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Abstract

One of the primary objectives in forensic psychiatry, distinguishing it from other psychiatric

disciplines, is risk management. Assessments of the risk of criminal recidivism are per-

formed on a routine basis, as a baseline for risk management for populations involved in the

criminal justice system. However, the risk assessment tools available to clinical practice are

limited in their ability to predict recidivism. Recently, the prospect of incorporating neuroim-

aging data to improve the prediction of criminal behavior has received increased attention.

In this study we investigated the feasibility of including neuroimaging data in the prediction

of recidivism by studying whether the inclusion of resting-state regional cerebral blood flow

measurements leads to an incremental increase in predictive performance over traditional

risk factors. A subsample (N = 44) from a cohort of forensic psychiatric patients who under-

went single-photon emission computed tomography neuroimaging and clinical psychiatric

assessment during their court-ordered forensic psychiatric investigation were included in a

long-term (ten year average time at risk) follow-up. A Baseline model with eight empirically

established risk factors, and an Extended model which also included resting-state regional

cerebral blood flow measurements from eight brain regions were estimated using random

forest classification and compared using several predictive performance metrics. Including

neuroimaging data in the Extended model increased the area under the receiver operating

characteristic curve (AUC) from .69 to .81, increased accuracy from .64 to .82 and increased

the scaled Brier score from .08 to .25, supporting the feasibility of including neuroimaging

data in the prediction of recidivism in forensic psychiatric patients. Although our results hint

at potential benefits in the domain of risk assessment, several limitations and ethical chal-

lenges are discussed. Further studies with larger, carefully characterized clinical samples

utilizing higher-resolution neuroimaging techniques are warranted.
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Introduction

Crime in general and violent crime in particular is a significant public health concern. Decades

of research have identified several risk factors for persistent criminality, and among the most

widely reported are previous criminality, younger age, younger age at criminal onset, aggres-

sive behavior, substance use and factors relating to dysfunction within family, school, and

employment [1–9]. Furthermore, while persistent criminality is more common among males

than females, risk factors appear to be similar between the sexes [10]. A comparable pattern

emerges in individuals with mental disorders. Although previous research has found evidence

of a substantially increased risk of violence in individuals with major mental disorders, even

when adjusting for substance use and other known risk factors [11–13], a recent meta-analysis

concluded that major mental disorders by themselves appear to be unreliable predictors of

both general and violent recidivism [14]. Instead, risk factors in mentally disordered offenders

seem to mirror those found in the general population [15,16], with the most prominent risk

factors being the presence of an antisocial personality disorder and/or a high degree of psycho-

pathic traits [14,17,18].

One of the primary objectives in forensic psychiatry is risk management. To that end, risk

assessments are performed to predict criminal recidivism and provide a baseline for risk man-

agement, but the currently most used risk assessment tools–which in essence are made up of

various constellations of the traditional risk factors outlined above–are limited in their ability

to do just that [16,19,20]. With the limits of risk assessments based solely on traditional risk

factors in mind, coupled with advances in neuroimaging and an emerging hypothesis that life-

course persistent antisocial behavior may be viewed as a neurodevelopmental disorder [21],

the prospect of incorporating neuroimaging data to improve the prediction of criminal behav-

ior has received increased attention [16,19,20,22–24].

One of the most consistent neurobiological markers for antisocial behavior is reductions in

frontal lobe structure and function, observed in several samples of criminal, violent and psy-

chopathic individuals [25–28]. In addition, both structural and functional temporal lobe

reductions have been reported in several studies [29–31], and reduced parietal glucose metab-

olism has been related to impulsive aggression, impulsive personality disorders, and violent

offending [32–35]. Frontal and temporal aberrations are also consistently found in aggressive

patients suffering from schizophrenia [36], and reductions in both frontal, temporal, parietal

and cerebellar gray matter volume have been observed after the onset of psychosis [37]. More

recently, aberrations in smaller regions such as the hippocampus [38], nucleus accumbens [39]

and amygdala [40] have been observed in offenders with psychopathy, altered connectivity

between the amygdala and the cerebellum has been found in violent offenders [41], and it is

possible that the cerebellum itself may be related to psychopathic traits, recidivism and violent

criminality [30,42].

Certainly, our understanding of the neurobiological underpinnings of criminal and violent

behavior in mentally disordered individuals is far from conclusive, although the potential of

utilizing neuroimaging data in the prediction of recidivism may hold some promise. To our

knowledge only two studies, both using participants from the same sample of male prisoners,

have been published where authors have incorporated neuroimaging data to predict recidi-

vism [43,44]. In this retrospective and exploratory study we extend previous research into the

domain of forensic psychiatry. We address the feasibility of including neuroimaging data in

the prediction of recidivism by investigating if the prediction of recidivism using a Baseline

model, with empirically well-established risk factors, could be improved by including resting-

state regional cerebral blood flow (rCBF) measurements in an Extended model, in a long-term

follow-up of forensic psychiatric patients.
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Materials and methods

Participants

Participants (N = 44) were recruited from the Forensic psychiatric follow-up studies–the

Malmö cohort (UPPRÄTT-Malmö study). The UPPRÄTT-Malmö study consists of 101 men

and 24 women, aged 17–79 (median age = 38) at the time of inclusion. The UPPRÄTT-Malmö

study is a nationally representative, total cohort of patients living in the Malmö University

Hospital catchment area who, after committing a crime, underwent either a major forensic

psychiatric investigation (FPI, N = 97) or a minor forensic psychiatric screening report

(N = 28) between 1999 and 2005, and subsequently were sentenced to involuntary forensic

psychiatric in-patient treatment. One previous study has investigated recidivism using tradi-

tional risk factors [45], and one previous study has investigated predictors of length of stay

[46], both using the full UPPRÄTT-Malmö sample. When study inclusion commenced, FPI

investigees were routinely being referred for a neuroimaging assessment, but due to changes in

the local FPI procedures during study inclusion, only 50 participants underwent this assess-

ment. Of those, six were omitted from the current study; two were missing data on educational

attainment, three were missing data on age at first crime, and one was missing data on psycho-

pathic traits due to lack of sufficient data for scoring. Thus, the final sample in this study was

44 participants, aged 20–79 (median age = 35).

Clinical assessment and characteristics

Psychiatric diagnoses were assessed at the end of FPI according to the Diagnostic and Statisti-

cal Manual of Mental Disorders 4th Edition (DSM-IV) [47] using semi-structured interviews

by the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) [48] and the Struc-

tured Clinical Interview for DSM-IV Axis II Disorders (SCID-II) [49]. The diagnoses reflect

the participant’s psychiatric status at the time of the FPI, and by definition, all individuals pre-

sented symptoms consistent with one or more major mental disorders at the time of both the

FPI and the committed crime(s). We clustered participants’ primary DSM-IV diagnoses into

five categories: psychotic disorder, mood disorder, personality disorder, cognitive disorders,

and neurodevelopmental disorders. Information about participant’s age at the time of FPI was

obtained from the FPI protocols, while dates of admittance (i.e., start of forensic psychiatric

in-patient treatment) and discharge were obtained from patient records. The number of days

under forensic psychiatric care was defined as the number of days between patient’s intake

date and either date of discharge, date of death, date of deportation, or the 31st of December,

2013 (i.e., end of follow-up) if patients were still under forensic psychiatric care when follow-

up ended.

Neuroimaging data

The neuroimaging data used in this study was acquired using single-photon emission com-

puted tomography (SPECT) and was collected as part of the FPI investigation. Thus, the choice

of SPECT was clinically motivated rather than motivated by research. Measurements were car-

ried out using 99mTc-exametazime (CeretecTM, Nycomed-Amersham/GE Healthcare) and a

Ceraspect SPECT camera (Digital Scintigraphics Inc., Waltham, Massachusetts). Participants

were administered 900 MBq of 99mTc-exametazime through a pre-set cannula in a cubital vein

while resting comfortably supine, awake and silent in a muted room with eyes open focusing

on a point in the ceiling.
99mTc-exametazime is lipophilic and passes through the blood-brain barrier and the cell

membrane to reach intra-cellular space in proportion to rCBF. Intracellular 99mTc-exametazime
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rapidly transforms into a polar form that cannot leave the cell, and thus the 99mTc-exametazime

distribution in the brain remains unchanged for several hours, providing a snapshot of rCBF a

brief period after the injection. The imaging procedure began about 15 minutes after adminis-

tration and participants were recorded for 30 minutes.

The radiation from the 99mTc-exametazime was recorded in 1800 to allow a 3-dimensional

reconstruction of the activity, proportional to the rCBF, after scatter and attenuation correc-

tions, with a resolution of 9 mm FWHM (full-width at half-maximum). The recorded three-

dimensional activity was saved into a 128�128�64 voxel matrix and subdivided into 10 slices

with 1 cm thickness, parallel to the orbitomeatal line. A region-of-interest (ROI) set [50] was

scaled to fit the outer dimensions of the brain for three dimensional measurement of activity,

proportional to rCBF. The measured value in each ROI was quantified, using Amersham ROI

software (GE Healthcare, Buckinghamshire, UK), in percent of the mean 99mTc-exametazime

concentration in the whole brain.

Pharmacological treatment at the time of SPECT acquisition

A majority of Swedish forensic psychiatric patients receive pharmacological treatment, often

with multiple agents, although antipsychotics are the most prevalent [51]. Antipsychotics are

known to affect rCBF primarily in frontal, temporal and striatal regions [52], while anticholin-

ergics, often administered to reduce extrapyramidal symptoms of antipsychotics, appear to

reduce rCBF in the whole brain [53]. We collected data on pharmacological treatment from

medical records from the time of SPECT acquisition and structured the data according to five

major pharmacological categories: antipsychotics, antidepressants, benzodiazepine sedatives/

hypnotics, non-benzodiazepine sedatives/hypnotics, and anticholinergics, each coded as either

‘yes’ or ‘no’.

Follow-up data on criminality

To account for the fact that patients in some cases relapse in crime during their forensic psy-

chiatric care [54], the time at risk was defined as beginning at each patient’s intake date and

lasting until reconviction, death, deportation or until the end of follow-up at the 31st of

December 2013. Recidivism was defined as a criminal conviction during the time at risk and is

presented as general recidivism (i.e. all convictions, including violent) due to low base rates of

specific crimes. The mean time at risk for the entire sample was 3623 days (SD = 1495), rang-

ing from 166 to 5342 days. Nine patients in the sample died during the follow-up, and had an

average time at risk of 1477 days (SD = 1165), ranging from 166 to 3410 days. In addition, one

patient was deported during the follow-up, and had a time at risk of 219 days. Dates of new

crimes and convictions, dates of legal force of new sentences and following periods of sanc-

tions, as well as dates of deportations were provided by the National Council of Crime Preven-

tion. Dates of deaths were obtained from the Cause of Death Register at the National Board of

Health and Welfare.

Baseline model measures

Nine traditional risk factors were selected based on previous literature [1–6,14,45] to be

included in the Baseline model: age at FPI, age at first crime, degree of psychopathic traits, sex,

substance use disorder, cluster B personality disorder, educational attainment, mental disorder

in first-degree relative, and previous criminality. Note that we opted to include both age at FPI

and age at first crime as baseline risk factors not only because both are associated with recidi-

vism, but also because prior research suggests that both global and regional CBF tends to

decrease with age [55–61].
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Information about participant’s sex, previous criminality (defined as any previous convic-

tion prior to the crime that lead to FPI and dichotomized as ‘yes’ or ‘no’), age at first crime,

educational attainment (dichotomized as ‘yes’ or ‘no’, with ‘yes’ indicating primary school or

higher attainment), and mental disorder in first-degree relative (dichotomized as ‘yes’ or ‘no’)

was obtained from the FPIs using structured protocols. In most instances, psychopathic traits

were scored during the FPI based on information from the clinical assessment as well as exten-

sive file and register reviews, using the Psychopathy Checklist: Screening Version (PCL-SV)

[62], consisting of 12 items scored on a 3-point scale (0, 1, 2). When an item of the PCL:SV

was omitted, a score was assigned according to the PCL:SV manual. In cases where PCL:SV

ratings were missing (N = 5 of the current study sample), these were performed retrospectively,

based on file reviews [63].

Extended model measures

The Extended model consisted of the variables used in the Baseline model plus neuroimaging

data in the form of resting-state rCBF measurements. Given the exploratory nature of this

study, and with a parsimonious approach to the number of predictors included, eight ROIs

were selected (the left and right frontal lobe, the left and right parietal lobe, the left and right

temporal lobe, and the left and right cerebellum; see Fig 1) ensuring coverage of the brain’s

major regions (the occipital lobe was excluded since visual stimulation was part of the proce-

dure to ensure participant’s wakefulness, and smaller volume regions such as the thalamus and

basal ganglia were excluded due to the procedure’s low spatial resolution).

Data analyses

Data preparation and statistical analysis was conducted using the R statistical programming

language [64]. All R code is publicly available at the corresponding authors’ GitHub page

(https://github.com/carldelfin/neuroprediction), adhering to the principles of reproducible

research [65]. Statistical significance was pre-defined as p< .05.

Group comparisons and correlations. Differences between recidivists and non-recidi-

vists were examined using Barnard’s test [66] for dichotomous variables and Welch’s t-test for

numerical variables. Barnard’s test is a more powerful alternative to Fisher’s exact test when

sample sizes are small [67]. Welch’s t-test performs better than Student’s t-test in situations

where sample size and variance is unequal between groups and equal to Student’s t-test in

Fig 1. Regions-of-interest. An overview of the regions-of-interest (ROIs) used in the current study. Numbers refer to

centimeters above/below the orbitomeatal line. C = cerebellum, T = temporal lobe, F = frontal lobe, P = parietal lobe.

https://doi.org/10.1371/journal.pone.0217127.g001
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situations where sample size and variance is equal [68]. Correlations were examined using

Spearman’s ρ.

Random forest classification. Random forest classification (RF) [69], a so-called ensem-

ble method which aggregates the results from a large collection of decision trees [70], was used

to predict recidivism. Recognized for its high accuracy, the RF machine learning algorithm has

no distributional assumptions, performs well with both small sample sizes and high-dimen-

sional data [71], and has previously been successfully used to predict general recidivism in

mentally disordered offenders [72]. The RF algorithm works by building each decision tree

using a random bootstrap sample (with replacement) corresponding to roughly 66% of the

data. The remaining so-called out-of-bag (OOB) data is used for estimating model error and

assessing variable importance, allowing the RF algorithm to reduce overfitting; an otherwise

common occurrence in predictive modeling [73]. In addition, only a random subset of predic-

tors is selected at each node in the decision tree. Each predictor is split to optimize tree perfor-

mance, and the predictor split that produces the highest tree performance is selected for that

node. After constructing a tree, each observation in the OOB data is passed down the tree and

is classified, in the case of the present study, as either “yes” or “no” for recidivism. The final

(i.e., aggregated) classification of each observation is the majority “vote” based on all the trees

where that observation was in the out-of-bag sample.

Each model was created using 10 000 trees, using the default of
p
p predictors at each node,

with p being the total number of predictors available. Since the RF algorithm can be sensitive

to class imbalance, the majority class (i.e., non-recidivists) was down-sampled to ensure that

each bootstrap sample contained the same number of non-recidivists as recidivists [74].

Assessing model performance

Predictive performance was assessed using several metrics. We report the area under the

receiver operating characteristic curve (AUC), representing the probability (from 0 to 1) that a

randomly selected recidivist will have been predicted by the model as having a higher probabil-

ity of recidivism than a randomly selected non-recidivist. The AUC has been put forward as

the recommended measure of predictive performance in forensic psychiatry [75], although

opinions differ about its predictive interpretation. For instance, an AUC of .71 corresponds to

Cohen’s d = .80, which is a large effect size [75]. Others have suggested that AUCs in risk

assessments should be more conservatively interpreted, with AUCs between .60 and .70 having

modest accuracy and AUCs between .80 and .90 having moderate accuracy [76]. We also

report accuracy (the overall proportion of correct classifications), sensitivity (the proportion of

recidivists correctly classified as such), specificity (the proportion of non-recidivists correctly

classified as such), positive predictive value (PPV; the proportion of predicted recidivists that

actually are recidivists), and negative predictive value (NPV; the proportion of predicted non-

recidivists that actually are non-recidivists). In addition, we report scaled Brier scores, as rec-

ommended by recent research [77], calculated using the DescTools R package. The (unscaled)

Brier score is defined as the squared difference between the actual binary outcome Y (0 or 1)

and the predicted probability p (ranging from 0 to 1). By scaling the Brier score so that it no

longer depends on the prevalence of Y, the resulting scaled Brier score ranges between 0 and 1.

Similar to Pearson’s R2, a higher scaled Brier scores indicates better calibration of the predic-

tive model [78]. The advantage of (whether scaled or unscaled) Brier scores is that the best

score will be attained by the model that is able to predict as close to the true probabilities as

possible.

Assessing variable importance. Individual variable importance is estimated by the RF

algorithm during the OOB phase by randomly permuting each variable and recording how it
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affects classification accuracy. If a variable is important for classification then permutation

should result in a large decrease in classification accuracy, whereas for unimportant variables,

permutation should have little to no effect on classification accuracy. We report the scaled

(mean divided by SD) mean decrease in accuracy for each variable, which is an estimate of the

decrease in model accuracy, should that variable be omitted. In addition, partial dependence

plots [79] visualize both the direction and size of effect (a wider range in the y-axis implies a

larger effect) of each variable, after averaging out the effect of all other variables.

Ethics

The study was register-based and retrospective; all clinical data (including SPECT measure-

ments) was routinely collected as part of the FPI during the time study inclusion commenced.

Thus, informed consent was not considered necessary, as it would not be possible to contact

most participants due to the length of time that had passed after finishing treatment and

because contact could pose a risk to vulnerable subjects with mental health and/or legal prob-

lems. All procedures used in this study were approved by the regional ethics review board in

Lund (2007/64 and 2014/911).

Results

Recidivism

Sixteen patients (36% of the sample) were convicted of a crime during their time at risk. Most

crimes were non-violent, such as theft, fraud, falsification of documents, driving under the

influence of alcohol, and drug offences, although seven patients (16% of the sample) were con-

victed of violent crimes, including assault and battery, unlawful threat, and robbery. There was

no difference in time at risk between recidivists and non-recidivists (Table 1).

Clinical characteristics

Slightly less than one third of the sample were still under forensic psychiatric care at the end of

the follow-up, with an average length of stay of almost 4.8 years, and no significant difference

between recidivists and non-recidivists. The primary diagnosis of the majority of patients was

a psychotic disorder, and no significant difference was found between recidivists and non-

recidivists (Table 1). Comorbidity was relatively common, with 59% of patients diagnosed

with two or more DSM-IV Axis I disorders (median = 2, range = 1 to 8). The median number

of DSM-IV Axis II disorders was 0, ranging from 0 to 3. Most patients received antipsychotics

at the time of SPECT acquisition, with no significant differences regarding pharmacological

treatment between recidivist and non-recidivists. Anticholinergic treatment did appear less

common among recidivists, although the difference did not reach statistical significance at the

pre-defined level (Table 1).

rCBF measurements

Recidivists had significantly lower bilateral parietal lobe and right cerebellar rCBF compared

to non-recidivists. They also exhibited slightly higher temporal lobe rCBF than the non-recidi-

vist group, but the difference was not statistically significant at the pre-defined level (Table 1).

Baseline risk factors

Recidivists were significantly younger at the time of FPI, and also had a significantly younger

age at their first crime. There was also a significantly higher frequency of cluster B personality

disorders among the recidivists. There were no significant differences regarding PCL:SV total

Neuroimaging in the prediction of recidivism

PLOS ONE | https://doi.org/10.1371/journal.pone.0217127 May 16, 2019 7 / 21

https://doi.org/10.1371/journal.pone.0217127


score, sex, substance use disorder, educational attainment, mental disorder in first-degree rela-

tive, or previous criminality (Table 1).

Associations between age at FPI and rCBF

Age at FPI was significantly and positively associated with right parietal lobe rCBF (ρ = .31, p =

.039) and significantly and negatively associated with left frontal lobe rCBF (ρ = -.35, p = .02).

Associations between age at FPI and right cerebellar (ρ = .28, p = .065), left cerebellar (ρ = .27,

Table 1. Detailed overview of sample clinical characteristics.

All (N = 44) Non-recidivists (N = 28) Recidivists (N = 16)

Mean (± SD) or N (%) Mean (± SD) or N (%) Mean (± SD) or N (%) t or z p
Demographics and clinical characteristics

Patients still under forensic psychiatric carea 13 (30%) 8 (29%) 5 (31%) -0.19 0.898

Number of days under forensic psychiatric care 1746.77 (± 1639.04) 1765.93 (± 1676.93) 1713.25 (± 1624.04) 0.1 0.919

Time at risk (days) 3622.86 (± 1494.5) 3427 (± 1678) 3965.62 (± 1066.6) -1.3 0.201

Primary DSM-IV diagnosis

Psychotic disorder 30 (68%) 20 (71%) 10 (62%) 0.61 0.596

Mood disorder 5 (11%) 3 (11%) 2 (12%) -0.18 0.967

Personality disorder 1 (2%) 0 (0%) 1 (6%) -1.34 0.246

Cognitive disorder 3 (7%) 2 (7%) 1 (6%) 0.11 0.998

Neurodevelopmental disorder 5 (11%) 3 (11%) 2 (12%) -0.18 0.967

Pharmacological treatment at the time of SPECT

Antipsychotic 27 (61%) 19 (68%) 8 (50%) 1.17 0.261

Antidepressant 13 (30%) 6 (21%) 7 (44%) -1.56 0.131

Benzodiazepine sedatives 20 (45%) 12 (43%) 8 (50%) -0.46 0.657

Non-benzodiazepine sedatives 16 (36%) 10 (36%) 6 (38%) -0.12 0.923

Anticholinergic 10 (23%) 9 (32%) 1 (6%) 1.97 0.052

SPECT rCBF measurements

Frontal (right) 106.61 (± 4.06) 106.46 (± 4.52) 106.88 (± 3.22) -0.35 0.728

Frontal (left) 106.64 (± 3.94) 106.82 (± 4.34) 106.31 (± 3.22) 0.44 0.66

Parietal (right) 104.82 (± 3.2) 106.11 (± 2.74) 102.56 (± 2.71) 4.16 < .001

Parietal (left) 103.45 (± 3.59) 104.18 (± 4.11) 102.19 (± 1.94) 2.17 0.036

Temporal (right) 102.57 (± 3.39) 102.07 (± 3.67) 103.44 (± 2.73) -1.4 0.168

Temporal (left) 101.52 (± 2.57) 101.04 (± 2.85) 102.38 (± 1.75) -1.93 0.06

Cerebellum (right) 119.64 (± 4.69) 120.68 (± 4.6) 117.81 (± 4.4) 2.04 0.049

Cerebellum (left) 119.82 (± 5.01) 120.68 (± 4.92) 118.31 (± 4.95) 1.53 0.136

Baseline model variables

Age at forensic psychiatric investigation 37.84 (± 14.79) 42.29 (± 16.28) 30.06 (± 6.95) 3.46 0.001

Age at first crime 30.34 (± 14.09) 34.57 (± 15.69) 22.94 (± 5.81) 3.52 0.001

PCL:SV Total Score 10.3 (± 5.97) 9.25 (± 5.6) 12.12 (± 6.32) -1.51 0.142

Male sex 39 (89%) 25 (89%) 14 (88%) 0.18 0.967

Substance use disorder 22 (50%) 12 (43%) 10 (62%) -1.25 0.238

Cluster B personality disorder 7 (16%) 1 (4%) 6 (38%) -2.96 0.008

Educational attainment 40 (91%) 26 (93%) 14 (88%) 0.59 0.732

Mental disorder in first-degree relative 13 (30%) 7 (25%) 6 (38%) -0.87 0.459

Previous criminality 28 (64%) 17 (61%) 11 (69%) -0.53 0.608

PCL:SV = Psychopathy Checklist: Screening Version.
aAt the end of follow-up on 31st of December 2013.

https://doi.org/10.1371/journal.pone.0217127.t001
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p = .074), right frontal lobe (ρ = -.09, p = .555), right temporal lobe (ρ = .12, p = .456), left tem-

poral lobe (ρ = -.23, p = .134), and left parietal lobe rCBF (ρ = .18, p = .237) did not reach the

predetermined level of significance.

Baseline model

Predictive performance of the Baseline model was modest, all measures considered. The AUC

was .69, with a scaled Brier score of .08 and an accuracy of .64 (95% CI [.48, .78]), and sensitiv-

ity = .63, specificity = .64, PPV = .50, and NPV = .75. The most important variables in terms of

mean decrease in accuracy were cluster B personality disorders, age at first crime, age, and sub-

stance use disorders (Fig 2, left panel). Partial dependence plots revealed that a cluster B per-

sonality disorder, lower age at first crime, younger age at the time of FPI, and substance use

disorders increased the probability of being classified as a recidivist (Fig 3, top panel).

Extended model

Predictive performance increased across all metrics in the Extended model. The AUC was .81

with a scaled Brier score of .25 and an accuracy of .82 (95% CI [.67, .92]), and sensitivity = .75,

specificity = .86, PPV = .73, and NPV = .86. The most important variables were right parietal

rCBF, cluster B personality disorder, age at first crime, and left parietal rCBF (Fig 2, right

panel). In terms of actual predictions, the Extended model correctly classified two additional

recidivists and six additional non-recidivists compared to the Baseline model, resulting in 12

out of 16 recidivists and 24 out of 28 non-recidivists being correctly classified by the Extended

model. The probability of being classified as a recidivist increased with lower right parietal

lobe rCBF, a cluster B personality disorder, lower age at first crime, and lower left parietal lobe

rCBF (Fig 3, bottom panel). A similar effect was visible for lower right cerebellar rCBF and

lower age, although less pronounced. Conversely, higher (bilateral) temporal lobe rCBF mod-

estly increased the probability of being classified as a recidivist (Fig 3, bottom panel).

Supplementary analysis of pharmacological data

Despite no statistically significant differences in pharmacological treatment between recidivists

and non-recidivists, we conducted a supplementary analysis before ruling out any potential

Fig 2. Variable importance. Variable importance measured as the scaled mean decrease in accuracy of each variable in the Baseline and Extended model. A

higher value confers a higher decrease in the accuracy of the model, should that variable be omitted.

https://doi.org/10.1371/journal.pone.0217127.g002

Neuroimaging in the prediction of recidivism

PLOS ONE | https://doi.org/10.1371/journal.pone.0217127 May 16, 2019 9 / 21

https://doi.org/10.1371/journal.pone.0217127.g002
https://doi.org/10.1371/journal.pone.0217127


effects of pharmacological treatment at the time of SPECT acquisition. Adding pharmacologi-

cal data to the Extended model did not result in a notable increase in predictive performance.

The AUC increased slightly from .81 to .82, while all other measures remained identical.

Discussion

Main findings

We have demonstrated the feasibility of incorporating neuroimaging data, in the form of rest-

ing-state rCBF measurements, in the prediction of recidivism in a long-term follow-up of

forensic psychiatric patients. The Extended model, which included traditional risk factors as

well as resting-state rCBF measurements, saw a 17% increase in AUC, over 200% increase in

scaled Brier score, and a 28% increase in accuracy from the Baseline model, which included

traditional risk factors only. Recidivists did not significantly differ from non-recidivists in

number of patients still under forensic psychiatric care at the end of follow-up, average length

of stay, primary diagnosis or time at risk, suggesting that the increased performance of the

Extended model was not attributable to any of these variables. Furthermore, supplementary

analysis showed that the increased performance in the Extended model was most likely not a

result of differences in pharmacological treatment between recidivists and non-recidivists. To

the best of our knowledge, this is the first study to include neuroimaging data in the prediction

of recidivism in a forensic psychiatric sample, and our results call for continued studies that

Fig 3. Partial dependence plots. Partial dependence plots for the eight most important (in terms of scaled mean

decrease in accuracy) variables in each model. A higher value on the y-axis confers a higher probability of being

predicted as a recidivist for the corresponding value on the x-axis for that variable.

https://doi.org/10.1371/journal.pone.0217127.g003
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use neuroimaging methods that potentially could be beneficial also in current clinical forensic

practice.

Baseline model: Traditional risk factors

A cluster B personality disorder, age at first crime and age at FPI emerged as important in both

models, similar to previously published findings from the full UPPRÄTT-Malmö cohort [45].

Partial dependence plots revealed that younger age at first crime as well as younger age at FPI

increased the probability of being classified as a recidivist in both the Baseline and the

Extended model. Furthermore, the effect of age at first crime was larger than the effect of age

at FPI. These results are in line with the long-standing observation that early-onset aggressive

and antisocial behavior increases the risk of life-course persistent criminality [1,10,80]. Like-

wise, a cluster B personality disorder increased the probability of being classified as a recidivist,

in agreement with previous literature showing an increased risk of criminal and violent behav-

ior in individuals who have received diagnoses within this cluster of personality disorders

[81,82]. We, as many others before us [83], therefore recommend sustained efforts to identify

and support individuals exhibiting antisocial tendencies at a young age.

Substance use disorder was a moderately important predictor of increased probability of

recidivism in the Baseline model, although the effect was diminished in the Extended model.

Recent research has demonstrated several unfavourable long-term outcomes of substance use

in adolescents and young adults with mental disorders [84], and the combination of substance

use and mental disorders seems to confer a higher risk of recidivism than substance use or

mental disorder alone [85]. Unfortunately, treatment of substance use disorders in mentally

disordered offenders appears rare [86,87], even though it may have a positive impact on reduc-

ing recidivism.

Several of the traditional risk factors showed no appreciable effect on the prediction of

recidivism. Psychopathy, for instance, was not an important predictor in terms of mean

decrease in accuracy, although the partial dependence plot revealed that higher PCL:SV scores

tended to confer a higher probability of recidivism in the Baseline model. In our study, recidi-

vists scored an average 12 points on the PCL:SV, which is relatively low when contrasted with

suggested cutoffs at� 18 for psychopathy and 13–17 for possible psychopathy [88]. It is possi-

ble that the low scores and low variability between recidivists and non-recidivists were not suf-

ficient for psychopathic traits to be considered an important variable. It is also possible that

using the separate Part 1 (i.e., interpersonal and affective features) and Part 2 (i.e., unstable

and antisocial lifestyle) of the PCL:SV would have led to a greater predictive effect of psycho-

pathic traits. Still, research has suggested that both the PCL:SV total score, Part 1 score, and

Part 2 score are similar in their ability to predict recidivism [89] as well as violence and aggres-

sion [90,91]. In addition, five PCL:SV ratings were performed retrospectively based on file

reviews only, which also may have influenced our results, although research has shown that

retrospective, file-only PCL:SV ratings can be used reliably for research purposes in Swedish

forensic psychiatric populations [63]. Previous criminality was not associated with an

increased probability of recidivism, which was a surprising find. However, since previous

criminality was operationalized as any convictions prior to the crime that lead to FPI and sub-

sequent forensic psychiatric care, all participants, by definition, had already committed a

crime when the follow-up started. In other words, a “criminal history” already existed for each

patient in our study, which may have diluted the effects of the previous criminality variable

(i.e., a possible ceiling effect). We found no effect of mental disorder in a first-degree relative,

even though early psychosocial adversities such as parental abuse, parental absence and paren-

tal mental disorder have been associated with several negative outcomes, including criminality
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[7,92]. However, there is evidence of a dose-response relationship between childhood adversi-

ties and negative adult outcomes [93–95], and it may be that mental disorder in a first-degree

relative alone was not sufficient to yield a predictive effect. Furthermore, at least one study

found that while criminal conviction was linked to parental mental disorder, multiple (three or

more) convictions was not related to parental mental disorder alone, but to rather to parental

criminality, or a combination of both [96], again hinting at a possible ceiling effect. Since only

five females were included in the study, the lack of effect of sex is difficult to evaluate. It is

worth noting, still, that of the two females that did recidivate, neither committed violent

crimes. Finally, no effect of education was found. Meta-analytic results have shown that when

separated from employment, education is no longer predictive of general recidivism in men-

tally disordered offenders, in line with our results [14].

Extended model: Neuroimaging risk factors

Right parietal lobe rCBF emerged as the most important variable, while left parietal lobe rCBF

was the fourth most important variable in predicting recidivism in the Extended model. Recid-

ivists had lower rCBF in both the right and left parietal lobe compared to non-recidivists, and

partial dependence plots further revealed that lower bilateral parietal rCBF was associated with

an increased probability of being classified as a recidivist. Lower right cerebellar rCBF was a

modest predictor of recidivism, as was increased bilateral temporal lobe rCBF.

In agreement with prior studies reporting either reduced parietal lobe glucose metabolism

or reduced parietal lobe rCBF in violent, impulsive and aggressive samples [32–35], our results

suggest that reduced bilateral parietal rCBF may be an important predictor of general recidi-

vism in forensic psychiatric patients. We theorize that parietal lobe contributions to inhibitory

control may function as a pathway to criminal behavior. Specifically, although both frontal

and parietal regions are involved in response inhibition [97–100], research has suggested that

age-related changes in neural circuitry from childhood to early adulthood results in increased

recruitment of parietal and occipital regions in response inhibition, while prefrontal recruit-

ment decreases [101]. Poor response inhibition is a consistent marker of externalizing psycho-

pathology, including alcohol and substance abuse [102–104], ADHD [105], aggression [106],

as well as violent [107] and non-violent [108] criminality, and appears to be primarily genetic

in origin [109]. Thus, an interesting albeit speculative interpretation of our results, given previ-

ous evidence of parietal involvement in response inhibition, is that reduced parietal rCBF may

lead to poorer inhibitory control, subsequently increasing the risk of recidivism. Speaking

against our proposal of parietal lobe contributions to reduced inhibitory control as a pathway

to criminal behavior in the current study, however, is the fact that no apparent predictive effect

of the frontal lobes was found, despite that frontal regions are robustly activated during

response inhibition [100]. In addition, since no test-based measure of behavioral inhibitory

control was available, our proposal remains speculative. Future research should further explore

possible relationships between parietal lobe function, inhibitory control and criminal

behavior.

The role of the cerebellum in criminal and antisocial behavior is relatively unexplored. The

cerebellum is known to be recruited during a wide range of cognitive tasks [110], and previous

research has demonstrated that cerebellar lesions can lead to a range of psychopathologies,

including disinhibited behaviors such as impulsivity and poor attention [111]. Thus, it is possi-

ble that reduced cerebellar blood flow leads to an increased risk of disinhibited behavior, simi-

lar to what is observed in cerebellar cognitive affective syndrome [112,113]. Recent studies

have found that cerebellar gray and white matter volume may be related to criminality, anger

and psychopathic traits [30,42], and while our study adds to previous research suggesting
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cerebellar involvement in criminal behavior, reconciling our results with studies of cerebellar

gray and white matter volume it not straightforward, and more research is clearly needed.

Using functional magnetic resonance imaging, for instance, it should be possible to study the

association between rCBF, GMV and criminal, antisocial or disinhibited behavior.

Our results seem to be at odds with previous reports of frontal and temporal lobe aberra-

tions related to antisocial behavior. Several meta-analytic or review studies have concluded

that reduced frontal lobe structure and function appears to be a consistent neurobiological

marker of antisocial behavior [25–28]. Still, authors have noted that observed effects are mod-

est [28], not sufficient to cause physical aggression or violence on their own [26], and localized

to smaller subregions [25]. Since rCBF was averaged across the left and right frontal lobe in

our study, possible effects of rCBF in smaller subregions may have been diffused, a problem

that may be resolved using neuroimaging techniques with higher spatial resolution. It is also

possible that the entire sample exhibited reduced frontal rCBF, although with little variability

between recidivists and non-recidivists. Unfortunately, the lack of a suitable comparison

group makes it impossible to investigate this theory. Finally, the negative association between

age at FPI and left frontal rCBF is in line with previous research, although it remains unclear

why a significant association was not found for the right frontal lobe, as previous findings sug-

gest bilateral reductions [59,61].

Several studies have reported decreased temporal lobe function in aggressive and antisocial

samples [35,114,115], although at least one study found no reductions in a sample of violent

offenders [32]. In the present study, increased temporal lobe rCBF provided a modest increase

in the probability of being classified as a recidivist. Recent studies have revealed a positive asso-

ciation between threat-related amygdala response and impulsive aggression [116–118], and

there is prior evidence of perceived threat mediating the relationship between psychosis prone-

ness and aggressive behavior [119] suggesting that increased activity in at least one small tem-

poral lobe subregion may be related to some forms of antisocial behavior. Since our study used

a resting-state paradigm, however, no threat-related responses were expected. In addition, the

observed effect was modest and thus should be interpreted with caution.

A final consideration is that a majority of the patients (68%) in the current study had a pri-

mary diagnosis of psychotic disorder. Psychotic disorders are characterized both by functional

aberrations [120] and progressive gray matter reductions [121–123], with some reductions

even attributable to pharmacological treatment [124]. The complex nature of brain changes in

the various stages of psychotic disorders makes it difficult to compare our results with, for

instance, studies of neurobiological contributions to recidivism in non-psychotic populations.

Strengths and limitations

This study has some notable strengths and several limitations. The average time at risk was ten

years, which is rare in forensic psychiatric samples and even rarer when combined with neuro-

imaging. We included data on pharmacological treatment, which is often overlooked in psy-

chiatric samples, and provided a detailed clinical description of the sample. We employed

modern statistical techniques, and all analysis code is publicly available.

As for limitations, a general problem when interpreting results from forensic investigations

is that very heterogeneous samples have been studied. For instance, the participants in the cur-

rent study varied in age, sex, diagnoses, and type of crimes committed. Also, even though we

had access to the psychiatric diagnoses that were assessed concurrently with the SPECT inves-

tigation, we did not have any data on specific psychiatric symptoms, such as level of psychotic

symptoms, at the time of SPECT. In addition, the small sample size means that our results

must be carefully interpreted, and readers should refrain from drawing firm conclusions
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regarding the neurobiological contributions to recidivism before our results are replicated in

independent, larger samples. While we included data on pharmacological treatment, we have

no information about actual adherence, although adherence is generally believed to be high at

forensic psychiatric units due to the possibilities of control of medication intake. Another limi-

tation is seen in our subjective choice of baseline risk factors, which although guided by previ-

ous research may have affected predictive accuracy and thus the incremental effect of

neuroimaging data. For instance, we did not assess the effect of IQ, which has been associated

with CBF in both children and adolescents [125] and in adults [126]. The clinical status of

many of the included patients made it difficult to perform reliable and valid IQ assessments at

the time of FPI, and these assessments were thus omitted from the protocol. Furthermore, pre-

dicting measures other than recidivism could have rendered different results. Future research

may compare models predicting recidivism with models predicting other outcome measures,

such as the number of adverse incidents during in-patient care and including measures of self-

reported criminality. Future studies may also benefit from the complementary information

gained from survival models that estimate how the probability of recidivism increases over.

We opted not to include such models in the current study due to the limited sample size and

relatively large number of predictors used, which limits the interpretability of our results.

Finally, the low spatial resolution of the SPECT methodology used prevented detailed study of

smaller neural subregions of interest, such as the anterior cingulate cortex [43,44] or the angu-

lar gyrus [32,35]. Since it is possible that only smaller subregions of the ROIs included in the

current study may be linked to recidivism, using large ROIs may lead to oversimplification

and reduced power [127].

Implications for clinical practice and directions for future research

We have demonstrated that improvements in recidivism prediction in forensic psychiatry may

be achievable if neuroimaging data is incorporated into risk assessment models. We reiterate,

however, that the study is exploratory in nature, that the results should be carefully interpreted,

and that further studies are needed before generalizations can be made. Importantly, the num-

ber needed to detain (NND) [128], based on the observed recidivism rate of 36% during our

follow-up was 2 in the Baseline model and 1.4 in the Extended model, which is of doubtful

clinical relevance. However, the NND depends on the rate of recidivism. Thus, if we assume a

recidivism rate of 10% (a plausible rate for a shorter time span, such as one year) the Extended

model would reduce the NND by 50%, from 6 in the Baseline model to 3. In addition, the large

increase in scaled Brier score in the Extended model suggests an improvement in predictive

performance that is not obvious by looking solely at measures based on confusion matrices.

Since discriminatory performance metrics such as AUC, accuracy, and NND require predicted

probabilities to be binary, valuable information is lost. For instance, if a correct prediction is 0,

using a threshold of 0.5, a prediction of 0.1 and a prediction of 0.49 are weighted equally; both

will be regarded as 0, even though the former is obviously closer to the truth. Brier scores, on

the other hand, utilize all information available in the predicted probabilities. The large

increase in scaled Brier score in the Extended model indicates that while the difference in

NND may not be clinically relevant, the improved predictive performance of the Extended

model may still be useful. For instance, a possible clinical application of improved prediction

models would be as decision support systems, aiding physicians in directing resources and

interventions to patients at the highest risk of recidivism [129]. A patient with a predicted

probability of 0.49 thus should have higher priority in risk management than a patient with a

predicted probability of 0.1, even though both fall under the (arbitrary) threshold of 0.5.
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Finally, since SPECT measurements are unlikely to be available in most risk assessment sit-

uations, this further limits clinical application of our results. However, the primary purpose of

this study was to examine if incorporating neuroimaging data leads to incremental increase in

predictive performance, and we have shown that using measures of rCBF, an incremental

increase in predictive performance is possible. We urge researchers to further assess incremen-

tal increases in predictive performance using other neuroimaging techniques, such as func-

tional magnetic resonance imaging. In addition, electroencephalography, while not strictly a

neuroimaging method, may be more feasible in clinical settings.

In conclusion, forensic psychiatry is uniquely positioned at the intersection between neuro-

science and law. Recently, the emerging field of neurolaw has brought to light the many ethical

challenges and questions that unfold in this intersection [19]. Notable examples include reduc-

tionism and stigmatization of individuals based on brain function, which are–and have been

historically–important ethical challenges that must be addressed with care [24]. Neuroscien-

tific data must be applied responsibly in any context, and if employed in real life legal scenar-

ios, multiple measurement techniques and multiple cognitive tasks should be used [23,24].

Thus, future research should assess the validity of our results in larger, carefully characterized

samples, utilizing different and preferably multiple neuroimaging techniques along with

assessments of psychiatric symptoms and pharmacological treatment at the time of imaging,

and finally test prediction models in held-out samples. Furthermore, our findings and subse-

quent discussion regarding rCBF measurements and the prediction of recidivism should be

interpreted as preliminary, indicating possible avenues for further research rather than definite

neural correlates of criminality. The nature of antisocial and criminal behavior is complex and

dynamic, and measurements of blood flow in a single particular region of the brain likely only

accounts for a small amount of variance in criminal behavior.
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