–250 Hz), since it has been
shown that analyzing the signal in this band gives more clinically
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relevant information than in the FR band (Boran et al., 2019c;
Cserpan et al., 2021a). For the iEEG data, we filtered the signal in
the ripple and FR bands, since the co-occurrence of HFO in these
two bands showed an optimal prediction of post-surgical seizure
freedom by defining an “HFO area” (Fedele et al., 2017b).

We use analog filters in hardware implementation as well
as software SNN for frequency localization in HFO bands. The
filters implemented in analog headstage of the neuromorphic
processor DYNAP-SE2 (Sharifshazileh et al., 2021) comprise
three operational amplifiers that are configured to form a
Tow-Thomas resonating architecture. This configuration offers
independent tuning of quality factor and center frequency
of the desired frequency bands. In software simulations of
the SNN, we therefore used Butterworth filters since are a
good approximation of the tuned Tow-Thomas architectures
implemented in hardware.

Signal-To-Spike Conversion
To interface and communicate with the silicon neurons in the
neuromorphic processor, DYNAP-SE2 includes an asynchronous
delta modulator (ADM) block at the backend of analog headstage
right after the filters, which converts the analog signal into
UP or DOWN digital pulses depending on the changes in
the amplitude of the analog filter outputs. These pulses are
from now on referred to as spikes (Corradi and Indiveri, 2015;
Yang et al., 2015; Sharifshazileh et al., 2019). In the software
simulations, we implemented an algorithm that emulates the
behavior of the ADM circuit faithfully. In addition, to increase
the efficiency and save time for tuning hyper parameters, we
included a baseline detection that is used to determine the
optimal spike generation thresholds automatically for this signal
conversion. In Supplementary Appendix B, we explain how we
detect the baseline of the signal and how the signal-to-spike
conversion algorithm works both, in software and in hardware.
Dynamically, the UP spikes indicate when the signal increased
in amplitude more than a user-defined threshold (VTH,UP-
VBaseline,avg) and the DOWN (DN) spikes indicate when the
signal decreased in amplitude more than another user-defined
threshold (VBaseline,avg-VTH,DN), where VBaseline,avg is the DC
component of the analog filtered signal and VTH,UP and VTH,DN
are tunable voltages for setting spiking thresholds. One can
intuitively figure out that VTH,UP > VBaseline,avg > VTH,DN
and we simply set thresholds for UP and DN to be equal
(VTH,UP-VBaseline,avg = VBaseline,avg-VTH,DN). With this operation
principal, the occurrence rate of spikes in the ADM output
depends on the derivative of the signals and user-defined
thresholds. To introduce another degree of freedom for output
spike rates, ADMs also feature another tunable parameter that
controls the inter-spike time interval, also referred to as the
refractory period, during which, the ADM cannot spike even if
the signal demands spike generation.

HFO Detection Using Logistic
Regression
We first used logistic regression to study whether a simple
method could achieved good performance in finding clinically
relevant HFO (Sharifshazileh et al., 2019). For this analysis, we

used selected data from a published data set and used it as training
signal (Fedele et al., 2017a). In Supplementary Appendix A, we
explain how the training signal was created. We filtered the signal
in the ripple and FR band and obtained four spike trains (the UP
ripple, DN ripple, UP FR, and DN FR). We first calculated the
mean firing rate of each spike train separately in time windows
of 45 ms (with a 10 ms overlap). The mean firing rate of the
spike trains were used as “features,” the validated HFO marked
in the original dataset by the Morphology detector were used as
the teacher signal (Fedele et al., 2017b). In the training phase, we
found the weights for each spike train to classify time windows
of 45 ms as a time window containing HFO or not. For this
training, we used a 20–80% cross-validation scheme. We found
the weights 0.0052, 0.0086, 0.00044, and 0.0031 for the UP ripple,
DN ripple, UP FR, and DN FR spike train, respectively. In the test
phase we used these weights to classify time windows of 45 ms as
time windows containing HFO or not in each 5-min recording
of the iEEG dataset. For each patient, we calculated the HFO rate
in each channel and used it to define the HFO area. In Section
3.4.1, we explain how this area is calculated. The classification
task consisted of predicting the seizure outcome of the patient
(seizure free or seizure recurrence) based on the overlapping of
the HFO area and the resected area during surgery. The specificity
achieved with this approach was 73%, which is below the one
achieved by the Morphology detector in the same dataset (100%)
(Fedele et al., 2017b). The poor performance of logistic regression
might be because logistic regression works as an amplitude
threshold and does not take into account temporal changes in
the signal; these temporal changes are important when trying to
find patterns in biomedical signals. To improve the performance
in this classification task using the UP and DN spike trains, we
decided to build an SNN and exploit its temporal properties.

Optimal SNN Architectures and
Parameters for HFO Detection
Our approach using SNNs was to explore architectures that could
be mapped onto a neuromorphic processor and at the same time,
could detect HFO. In designing our SNNs, we took inspiration
from clinically validated automatic HFO detectors that run their
analysis in conventional computers. We have specifically used
the Morphology and Spectrum detectors (Burnos et al., 2016;
Fedele et al., 2016, 2017b), which were used to detect HFO in the
datasets used in our study. We first present the main observations
of the HFO detected by these detectors, and how we used this
information to define the architectures of our SNNs. In Section
3.3.1, we present the results from analyzing the UP and DN
spike trains from a subset of our datasets. In the Supplementary
Appendix A, we explain how we built these training signals. The
results from these analyses were used to define the synaptic and
neuron parameters of our SNNs. Finally, in Sections 3.3.2, 3.3.3
and 3.3.4 we present our final SNN architectures used to detect
HFO in iEEG, ECoG and scalp EEG, respectively.

For examples of HFO see the filtered signals in Figure 2.
One of the characteristics in the signal that the Spectrum and
Morphology detector consider to find HFO in EEG is that
the signal contains four or more oscillations standing out of
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the baseline (Figure 1B). Since HFO present distinct frequency
characteristics (Supplementary Appendix D), we investigated
the frequency characteristics of our neuron and synapse models
(Supplementary Appendix C). We sent spikes to our neuron
model and showed that by using a specific set of time constants,
the neuron was able to respond to spectral properties of single
HFO (Supplementary Figure C1). To detect HFO that have a
large variety of frequency characteristics, we designed an SNN
with two layers. The first layer are the UP and DN spike trains
and the second layer are neurons that receive the UP and DN
spike trains but with slightly different synaptic parameters. The
goal was to rely on the ensemble of neurons in the second layer to
detect most of the clinically relevant HFO previously marked by
the Morphology detector.

Finding the Optimal Range for the Synaptic
Parameters
To find the optimal synaptic parameters for our SNNs, we
followed a different approach than conventional machine
learning techniques. This decision was taken since machine
learning methods will result in exact values for the parameters.
While in software it is possible to set exact values, in the
neuromorphic hardware this is not possible due to the variability
in the actual currents flowing across the transistors. This
variability is called mismatch and it is inevitable (Pavasovic et al.,
1994). Therefore, we instead optimized a range of values. The
ranges we used were compatible with the distributions measured
from the analog circuits implemented in hardware.

The synaptic parameters between the input spike trains
and the second layer neurons were found heuristically by
analyzing HFO and noise samples in the iEEG training signal
(Supplementary Appendix A). The signal was filtered in two
frequency bands (ripple and FR) and converted to spikes, which
resulted in four spike trains (UP ripple, DN ripple, UP FR, and
DN FR). These inputs were sent to a layer of 256 neurons. The
first step to find optimal parameters was to set initial values.
We calculated and analyzed the inter-spike-interval (ISI) of
the spike trains. The details of this analysis are explained in
Supplementary Appendix E. We observed that the interquartile
range (IQR) of the ISI distribution during an HFO was 0.5–
6.3 ms for the spike trains from the ripple band and 0.3–2.7 ms
for the ones from the FR band. For the noise, the IQR of the
ISI distribution was 0.6–10.3 ms for the spike trains from the
ripple band and 0.4–4.2 ms for the ones from the FR band
(Supplementary Figure E1). Therefore, for each connection
between the input and a neuron in the second layer, the synaptic
time constant was drawn randomly from a normal distribution
with a range from 0.5 to 6.3 ms for the UP and DN spikes from
the ripple signal, and from 0.3 to 2.7 ms for the UP and DN spikes
from the FR signal (Supplementary Figure E2). As a second
step, we analyzed the response of the neurons in the second
layer to this set of parameters. The initial parameters resulted in
three different type of neurons: some responded to HFO, some
others responded to noise, and some others did not generate any
response (Supplementary Figure E3). After we performed an
automatic classification of these neurons and a cluster analysis,
which is explained in detail in Supplementary Appendix E, we

found that to maximize the number of neurons in the second
layer that respond to HFO and remain silent otherwise, the
excitatory time constant should be in a range between 3 and 6 ms.
Additionally, the inhibitory time constant should be shorter that
the excitatory one in a range between 0.1 to 1 ms. We called this
SNN the core SNN (Figure 2).

The Core SNN Detects HFO in iEEG
We first used the core SNN to detect HFO in the iEEG. We filtered
the signal in two frequency bands: ripple and FR (Fedele et al.,
2017b). Each of these signals was converted to spikes using the
ADM algorithm. The signal-to-spike threshold was set to 50% of
the estimated baseline amplitude for the ripple band and 30%
for the FR band. The refractory period of the signal-to-spike
conversion for both bands was set to 300 µs. The ADM generated
four spike trains, which were the inputs to the core SNN. The
core SNN (Figure 2, green box) consists of an input layer of
neurons that project the UP and DN spike trains to a second layer
of neurons. For this analysis, all the preprocessing stages were
performed in software. The SNN was first simulated in software
and then mapped onto a neuromorphic processor to evaluate its
performance in hardware (Sharifshazileh et al., 2021).

We used the SNN simulator Brian 2 and the toolbox Teili
(Milde, 2018) to simulate the core SNN. In Supplementary
Appendix C, we show the neuron and synapse models used in
the simulations. The average time constant for all the neurons
in the second layer was chosen to be 15 ms. The strength of
the synaptic weights from the input layer to the second layer
was set to either 1 or 2 nA. To capture the oscillations of an
HFO, the polarity of these weights should be opposite. Hence, we
used positive weights for the UP spikes (excitatory synapses) and
negative weights for the DN spikes (inhibitory synapses). For the
synaptic time constants, we first set the excitatory time constants
(from the UP spikes). For each neuron in the second layer, we
randomly selected a value between 3 and 6 ms. We then set the
inhibitory time constant (from the DN spikes). For each neuron,
we took its excitatory time constant and subtracted a randomly
chosen value in the range between 0.1 and 1 ms (Sharifshazileh
et al., 2021). For example, a neuron in the second layer had a
time constant of 3.5 ms and its inhibitory time constant was set
to 3.5–0.2 (3.3 ms). The spikes from the second layer neurons in
the core SNN were used to mark HFO. Any spike within a 15 ms
window indicated an HFO and consecutive windows containing
spikes were concatenated to indicate the same HFO.

To validate the software simulations of the SNN in hardware,
we mapped the architecture of the core SNN to the neuromorphic
processor DYNAP-SE (Moradi et al., 2018), for which a
working prototyping framework was available. We sent software
generated UP and DN spike trains, through an FPGA via
USB-2.0, directly to input pins of the DYNAP-SE. The FPGA
is required to establish handshaking with the chip and make
sure that the communication complies with address-event
communication protocol.

For the second layer in the core SNN, we used a single chip-
core of the DYNAP-SE, comprising 256 silicon neurons that
share the same neuronal dynamics parameters. Hence, while in
software we set the synaptic parameters to be random values
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within an optimal range (Table 2), for the hardware SNN we
can only set a single value shared among all neurons, which
was the mean of the optimal range optimized in software.
Note that although synaptic and dynamic parameters are shared
among neurons, a normal distribution of parameters (with the
same mean and a different standard deviation) is maintained
in hardware due to manufacturing non-idealities and mismatch
among transistors and capacitors. To map the architecture, set
the network parameters, and interface the input spikes, we used a
high-level software-hardware interface designed in collaboration
with SynSense AG., Switzerland. We then recorded the output of
the silicon neurons using the same framework.

Any spike within a 15 ms window indicated an HFO and
consecutive windows containing spikes were concatenated to
indicate the same HFO. During the hardware simulations, some
neurons were continuously spiking. We considered these outlier
neurons to be uninformative, and therefore they were switched
off for the whole study. The activity of the rest of the neurons
faithfully signaled the detection of HFO.

For both, software and hardware simulations, the core SNN
successfully detected clinically relevant HFO in the iEEG dataset
(Sharifshazileh et al., 2021) (Figure 3D).

The In-Band Artifact Rejection SNN Allows the
Detection of HFO in ECoG
We next searched for HFO in the ECoG. We filtered the signal
in the FR frequency band (Burelo et al., 2021). The filtered
signal was converted to spikes using the ADM algorithm. The
signal-to-spike threshold was set to 50% of the estimated baseline
amplitude and the refractory period was set to 300 µs. The signal-
to-spike conversion generated two spike trains, which we used as
inputs to the core SNN. To find HFO in ECoG, we augmented
the core SNN by adding an in-band artifact rejection architecture
(Figure 2, purple box) (Burelo et al., 2021). This decision was
taken since we observed that the signal recorded during surgery
was more prone to fast transient artifacts. The in-band artifact
rejection SNN consists of a global inhibitory neuron and a
dis-inhibitory neuron. The global-inhibitory neuron constantly
suppresses the activity of the neurons in the second layer to keep
them from responding to fast transients in the signal. The UP
and DN spike trains are projected to the dis-inhibitory neuron
using excitatory synapses. The function of the dis-inhibitory
neuron is to allow the second layer neurons to respond to
HFO by suppressing the activity of the global inhibitory neuron
(Burelo et al., 2021).

The parameters for the global-inhibitory and dis-inhibitory
neurons were found heuristically by analyzing HFO and
sharp transients in the ECoG training signal (Supplementary
Appendix A). The signal was filtered in the FR band and
converted to spikes, which resulted in two spike trains (UP FR
and DN FR). We observed that the median duration of the HFO
in the training signal was 24 ms, while the median duration of fast
transients was 8 ms. Moreover, the median amount of UP-DN
cycles (defined in Supplementary Appendix E) for an HFO was
six cycles, while for the fast transients it was two cycles. However,
a single UP-DN cycle of an HFO was shorter (2.6 ms) than a
single cycle of an artifact (3.2 ms). This means that to inhibit

the second layer of neurons during a fast transient, the global-
inhibitory neuron must suppress their activity for at least one
UP-DN cycle. The suppression of the activity of the second layer
neurons during the first cycle resulted in a suppression of HFO
with short duration. However, this design choice did not affect
the maximum HFO rates in the benchmarking between our SNN
detector and the Spectrum detector. On the other hand, to allow
the second layer of neurons to respond to HFO, the dis-inhibitory
neuron should start the inhibition of the global-inhibitory neuron
as early as possible (i.e., after the first cycle) and should last the full
duration of the HFO.

Since the dis-inhibitory neuron receives excitatory inputs
from both UP and DN spikes, any activity in the signal could
cause the activation of the dis-inhibitory neuron. This activation
could activate the dis-inhibition of the second layer neurons
and consequently, could result in an erroneous HFO detection.
We avoided this dis-inhibition by using a short synaptic time
constant for the connections of the dis-inhibitory neuron. Hence,
the dis-inhibitory neuron was activated only during periods of
elevated UP-DN spiking as it occurred during a fast transient
or an HFO. Figure 2 from the Publication 3 (Burelo et al.,
2021) shows an example of the interaction between the global-
inhibitory, dis- inhibitory neuron and the neurons in the second
layer. Adding the artifact rejection SNN to the core SNN resulted
in a successful suppression of fast transients. The spikes from the
second layer of the core SNN were used to mark an HFO. Any
spike within a 15 ms windows indicated an HFO and consecutive
windows containing spikes were concatenated to indicate the
same HFO. The neurons in the second layer detected clinically
relevant HFO in ECoG (Figure 3H).

An Extended SNN Detects HFO in Scalp EEG
We finally searched for HFO in the scalp EEG. The main difficulty
in analyzing scalp EEG is that the signal to noise ratio is smaller
than in iEEG and ECoG. This means that the HFO can be lost
in the background noise if the parameters of the signal-to-spike
conversion are not set properly. For the analysis of scalp EEG, we
decided to make changes in the preprocessing stage by analyzing
the impact of changing the parameters of the ADM algorithm
(threshold, refractory period, and interpolation factor) on the
HFO detection. For this analysis, we first filtered the scalp EEG
training signal (Supplementary Appendix A) in the ripple band
and converted it into spikes using the ADM algorithm. We then
performed a parameter sweep over the signal-to-spike conversion
threshold, refractory period, and interpolation factor. We sent
the input spikes to the core SNN and compared the periods of
time where the second layer neurons marked an HFO to the
periods of time where the Spectrum detector mark an HFO.
The optimal signal-to-spike conversion parameters were the ones
that resulted in more HFO detections in accordance with the
Spectrum detector and in fewer wrong detections (periods where
the Spectrum detector did not mark an HFO).

To find HFO in scalp EEG, the Spectrum detector added a
visual inspection of the detected HFO and performed a manual
elimination (Boran et al., 2019c). This is a common step for scalp
EEG since there is a larger amount of artifacts in comparison
with iEEG and ECoG. In our pipeline, we also added an extra
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artifact rejection, however, our implementation is completely
unsupervised. Our approach consists of adding an artifact
detection SNN (Figure 2, yellow box) which detects artifacts in
the frequency range above common HFO (> 500 Hz). The input
to this network are the UP and DN spike trains encoding the
scalp EEG signal filtered in the 500–900 Hz frequency band. For
the signal-to-spike conversion we set the threshold to 30% of the
estimated baseline amplitude and a refractory period of 300 µs.
This SNN has the same architecture and parameters as the core
SNN [(3–6) ms for the UP spikes and τexc–(0.1–1) for the DN
spikes], however, it receives a different input. This SNN is used in
parallel to the core SNN. For the input to the core SNN and in-
band artifact rejection SNN, the signal was filtered in the ripple
frequency band, the signal-to-spike threshold was set to 30% of
the estimated baseline amplitude, and the refractory period was
set to 1 ms. The spikes from the second layer of the core SNN were
used to mark an event of interest (EoI). Any spike within a 15 ms
windows indicated an EoI and consecutive windows containing
spikes were concatenated to indicate the same EoI. The second
layer neurons in the artifact detection SNN respond to any high-
amplitude signal that might have been detected as HFO by the
core SNN. The 15 ms time window after a spike in the artifact
detection SNN was taken as the duration of an artifact. The EoI
was classified as HFO if there was no overlap between the EoI and
an artifact. The goal of the artifact detection SNN is to capture
oscillations that might resemble an HFO, but due to their high
amplitude and frequency should be rejected instead. The artifact
detection SNN successfully reduced the number of false HFO
detections, which resulted in the detection of clinically relevant
HFO in scalp EEG (Figure 3F).

The SNN Detects Clinically Relevant HFO
HFO detection was performed independently for each bipolar
channel in the datasets. After using the spikes from the SNN to
find HFO, we calculated the HFO rate by dividing the number of
HFO detected in the channel by the duration of the recording. We
then tested whether the HFO rate was associated with the clinical
characteristics of the patient.

HFO in iEEG
We analyzed the iEEG from nine patients who had been
implanted with depth electrodes in the medial temporal lobe
(MTL) to determine the EZ. The putative EZ was later resected
in epilepsy surgery (Figure 3A). We calculated the mean HFO
rate in each channel across all the recordings from a single
patient. We then defined the area under the channels where
the HFO rate exceeds the 95 percentile of the rate distribution
as “HFO area” (i.e., channel AR2-3 in Figure 3G). Finally,
we compared this HFO area with the area resected during
surgery, and retrospectively “predicted” the postsurgical outcome
of each patient.

The HFO area was not fully resected in a patient who suffered
from recurrent seizures; we defined this correct prediction of
recurrent seizures as true positive (TP = 1); The HFO area
was fully resected in six patients that achieved seizure freedom;
we defined this correct prediction of seizure freedom as true
negative (TN = 6). The HFO area was completely resected in

two patients that suffered from recurrent seizures; we defined this
false prediction of seizure freedom as false negative (FN = 2).
There was no case where the HFO area was not completely
removed in a patient with seizure freedom (FP = 0).

Therefore, we predicted the postsurgical outcome of nine
patients with TLE with a 78% accuracy and 100% specificity
(Table 3). The high specificity achieved by our system indicates
that the analysis of HFO using SNNs and neuromorphic
technology is consistent with the current surgical planning
(Sharifshazileh et al., 2021).

HFO in ECoG
We analyzed the ECoG from eight patients whose resective
epilepsy surgery was guided by intraoperative high-density
ECoG. For each patient there was available a recording before
(pre-) (Figure 3B) and after (post-) the resection. Since the
presence of a single channel with residual HFO has been shown to
predict seizure recurrence (Boran et al., 2019b), for each patient,
we selected the recording channel that had the highest HFO
rate in the pre- and post-resection recording. Figure 3H shows
the HFO rates we found in the pre-ECoG (upper panel) and
post-ECoG (bottom panel) for the same patient. The HFO rate
threshold of > 1 HFO/min in unresected channels was used
to “predict” seizure recurrence. Channels with an HFO rate ł 1
HFO/min in the last post-resection ECoG were defined as having
residual HFO. We retrospectively “predicted” seizure freedom in
patients with no residual HFO in the post-resection recording
and recurrent seizures in patients with residual HFO.

The maximal HFO rate was > 1 HFO/min in all the pre-
resection recordings of all eight patients [eight recordings,
median duration 3.9 min, median 6.6 HFO/min, range (1.3–45)
HFO/min]. In one patient we found residual HFO (HFO rate > 1
HFO/min) in the post-resection ECoG. This patient suffered
from recurrent seizures; we defined this correct prediction of
recurrent seizures as true positive (TP = 1) (Figure 3H). We
did not find residual HFO (HFO rate < 1 HFO/min) in the
post-resection ECoG of seven patients that achieved seizure
freedom; we defined this correct prediction of seizure freedom
as true negative (TN = 7). There was no case where we did not
find residual HFO (HFO rate < 1HFO/min) in a patient with
recurrent seizures (FN = 0) nor was there case where we found
residual HFO (HFO rate was > 1 HFO/min) in a patient who
achieve seizure freedom (FP = 0).

Therefore, we predicted the patients’ seizure outcome with a
100% accuracy and 100% specificity (Burelo et al., 2021; Table 3).

HFO in Scalp EEG
We analyzed the scalp EEG from 11 pediatric patients with
drug-resistant focal lesional epilepsy. The presurgical scalp EEG
recordings available in our dataset were part of the presurgical
evaluation. While the postsurgical (Figure 3C) scalp EEG
recordings were part of the follow-up after the surgery. All the
scalp EEG were recorded during sleep. We then used the median
HFO rate of the electrodes located on the affected hemisphere
to predict whether the patient had active epilepsy (seizure
frequency ≥ 1 seizure/month) or not (seizure frequency < 1
seizure/month). If the HFO rate exceeded the rate threshold, the
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FIGURE 3 | Examples of HFO detection in iEEG, ECoG and scalp EEG. (A–C) We detected HFO in three recording modalities. (A) We analyzed iEEG recordings
from a patient with temporal lobe epilepsy (TLE) who was implanted with depth electrodes, (B) the ECoG from a patient whose surgery was guided using ECoG
electrodes and (c) a scalp EEG from a child with drug-resistant focal lesional epilepsy. [(D–F) upper panels] The wideband signal was filtered in HFO bands [(D–F)
upper panels], The filtered signals were converted into spikes [(D–F) middle panel] and sent as input to the SNNs. The green dots of the raster plots [(D–F) bottom
panels] show the activity of the second layer neurons indicating the presence of an HFO in the signal, and the purple mark shows the time window that our detector
marked as HFO due to this spiking activity. (G) We used the HFO rates found in iEEG to define the HFO area (AR2-3), which was compare to the resection area to
predict the seizure outcome of the patient. (H) Our SNN found a high HFO rate (HFO rate > 1 HFO/min) in the pre-resection ECoG from a patient. The SNN found a
HFO rate of > 1HFO/min in a patient who suffers from recurrent seizures. Hence, our SNN predicted seizure recurrence in the individual patient. (I) The scalp HFO
rate correlated with seizure frequency of our pediatric patient and mirrored the surgical treatment response. Panels modified from Burelo et al. (2021, 2022),
Sharifshazileh et al. (2021).

recording was defined as a recording showing HFO. We used
a rate threshold of 0.25 HFO/min which was taken from in a
previous study on the same dataset (Boran et al., 2019a,c).

The scalp EEG recordings from ten patients with active
epilepsy showed HFO; we defined this correct prediction of active

epilepsy as true positive (TP = 10). The scalp EEG recordings
from six patients who achieved seizure freedom did not show
HFO; we defined this correct prediction of seizure freedom as
true negative (TN = 6). The scalp EEG recordings from four
patients with active epilepsy did not show HFO; we defined this
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false prediction of seizure freedom as false negative (FN = 4).
We did not find a case where the scalp EEG recording showed
HFO in a patient who achieved seizure freedom (FP = 0).
Therefore, the SNN associated the HFO rate with active epilepsy
with 80% accuracy and 100% specificity (Burelo et al., 2022;
Table 3).

As a further result, Figure 3I shows how the HFO
rate correlated with seizure frequency (ρ = 0.90,
p < 0.0001, Spearman’s correlation). We performed
a linear regression to estimate whether the HFO rate
predicts the seizure frequency. The equation for the
regression of seizure frequency on HFO rate becomes
log10(seizure_frequency) = 2.27 × log10(HFO_rate) + 0.7
with R2 = 0.76. In a longitudinal approach, we observed that
the change in seizure frequency (before and after surgery)
was reflected in change of the HFO rate between pre- and
post-operative recordings (8 cases, χ2

1 = 8, p = 0.0047).

Comparison of SNN With Offline
Automatic HFO Detectors
In the iEEG, we compared the results obtained with our SNN to
those from the Morphology detector for the individual patient
and over the group of patients (Table 3). The overall prediction
accuracy for our system across the nine patients is comparable
to that obtained by the Morphology detector. Both detectors
achieved a 100% specificity.

In the ECoG, we compared the results obtained with our SNN
to those from the Spectrum detector (Table 3). The HFO rates
found by the two detectors were correlated (ρ = 0.81, p > 0.0001
Spearman rank correlation). Moreover, the simulated SNN and
the Spectrum detector reached the same “prediction” for each
patient in this dataset. Even though the SNN prediction of the
poor outcome (seizure recurrence) was limited to data from
one patient, when not considering only post- resection but also
pre-resection recordings, the SNN reached similar results as the
Spectrum detector (HFOs present/HFOs not present) in all 16
recordings. Hence, the performance of the SNN on ECoG is
comparable to that of the Spectrum detector.

For scalp EEG, we compared the results obtained with our
SNN to those from the Spectrum detector (Table 3). The HFO
rates found by the two detectors were correlated (ρ = 0.83,
p < 0.0001 Spearman’s rank correlation). When comparing
the HFO rates between affected and non-affected hemispheres,
the results from the SNN did not reach statistical significance
(p = 0.36), while in the results from the Spectrum detector there
was a significant difference (p = 0.0003). Nevertheless, the two
detectors reached agreement on the classification of epilepsy
severity as they both associated the HFO rate with active epilepsy
with an 80% accuracy. Moreover, both detectors established
a significant correlation of HFO rate with seizure frequency
(ρ = 0.90, p < 0.0001, Spearman’s correlation).

Specifications of the Hardware
Implementation
The neuromorphic hardware DYNAP-SE2 was fabricated using
a standard 180 nm Complementary Metal-Oxide-Semiconductor
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FIGURE 4 | Overview of the hardware implementation of our HFO detection system. (A) Abstract schematic of the pre-processing and configuration pipeline.
Signals from the electrodes pass through amplification, filtering and analog delta modulation (ADM) delta modulation to reach the spiking neural network (SNN). The
chip can be configured, send and receive data through an FPGA daughterboard and via a personal computer; note that this is not required to be online during the
operation of the chip. (B) Micrograph of the eight channels of analog headstage implemented on the top-left corner of the chip (the image is rotated 90◦ clockwise)
and they are located right next to one of the four neural cores.

(CMOS) process (Sharifshazileh et al., 2021). The preprocessing
block that is implemented on-chip, consists of eight analog
headstages each responsible for the amplification of the input
signal by 20-60-dB, filtering it into three individually tunable
frequency bands, and signal-to-spike conversion for individual
frequency bands and raw data, with tunable spiking threshold
and refractory period (Figure 4). The headstages interface with a
multicore neuromorphic processor with 4 neurosynaptic cores of
256 neurons on the same chip. The processing cores are Dynamic
Neuromorphic Asynchronous Processors based on the DYNAP-
SE device (Moradi et al., 2018). The total chip area is 99 mm2.
The eight headstages occupy 1.42 mm2 with a single headstage
occupying an area of 0.15 mm2. For the HFO detection task, the
total average power consumption of the chip at the standard 1.8 V
supply voltage was 614.3 µW. The total static power consumption
of a single headstage was 7.3 µW. The conversion of filtered
waveforms to spikes by the ADMs consumed on average 109.17
µW. The power required by the SNN synaptic circuits to process
the spike rates produced by the ADMs was 497.82 µW, while the
power required by the neurons in the second layer of the SNN to
produce the output spikes rates was 0.2 µ W.

DISCUSSION

Summary of Main Results
We designed an HFO detection pipeline using SNNs and
neuromorphic technology, which is radically different from
other HFO detectors. With our analysis we were able to design
SNN architectures with parameters optimized for the detection
of clinically relevant HFO. The HFO rates found in iEEG

or ECoG predicted the patient’s seizure outcome with high
specificity and accuracy in patients that underwent epilepsy
surgery. Moreover, the HFO rate found by our pipeline in scalp
EEG not only correlated with the seizure frequency of pediatric
patients with epilepsy but it also mirrored their surgical treatment
response over time.

The Signal to Noise Ratio Affects HFO
Detection
The successful detection of HFO depends on the signal
acquisition quality and also on the characteristics of the
automatic HFO detector. In our research, we have followed
different approaches to ensure a good signal quality. The signal-
to-noise ratio (SNR) and the recording setup of all the datasets
used in our group are listed in Table 4. To determine the SNR,
we have computed the ratio between the amplitude of an HFO
found by an automatic detector (Spectrum or Morphology) and
the amplitude of the signal before and after the HFO. In this
study, we used the SNR information to take decisions for our
SNN architectures and parameters.

For the iEEG analysis, we used the dataset where the
Morphology detector found HFO with an SNR of 3.9 in the ripple
band and 2.3 in the FR band. The core SNN architecture used
for this analysis allowed us to achieve a specificity = 100% and
accuracy = 78%. Since the outcome prediction with the SNN was
not inferior to that of the Morphology detector (accuracy = 67%),
we conclude that our SNN was sufficient to detect enough
clinically relevant HFO.

For the ECoG analysis, we used the data set obtained with
the high-density electrodes as they have been shown to achieve
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higher SNR than standard ECoG electrodes (Boran et al., 2019b;
Zweiphenning et al., 2020). In ECoG, the Spectrum detector
found HFO with SNR = 7.3. The favorable SNR conditions
allowed us to achieve an accuracy of 100% in the outcome
prediction using the core SNN together with the in-band
artifact rejection SNN.

We faced a greater challenge in the analysis of the scalp EEG,
where the Spectrum detector found HFO with an SNR of 4. To
find HFO in the scalp EEG, we decreased the signal-to-spike-
conversion threshold. This decision allowed us to detect more
HFO in the signal but it also resulted in more artifacts being
falsely classified as HFO. We solved this problem by adding
an automatic artifact detection stage using a separate SNN that
detected transient artifacts by using the frequency band > 500 Hz,
which is above the HFO band. While the Spectrum detector
found a significantly higher HFO rate in the affected than in
the non-affected hemisphere (p = 0.0003), this was not the case
for our SNN detector (p = 0.3). This discrepancy between the
detectors was more apparent in the HFO rates of patients with
a deep-seated lesion, i.e., where the recording EEG channels
were located far from the HFO generator. In these patients, both
detectors found smaller HFO rates than in patients with a more
superficial lesion, suggesting a lower SNR in these recordings.
This observation suggests that our SNN may be more prone to
low SNR than the Spectrum detector. Nevertheless, our SNN
detector was able to associate the HFO rate with active epilepsy
with an 80% accuracy.

Overall, across all the recording modalities (iEEG, ECoG,
and scalp EEG), we demonstrated that the signal quality and
our SNN architecture and parameter decisions were sufficient
to characterize the clinical state of patients with epilepsy (i.e.,
determine epilepsy severity, seizure frequency, or predict the
seizure outcome of a patient that underwent surgery) using
neuromorphic technology.

Comparison With the Clinically Validated
Off-Line Automatic HFO Detectors
All the datasets used in this work were previously analyzed for
HFO by automatic detectors that obtained clinically relevant
results (Morphology and Spectrum) (Burnos et al., 2016; Fedele
et al., 2016, 2017c). Since for all the analyses we used pre-
recorded data, we were constrained by the signal acquisition
quality of the recordings. For the analysis of this retrospectively
collected data, offline automatic detectors like the Spectrum and
Morphology detectors have the advantage of post hoc signal
processing analyses. For example, both detectors perform a
time-frequency transformation across the whole signal only to
define a baseline for detecting HFO. This analysis consumes
a much higher power with conventional computers (order of
Watt) and with off-the-shelf analog components and custom
processors (order of mW) compared to the power consumption
of our neuromorphic processor (order of µW). In designing our
SNNs, we could not apply the same techniques as the offline
automatic detectors to facilitate the HFO detection. However,
we investigated the frequency characteristics of our neurons and
synapses and chose the parameter range that resulted in the

detection of HFO with a variety of frequency characteristics.
Note that we did not aim to have a one to one agreement
with these well-established automatic detectors. Rather, our SNNs
were built with the aim to analyze the data online with our
neuromorphic device. Overall, there was a comparable level of
prediction accuracy between the previously validated off-line
automatic detectors and our SNNs (Table 3).

We investigated the frequency characteristics of our neuron
and synapse models (Supplementary Appendix C). We sent
spikes to our neuron model and showed that by using a specific
set of time constants, the neuron was able to respond to spectral
properties of single HFO (Supplementary Figure C1). To detect
HFO that have a large variety of frequency characteristics, we
designed an SNN with two layers. The first layer are the UP and
DN spike trains and the second layer are neurons that receive
the UP and DN spike trains but with slightly different synaptic
parameters. The goal was to rely on the ensemble of neurons in
the second layer to detect most of the clinically relevant HFO
previously marked by the Morphology detector.

Comparison of Our Neuromorphic SNN
Approach to Other Methods
In this project, we have designed an embedded system for
processing EEG to demonstrate the clinical relevance of HFO
and to aid in the treatment of patients with epilepsy. Although
other embedded systems and VLSI devices have been designed
in the past for the processing of EEG signals (Yoo et al.,
2012; Van Helleputte et al., 2014; Feng et al., 2018; Burrello
et al., 2019), their power consumption is in the order of mW
compared to the order of µW consumption of our whole system
(headstage + processor). Moreover, they usually lack the co-
integration of an analog headstage with the processor and use off-
the-shelf analog components as cost-/time-saving measures since
perfecting the design of these blocks requires excessive amount
of time, financial resources and highly specialized labor force.
Separating the signal encoding stage from the processing stages
allows the implementation of sophisticated signal processing
techniques and machine learning algorithms (Feng et al., 2018;
Burrello et al., 2019; Zanghieri et al., 2021). However, using
off-the-shelf platforms for signal encoding or processing leads
to much higher power consumption and bulky platforms that
make the design of compact and portable embedded systems
more challenging.

To overcome these issues, we have focused on designing
a device using neuromorphic technology. Neuromorphic
processors offer the possibility to develop low-power and
compact devices, which results from their capability to carry out
computation “at the edge” (Pei et al., 2019; Yang et al., 2020, 2021;
Rubino et al., 2021; Sharifshazileh et al., 2021; Bartolozzi et al.,
2022). While the field of neuromorphic is mainly focused on the
design of multiprocessors, in this study we have augmented the
capabilities of neuromorphic technology by designing an analog
headstage for the pre-processing of biomedical signals that are
inherently desirable for mixed-signal neuromorphic processing
due to their sparse activity and low-frequency components.
This headstage was carefully designed to be compatible with the
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neuromorphic processor and therefore our project results in a
system that preserves the compactness and power consumption
advantages that neuromorphic approaches offer.

As a consequence of our decision to use neuromorphic
hardware, our signal processing pipeline to find HFO is also
different from other HFO detectors proposed in the literature
(Fedele et al., 2016, 2017b,c; Weiss et al., 2018; Boran et al.,
2019b; Nariai et al., 2019; Remakanthakurup Sindhu et al., 2020).
The main difference is the use of neuromorphic SNNs. These
architectures emulate many of the features found in biological
neural processing systems, such as the temporal dynamics of the
neurons and synapses, or the variability in their time constants,
refractory periods, and synaptic weights. Therefore, instead
of using conventional machine learning methods, where the
convention is to use neurons with homogeneous parameters and
a learning algorithm to determine the weights of static synapses,
we decided to exploit the temporal dynamics and variability of
the synapse and neuron elements. Another noticeable difference
is the preprocessing and data conversion scheme in which instead
of synchronous digitization, asynchronous delta modulation is
employed for the benefit of interfacing with the SNN directly
on-chip. Furthermore, since conventional binary digitization
is not performed, we are using second-order analog filters in
real-time and not complex high-order digital filters are usually
implemented offline in software. Overall, our approach was to

tune the parameters governing the dynamics of the synapses
and exploit their variability to create an ensemble of weak
classifiers that can reliably and robustly detect HFO. Although
it is possible to use more complicated neural networks using
multiple layers and backpropagation to learn more complicated
network parameters, these approaches usually require a great
amount of data to train their models. Even though we have
analyzed several hours of EEG recordings to find HFO, we
did not use a predefined set of HFO (i.e., HFO marked by
other detectors or by visual inspectors) as ground truth. In
our first study, we used HFO markings from the Morphology
detector only as a guideline, and compared our results against
the clinical outcome of the individual patient. Therefore, our
sample number (number of patients) is probably too low to
use deep learning techniques. In contrast, for our approach the
small number of patients did not represent a problem. In fact,
we were able to use the properties of the silicon circuits in
our favor. For example, instead of carefully determining values
for the synaptic and neuron parameters, we sampled those
values from distributions with hardware-compatible ranges and
optimal mean values. We showed that the mismatch among
the silicon neurons in the hardware resulted in a key feature
to generate the normal distribution of parameters without
manually defining the parameters found in software without
requiring extra memory to allocate these values. Therefore,

TABLE 4 | Recording setup and SNR of the iEEG, ECoG, and scalp EEG datasets.

Recording modality Amplifier Sampling Frequency Signal-to-Noise Ratio (SNR) Publication Dataset

iEEG Neuralynx 4 kHz, 0.5–1,000 Hz
pass-band

Ripple: 3.9
FR: 2.3

Fedele et al., 2017a Fedele et al., 2017b

Stellate Harmonie 2 kHz,
500 Hz low pass

Ripple: 2.7
FR: 1.6

Burnos et al., 2016

Neuralynx 4 kHz,
500 Hz low pass

Ripple and/or FR: 3.0 Burnos et al., 2014

ECoG Nicolet CSeries 2 kHz,
1–800 Hz pass-band

FR: 7.3
(high-density ECoG)

Boran et al., 2019b Boran et al., 2019a

Nicolet CSeries 2 kHz,
1–800 Hz pass-band

FR: 2.6
(standard ECoG)

ISIS IONM 10 kHz,
30–2,500 Hz pass-band

FR: 0.7 Fedele et al., 2017d

LNA 10 kHz,
0.1–3,000 Hz pass-band

FR: 2.6

Nicolet CSeries 2 kHz,
1–800 Hz pass-band

Ripple: 2.8
FR: 1.1

Fedele et al., 2017c

ISIS IONM 10 kHz,
5–2,500 Hz pass-band

Ripple: 2.8
FR: 1.1

LNA 10 kHz,
0.1–3,000 Hz pass-band

Ripple: 2.7
FR: 1.6

Micromed 2048 kHz,
538 Hz antialiasing filter

Ripple: 10.8
FR: 8.0

Fedele et al., 2016

Scalp EEG LNA 10 kHz,
0.1–3,000 Hz pass-band

Ripple: 4.0 Boran et al., 2019c Cserpan et al., 2021b

Deltamed 10 kHz Ripple: 3.6

LNA, Low Noise Amplifier.
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we have developed an HFO detection pipeline that achieves
a high accuracy in predicting the clinical outcome of patients
with epilepsy without the need of power-hungry methods
running in cloud servers or GPUs. Additionally, this approach
of setting a range of parameters allows the network to be
robust against signal noise, which is a typical characteristic of
biomedical signals.

Implementation in Our Neuromorphic
Hardware
All our analyses were motivated by future implementations
of an HFO detector in neuromorphic hardware. All the pre-
processing stages (amplification, filtering, and signal-to-spike
conversion) were tested individually using a pre-recorded
iEEG signal. To assess the compatibility of the simulated
SNN with the neuromorphic processor, we performed HFO
detection in iEEG using the neuromorphic processor DYNAP-
SE and the core SNN architecture. Both SNNs performed
equally well and lead to the same clinically relevant results.
For the HFO detection in ECoG and scalp EEG, we only
simulated the SNNs. For the parameters and architectures
of the in-band artifact rejection and artifact detection SNN,
we followed a similar approach as with the simulated core
SNN and carefully defined the range of parameters. Therefore,
also these SNNs can easily be implemented in hardware
with only slight modifications. We hypothesize that the
same clinically relevant results would be achieved with these
SNNs in hardware.

Performing HFO detection with neuromorphic technology
results in a low-power solution because these circuits perform
spike-based processing without a fixed sampling rate. The
bulk of consumed power throughout the pipeline is thus
of the dynamic natures cause by charging and discharging
capacitors (P = Ctot .Vdd

2). This notion is maintained in the
signal acquisition blocks. While amplifiers and filters run
continuously (and consume very little static power), data
conversion using ADMs is very low-power since HFO are sparse
events and generating ADM spikes is highly input-dependent.
And for the HFO detection, the circuits in the SNN only
consume power when events arrive from the ADM. In our
first two studies (Sharifshazileh et al., 2019, 2021), we have
demonstrated that the components of the analog headstage
in DYNAP-SE2 can perform signal amplification, band-pass
filtering, and signal-to-spike conversion on eight input channels
simultaneously with a power consumption of 58.4 µW. The
power required for the SNN to process the input spikes and
generate output spikes during the HFO detection task was
555.6 µ W.

DYNAP-SE2 was built with the idea to have for the first time
a preprocessing signal acquisition block and a neuromorphic
processor on the same silicon die for the processing of biomedical
signals. For an HFO detection device, a new generation of this
device should be designed with slight adaptations. The software
simulations for the analysis of this review therefore provide
guidelines and specifications for the design of these future
neuromorphic processors.

A clear improvement will be adding the baseline
detection step to the next generation of hardware. This
stage was very important in our HFO detection software
pipeline since it controls and optimizes the number of
input spikes going into the SNNs for best HFO detection
performance. However, in the current hardware, the
ADM does not calculate the baseline to set the threshold
automatically and these parameters need to be manually
tuned for individual ADMs by the user, resulting in a time
consuming trial and error phase before starting the analysis.
This baseline detection step was carefully designed and
implemented in simulations to be compatible for future
implementation in hardware.

Moreover, the simulations of the SNN can serve as a guideline
of the number of neurons that are required to solve the HFO
detection task. This information might help in reducing even
further the size and power consumption of the device.

We envision a real-time HFO analysis “at the edge” that in
addition to the pre-processing stages and the HFO detection with
the SNN, it also features a wireless transmission of a flag to a
storage device at the time of HFO occurrence. Using a miniature
Bluetooth low-energy transmitter, we can have a device that
operates continuously for 12 days using a battery with a capacity
of 660 mAh and weighting only 1.8 g.

Outlook on Clinical Value of HFO
The analysis of HFO in EEG faces constraints of spatial
coverage and sampling imposed by the placement and size
of the electrodes used for the recordings. We have overcome
these limitations by following similar approaches as the ones
used in previous studies (i.e., using recordings from high-
density electrodes and low-noise amplifiers, and performing
test-retest analysis of our results). We have compared our
HFO rates against seizure outcome. For the clinical use of
HFO, a prospective definition of a clinically relevant HFO
should be tested in a larger patient cohort from multiple
centers (Dimakopoulos et al., 2021, 2022). This HFO analysis
should be fast, reliable, and able to perform an unsupervised
automatic HFO detection. We have shown that our compact
and low-noise neuromorphic processor has the potential to
analyze EEG signals, recorded from different clinical settings,
on-line and in real-time. Therefore, it can be used for a
standardized multi-center HFO analysis, thereby increasing
the value of HFO in the diagnostics and therapy monitoring
of focal epilepsy.

Impact of SNN for Epilepsy Diagnostics
We have demonstrated that neuromorphic SNN architectures
and hardware-compatible parameters used for analyzing iEEG,
ECoG and scalp EEG are able to find clinically relevant HFO.
Our HFO detection pipeline can be fully implemented in our
device DYNAP-SE2, which demonstrates that common pre-
processing stages like low-noise amplification, filtering and signal
transformation using ADMs can be implemented in the same
silicon die alongside a multi-core neuromorphic processor. This
computation “at the edge” allows the on-line and real-time
processing of locally measured biomedical signals. Since the
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device is compact, battery powered, and does not interfere
with other electronic equipment, it can be used for long-term
recordings for monitoring and assisting epilepsy treatments.
For example, our device can provide real-time feedback about
the regions with high HFO activity during surgery using
ECoG recordings. This feedback might guide the surgeon
in ambiguous cases, improving the success rate of epilepsy
surgery. Even more relevant is the application of our device
in scalp EEG, since this modality is accessible to a broader
population. We envision a device that can be used to monitor
the disease state and more generally to simplify the collection of
statistics in long-term epilepsy monitoring, thereby supporting
the clinicians in the diagnostics of this unpredictable disease
(Hubbard et al., 2021).

CONCLUSION

We developed a fully automated HFO detection pipeline
using for the first time SNN and neuromorphic intelligence.
We demonstrated that our pipeline can be applied to EEG
recordings from different modalities and showed that our
analysis leads to clinically relevant HFO. While we focused
on the software simulations, we have also demonstrated
that our pipeline can be implemented in a neuromorphic
device, which can perform the pre- and post- processing
stages on the same chip for the analysis of bio-signals with
very low power and in real time. The software simulations
not only allowed us to find the best SNN architectures for
HFO detection but they also provided solutions for setting
the hyperparameters of the analog circuits implemented

in hardware. The results of our automatic HFO detection
together with the design of our neuromorphic device ensures
a prospective, standardized, and bias-free definition of
clinically relevant HFO. The analysis of ECoG and iEEG
with our device provides a further step toward a real-time
detection of HFO in the operation room, which may improve
the seizure outcome of epilepsy surgery. Moreover, given
the widespread access to non-invasive EEG, our approach
also provides a further step toward non-invasive therapy
monitoring, which might benefit a broader population of patients
affected by epilepsy.
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