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ABSTRACT

Approximately 25% of hereditary breast cancer cases are associated with a 
strong familial history which can be explained by mutations in BRCA1 or BRCA2 and 
other lower penetrance genes. The remaining high-risk families could be classified 
as BRCAX (non-BRCA1/2) families.

Gene expression involving alternative splicing represents a well-known 
mechanism regulating the expression of multiple transcripts, which could be 
involved in cancer development. Thus using RNA-seq methodology, the analysis of 
transcriptome was undertaken to potentially reveal transcripts implicated in breast 
cancer susceptibility and development.

RNA was extracted from immortalized lymphoblastoid cell lines of 117 women 
(affected and unaffected) coming from BRCA1, BRCA2 and BRCAX families. Anova 
analysis revealed a total of 95 transcripts corresponding to 85 different genes 
differentially expressed (Bonferroni corrected p-value <0.01) between those groups. 
Hierarchical clustering allowed distinctive subgrouping of BRCA1/2 subgroups from 
BRCAX individuals. We found 67 transcripts, which could discriminate BRCAX from 
BRCA1/BRCA2 individuals while 28 transcripts discriminate affected from unaffected 
BRCAX individuals.

To our knowledge, this represents the first study identifying transcripts 
differentially expressed in lymphoblastoid cell lines from major classes of mutation-
related breast cancer subgroups, namely BRCA1, BRCA2 and BRCAX. Moreover, some 
transcripts could discriminate affected from unaffected BRCAX individuals, which 
could represent potential therapeutic targets for breast cancer treatment.

INTRODUCTION

In 2015, breast cancer represented 26% of all cancer 
cases among Canadian women and was the second leading 
cause of cancer death constituting 14% of overall death 
due to cancer [1]. Like every common cancer, breast 
cancer shows some degree of familial clustering [2]. High-
risk families having multiple cases of breast or ovarian 
cancer are associated with a higher risk of developing 
breast cancer during their lifetime than other families [3]. 
It is thought that approximately 10-15% of breast cancer 

cases are hereditary and associated with mutations in 
BRCA1 or BRCA2 genes and some other genes having 
high to moderate penetrance such as TP53, PTEN, ATM, 
CHEK2, PALB2 and BRIP1 and ATR, which account for 
approximately 5% of the risk [4-10]. Common variants 
have also been identified in additional susceptibility loci 
and would explain a further ~16% of the 2-fold familial 
risk of breast cancer [11]. Among our French Canadian 
cohort, 24% of high-risk breast cancer families were 
found to be carriers of a deleterious BRCA1 or BRCA2 
mutation [12].
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Therefore, susceptibility alleles for more than half 
of the high-risk families remain unknown. A portion of 
these remnant breast cancer families could be explained 
by modulation of gene expression, which is mainly 
regulated through methylation or alternative splicing 
(AS) mechanisms. Indeed, more than 90% of human 
genes undergo alternative splicing and it is now becoming 
clear that AS plays an important role in human cancer 
development [13-14]. RNA sequencing allows a genome-
wide expression study of the transcriptome and can likely 
detect and quantify all coding and non-coding transcripts 
[15]. The use of RNA sequencing greatly enhanced our 
understanding of gene expression in cells [16].

Human immortalized lymphoblastoid cell lines 
(LCLs) provide information on gene expression without 
having to consider tissue specific expression [17]. LCLs 
used for the establishment of gene expression or splicing 
signatures are recognized as a reliable biological material 
to study a given disease [18-28], and some studies recently 
showed the heritability of splicing, as some exons were 
spliced in an allele-specific manner [18, 29, 30]. Moreover, 
it has been demonstrated that LCLs can be used to study 
life-course environmental epigenetics [31].

Previous studies attempted to discriminate BRCA1/2, 
non-BRCA1/2 (BRCAX) and sporadic breast cancers 
were based on gene expression levels and histological 
tests performed on breast tumor tissue [32-37]. In another 
study, although several genes or spliced transcripts were 
identified as differentially expressed in familial cases, 
they did not allow clusterization of BRCA1, BRCA2 and 
BRCAX tumor tissues [38].

In this study, we performed RNA sequencing on 
LCLs isolated from BRCA1/2 and BRCAX affected and 
unaffected individuals coming from high-risk breast 
cancer families in an attempt to distinguish breast cancer 
subgroups based on their transcriptome profile. This 
study revealed several transcripts involved in regulation 
of translation, apoptosis, cell cycle as well as cell growth 
and proliferation, which could discriminate BRCAX 
individuals from BRCA1/2 subgroups.

RESULTS

Our French Canadian cohort comprised three 
major familial breast cancer subgroups namely BRCA1 
and BRCA2 carriers as well as BRCAX individuals, i.e. 
non BRCA1/2 (affected and unaffected). The BRCA1 
cases included 25 individuals (ind) affected with breast 
cancer and 11 unaffected women, who were carriers of 
BRCA1 mutations namely R1443X (22 ind), 3705insA 
(2 ind), 2244insA (7 ind), 2953del3+C (2 ind) and three 
individuals carrying E352X, 4160delAG or 1723del9ins13 
mutation, respectively. The BRCA2 subgroup was 
composed of 31 affected and 18 unaffected individuals 
carrying 8765delAG (44 ind), E3002K (2 ind), 6503delTT 
(1 ind), R3128X (1 ind) or 3036del4 mutation (1 ind). 

The BRCAX subgroup included 16 affected and 16 
unaffected individuals, which represented 16 pairs of 
sisters (1 affected and 1 unaffected per family). It should 
be noted that the oldest unaffected sister available was 
purposely selected in BRCAX families. This subgroup 
of unaffected sisters was used as controls for comparison 
purpose in the analyses described below. The mutational 
profile and relationship status of BRCA1, BRCA2 and 
BRCAX individuals are highlighted in Supplementary 
Table 1.

RNA-Seq analyses generated an average of 68 
million reads per sample, and more than 85% of the reads 
were aligned to the hg19 human reference genome using 
TopHat (data not shown). As displayed in Supplementary 
Table 2, out of a total of 173 259 transcripts detected, 95 
transcripts (0.05 % of all transcripts) were found to be 
significantly (p<0.01) and differentially expressed based 
on the Bonferroni-corrected ANOVA analysis, when 
considering all four breast cancer subgroups (BRCA1, 
BRCA2, unaffected and affected BRCAX individuals). All 
these significant transcripts were encoded by 85 different 
genes. In addition to the main isoforms (one per gene), 10 
mRNA isoforms were considered as alternatively spliced 
isoforms (11.8%). These significant transcripts included 
54 gene isoforms showing a highly significant Bonferroni-
corrected p-value (p < 0.001).

Principal component analysis (PCA) of these 
95 transcripts identified as differentially expressed 
among BRCA1-carriers (n=36), BRCA2-carriers (n=49), 
unaffected BRCAX (n=16) and affected BRCAX 
(n=16) individuals is presented in Figure 1. The first 
three principal components of transcriptional variation 
accounted for 59.6 % of the total variance. PCA on the 
full dataset showed that the PC1 component accounted 
for 46 % of the variance, which is highly informative, 
while PC2 was also informative compared to the variance 
explained in the randomized data set.

Unsupervised hierarchical clustering of all BRCA1, 
BRCA2 and BRCAX individuals was then performed 
using the 95 significant transcripts. As illustrated in Figure 
2, gene expression levels of these significant transcripts 
allowed to discriminate distinctly BRCA1/2 from BRCAX 
(unaffected and affected) individuals. However, it was not 
possible to segregate BRCA1 from BRCA2 individuals 
as well as affected from unaffected BRCAX individuals. 
In addition, when considering BRCA1 and BRCA2 
individuals, no specific clustering could be observed 
based on gene mutation or the status of the disease. Intra-
group variance analysis using gene expression data was 
performed by Principle component analysis (PCA) for 
patients with the BRCA1 R1443X mutation (22 patients) 
and BRCA2 8765delAG mutation (44 patients). We did 
not find significance of BRCA1 R1443X and BRCA2 
8765delAG mutation from their respective BRCA1 and 
BRCA2 subgroup. Thus, grouping of different mutations 
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in BRCA1 or BRCA2 subgroup is justified (data not 
shown).

The ANOVA analysis followed by conservative 
post hoc Scheffé test, which is appropriate for comparing 
groups with unequal sample sizes, allowed to potentially 
identify transcripts discriminating BRCA1, BRCA2 and 
affected BRCAX individuals from unaffected BRCAX 
individuals, which were used as controls in this analysis. 
This analysis revealed 69, 71 and 28 gene isoforms 
differentially expressed from BRCAX unaffected for 
BRCA1, BRCA2 and affected BRCAX individuals, 
respectively (See Supplementary Table 2). It should be 
noted that the large majority of transcripts identified in 
BRCA1-carriers were also found in BRCA2-carriers.

As presented in Figure 3, these transcripts were 
then illustrated in Venn diagrams, which showed that 3 
common transcripts (3.2%) were differentially expressed 
in all three subgroups, when compared to unaffected 
BRCAX individuals. In addition, a large portion of 
transcripts (65: 68.4%) was commonly identified in 
BRCA1 and BRCA2 subgroups, while only 1 transcript 
was specifically and exclusively associated with BRCA1, 
and another one different transcript with BRCA2. This 
illustrated the similarity between BRCA1 and BRCA2-

carrier individuals regarding their gene expression profile. 
On the other hand, 23 gene isoforms were exclusively 
associated with affected BRCAX individuals and are not 
different in BRCA1 and BRCA2 subgroups. The name of 
the transcripts is presented in Supplementary Table 3.

In an attempt to further discriminate unaffected and 
affected BRCAX individuals, hierarchical clustering was 
then performed using the 28 gene isoforms discriminating 
both BRCAX subgroups (Figure 4). Although a much 
better clustering could be observed between both 
subgroups, these genes could not differentiate distinctly 
unaffected from affected BRCAX individuals, with 4 
affected individuals being located among the unaffected 
individuals.

Further, we performed Scheffé analysis on all the 
4 subgroups (BRCA1, BRCA2, unaffected and affected 
BRCAX) combined, this allowed us to identify specific 
transcripts, which are exclusively associated with each 
subgroup. As listed in Table 1, although no specific 
transcripts were specifically associated with BRCA1 or 
BRCA2 individuals, we could identify 67 transcripts 
specifically associated with BRCA1/BRCA2 following 
combination of both subgroups and compared to BRCAX 
individuals. In addition, 3 and 28 transcripts showed 

Figure 1: Principal component analysis (PCA) on lymphoblastoid cell lines. Unsupervised classification of the groups using 
a combination of PC1, PC2 and PC3. Distance between dots is a dimensional measure for the similarity of the expression profiles of the 
samples (red: BRCA1, blue: BRCA2, green: BRCAX unaffected and purple: BRCAX affected).
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Table 1: Transcripts specifically associated with each group and their corrected p-value
Transcript specifically associated with BRCA1/2 carriers when compared to BRCAX unaffected and affected 

individuals

Ensembl transcript ID HGNC symbol Bonferroni 
corrected p-value Relevant biological process

ENST00000598296 NOSIP 1.16 E-06 negative regulation of nitric-oxide synthase activity

ENST00000580799 GGA3 4.03 E-04 positive regulation of protein catabolic process

ENST00000430762 PPP3CB 1.11 E-03 positive regulation of transcription from RNA 
polymerase II promoter

ENST00000486593 LAMP2 1.05 E-03 regulation of protein stability

ENST00000366726 GUK1 1.18 E-03 ATP metabolic process

ENST00000438462 RTN4 1.62 E-03 Regulation of apoptotic process, cell-cell adhesion, 
negative regulation of cell growth

ENST00000588730 C18orf25 2.76 E-03 protein ubiquitination involved in ubiquitin-dependent 
protein catabolic process

ENST00000471658 PSPC1 4.22 E-03 mRNA splicing, negative regulation of transcription

ENST00000490523 EIF2AK1 3.26 E-07 negative regulation of cell proliferation, regulation of 
translational initiation by eIF2 alpha phosphorylation

ENST00000586868 TBCB 4.69 E-07 cell differentiation

ENST00000572932 NOMO3 1.54 E-06 carbohydrate binding

ENST00000596417 EEF2 1.09 E-06 positive regulation of translation, cell-cell adhesion, 
response to estradiol

ENST00000485280 RAB7A 1.99 E-06 positive regulation of protein catabolic process, 
regulation of autophagosome assembly

ENST00000587393 AES 3.25 E-06
negative regulation of canonical Wnt signaling 

pathway, negative regulation of transcription and 
protein binding

ENST00000593582 TRIM28 4.78 E-06
positive regulation of DNA repair, positive regulation 
of transcription, epithelial to mesenchymal transition, 

protein sumoylation and ubiquitination

ENST00000463243 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000476642 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000480481 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000483480 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000486449 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000493893 COMT 1.05 E-05 estrogen metabolic process, dopamine catabolic 
process

ENST00000495074 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

(Continued)
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Ensembl transcript ID HGNC symbol Bonferroni 
corrected p-value

Relevant biological process

ENST00000514979 HLA-DPA1 1.04 E-05 Immune process, positive regulation of interferon-
gamma production

ENST00000524786 DEAF1 7.14 E-06 regulation of mammary gland epithelial cell 
proliferation, regulation of transcription

ENST00000368439 CKS1B 1.40 E-05 regulation of mitotic cell cycle

ENST00000524815 PACS1 1.83 E-05 positive regulation of protein binding, protein 
targeting to Golgi

ENST00000515540 BAX 3.35 E-05
DNA damage response, signal transduction by p53 

class mediator resulting in cell cycle arrest, apoptotic 
process

ENST00000548861 RP11-603J24.9 4.07 E-05 Unknown

ENST00000529698 DGKZ 5.99 E-05 protein kinase C-activating G-protein coupled 
receptor signaling pathway, cell migration

ENST00000372077 VEGFA 9.13 E-05 growth factor activity, cytokine activity

ENST00000435720 PSMF1 1.51 E-04
MAPK cascade, regulation of Wnt signaling pathway 

and ubiquitin-protein ligase activity involved in 
mitotic cell cycle

ENST00000461760 STK25 1.53 E-04 positive regulation of stress-activated MAPK cascade, 
signal transduction by protein phosphorylation

ENST00000492277 RPL29 1.44 E-04 cell-cell adhesion, involved in nonsense-mediated 
decay

ENST00000236957 EEF1B2 1.68 E-04 Involved in translational elongation

ENST00000308774 TRMT112 2.13 E-04 Involved in RNA methylation and translational 
termination

ENST00000494862 HDLBP 2.89 E-04 cell-cell adhesion and cholesterol metabolic process

ENST00000473991 PSMD2 3.14 E-04

MAPK cascade, regulation of Wnt signaling pathway 
and ubiquitin-protein ligase activity involved in 

mitotic cell cycle, tumor necrosis factor-mediated 
signaling pathway

ENST00000394729 PRKCD 4.02 E-04 apoptotic process, cell cycle, negative regulation of 
inflammatory response

ENST00000563039 SPN 3.96 E-04 apoptotic signaling pathway, immune response, signal 
transduction

ENST00000406984 FTH1P15 6.76 E-04 Unknown

ENST00000585935 RAVER1 0.000677355 mRNA splicing via spliceosome

ENST00000528296 RPL8 0.000747246 cytoplasmic translation

ENST00000456311 CAD 0.000787707 cellular response to drug and epidermal growth factor 
stimulus

ENST00000595355 GINS2 0.000895068 double-strand break repair, mitotic DNA replication 
initiation

ENST00000620429 VPS11 0.000910435 positive regulation of cellular protein catabolic 
process, endosome to lysosome transport

(Continued)
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Ensembl transcript ID HGNC symbol Bonferroni 
corrected p-value

Relevant biological process

ENST00000630977 VPS11 0.000910435 positive regulation of cellular protein catabolic 
process, endosome to lysosome transport

ENST00000352980 KAT5 0.000987787 double-strand break repair, regulation of growth and 
transcription

ENST00000456818 TUBA4A 0.00110052 G2/M transition of mitotic cell cycle, cytoskeleton 
organization

ENST00000517577 FTH1P11 0.001117274 Unknown

ENST00000591301 GNA11 0.00106912 G-protein coupled acetylcholine receptor signaling 
pathway, signal transduction

ENST00000523037 MRPL22 0.001163245 mitochondrial translational elongation and 
termination

ENST00000606722 NDUFA13 0.001321049 negative regulation of intrinsic apoptotic signaling 
pathway, of cell growth and transcription

ENST00000381348 LINC00634 0.001422158 Unknown

ENST00000594493 RPS11 0.001903649 Involved in nonsense-mediated decay and translation 
processes

ENST00000568265 TAF1C 0.002079705 positive regulation of transcription, epigenetic

ENST00000597681 MAP1S 0.002292852 apoptotic process, microtubule bundle formation

ENST00000368436 CKS1B 0.002744271 regulation of mitotic cell cycle and transcription

ENST00000537533 PTPN6 0.004221708 Regulation of apoptotic process as well as cell 
differentiation and proliferation

ENST00000569760 FUS 0.004169852 mRNA splicing via spliceosome and regulation of 
nucleic acid-templated transcription

ENST00000533397 RPL8 0.00427335 cytoplasmic translation

ENST00000443451 NCOR2 0.005527765 negative regulation of transcription

ENST00000487513 EHMT2 0.006799918 DNA methylation, regulation of transcription and 
DNA replication

ENST00000552600 ESPL1 0.008498519
apoptotic process, regulation of mitotic metaphase/

anaphase transition and mitotic sister chromatid 
segregation

ENST00000543608 SPPL3 0.009823731 T cell receptor signaling pathway, positive regulation 
of protein dephosphorylation

ENST00000405878 XRCC6 1.10805E-07
double-strand break repair via classical 

nonhomologous end joining, regulation of 
transcription

ENST00000427834 SGSM3 1.38595E-06 Activates GTPase and binds to Rab GTPase

ENST00000537739 HDGF 4.52676E-06 Binds to the DNA and helps in cell proliferation and 
differentiation

Transcript specifically associated with unaffected BRCAX when compared to BRCA1, BRCA2 and BRCAX 
affected individuals

ENST00000405878 XRCC6 1.10805E-07
double-strand break repair via classical 

nonhomologous end joining, regulation of 
transcription

(Continued)
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Ensembl transcript ID HGNC symbol Bonferroni 
corrected p-value

Relevant biological process

ENST00000427834 SGSM3 1.38595E-06 cell cycle arrest, regulation of Rab protein signal 
transduction

ENST00000537739 HDGF 4.52676E-06 cell proliferation, regulation of transcription and 
signal transduction

Transcript specifically associated with affected BRCAX when compared to BRCA1, BRCA2 and BRCAX 
unaffected individuals

ENST00000419477 YWHAZ 0.001164657 regulation of apoptotic process, cell-cell adhesion and 
establishment of Golgi localization

ENST00000539269 CARS2 0.002107185 cysteinyl-tRNA aminoacylation

ENST00000436614 ZNF687 5.67433E-07 regulation of transcription

ENST00000237837 FGF23 6.98876E-06 MAPK cascade, fibroblast growth factor receptor 
signaling pathway, regulation of transcription

ENST00000452722 CADM1 6.01183E-05 apoptotic process, regulation of cytokine secretion

ENST00000459748 RP11-466H18.1 0.000157558 Unknown

ENST00000460469 NMD3 0.000153464 protein transport

ENST00000562465 CDAN1 0.000146598 chromatin assembly, negative regulation of DNA 
replication

ENST00000495645 CHPF2 0.000410748 chondroitin sulfate biosynthetic process

ENST00000377861 PCDH9 0.000632184 homophilic cell adhesion via plasma membrane 
adhesion molecules

ENST00000415265 WDR6 0.000658126 cell cycle arrest, negative regulation of cell 
proliferation

ENST00000552588 RPL18 0.00085376 Involved in nonsense-mediated decay and 
translational initiation

ENST00000374752 ACAD8 0.001441532 lipid metabolic process, regulation of transcription

ENST00000449683 ATP5J2 0.001764478 ATP biosynthetic process

ENST00000513391 OCIAD1 0.001957078 protein binding

ENST00000547276 HNRNPA1 0.002375206 fibroblast growth factor receptor signaling pathway, 
gene expression, mRNA splicing

ENST00000525085 NDUFC2 0.003100189 mitochondrial electron transport, NADH to 
ubiquinone

ENST00000500813 DCTD 0.003245736 nucleotide biosynthetic process

ENST00000612832 ARHGAP21 0.004173962 organelle transport along microtubule, Golgi 
organization

ENST00000535413 MLEC 0.004822683 carbohydrate metabolic process, protein folding

ENST00000498022 NAGK 0.004945162 UDP-N-acetylglucosamine biosynthetic process

ENST00000444034 MED12 0.005486952
canonical Wnt signaling pathway, intracellular steroid 

hormone receptor signaling pathway, regulation of 
transcription

ENST00000522754 NCALD 0.006089983 calcium-mediated signaling

(Continued)
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exclusive association with unaffected and affected 
BRCAX subgroups, respectively.

Of interest, out of 67 transcripts specifically 
associated with BRCA1/BRCA2 subgroups combined, 
19 transcripts (28%) were involved in DNA repair, cell 
proliferation, apoptosis and cell cycle, 32 (48%) different 
transcripts exert an action in transcription, translation as 
well as mRNA and protein metabolic processes, while 10 
transcripts (15%) were involved in immune processes. 
Regarding the 28 transcripts exclusively associated 
with BRCAX affected individuals, more than 28% were 
involved in DNA repair/proliferation/apoptosis/cell cycle 
mechanisms, and approximately 43% (12 transcripts) 
were implicated in transcription and translation-related 
processes. It should be noted that XRCC6, SGSM3 and 
HDGF transcripts were associated with BRCA1/BRCA2, 
BRCAX unaffected and BRCAX affected individuals 
given that their expression was differentially expressed 
between all three subgroups. The expression of SGSM3 
and HDGF was validated by qPCR in BRCAX subgroup 
to differentiate affected from non-affected patients 
(Supplementary Figure 1). The expression level of these 
genes was also checked in different mammalian breast 
cancer cell lines. Further, ANOVA analysis highlighted 
that H3F3B was differentially expressed in BRCA1 and 
BRCA2 subgroups, which was also evaluated by qPCR 
(Supplementary Figure 1).

The 85 genes associated with the 95 significant 
transcripts identified as differentially expressed between 
BRCA1, BRCA2 and BRCAX (unaffected or affected) 
individuals were then submitted for pathway and 
molecular function analyses. Using Ingenuity Pathway 
analysis, enrichment of several canonical pathways and 
functions were identified. It should be noted that mapped 
genes can be classified in more than one biological process 
or metabolic process.

Moreover, as described in Table 2, cell death and 
survival (top p-value: 2.46 × 10−5 with 34 molecules), 
cellular function and maintenance (top p-value: 6.77 × 
10−5 with 25 molecules), cell cycle (top p-value: 7.41 × 
10−5 with 15 molecules), post-translational modification 
(top p-value: 2.03 × 10−4 with 11 molecules) as well 
as cell morphology (top p-value: 2.07 × 10−4 with 17 
molecules) represent the top overrepresented functions 
associated with these 85 genes. In addition, organismal 
injury, cell signaling, cell cycle and cell death represent 
the top networks associated with the whole gene set. 
Of great interest, these genes were also associated 
with Cancer and Organismal Injury and Abnormalities 
(Table 2).

The IPA analysis was also performed using the 28 
genes discriminating unaffected from affected BRCAX 
individuals. As presented in Table 3, BRCAX-related 
genes were particularly associated with Telomere 
Extension by Telomerase, DNA Double-Strand Break 
Repair by Non-Homologous End Joining as well as 
specific molecule degradation and biosynthesis (p-value 
ranging from 1.66 × 10−4 to 0.05). The top system 
development and functions represented by these genes 
were tissue development (top p-value: 1.28 × 10−3 with 
5 molecules), embryonic development (top p-value: 1.28 
× 10−3) and Immune Cell Trafficking (top p-value: 1.28 × 
10−3) (data not shown).

In addition, cell-to-cell signaling and interaction, 
cellular development, cellular growth and proliferation, 
cellular movement and lipid metabolism (top p-value at 
1.28 × 10−3) represented the enriched functions (Table 
4). As also described in this table, IPA analysis revealed 
that these genes were involved in networks such as “Cell 
death and survival” as well as “Connective tissue disorders 
and metabolic diseases” with 38 and 26 molecules, 
respectively.

Ensembl transcript ID HGNC symbol Bonferroni 
corrected p-value

Relevant biological process

ENST00000552819 PCBP2 0.002187131 mRNA metabolic process, mRNA splicing, defense 
response to virus

ENST00000528413 IRF7 0.002697978
cellular response to DNA damage stimulus, 

interferon-gamma-mediated signaling pathway, 
regulation of transcription and immune response

ENST00000405878 XRCC6 1.10805E-07
double-strand break repair via classical 

nonhomologous end joining, regulation of 
transcription

ENST00000427834 SGSM3 1.38595E-06 cell cycle arrest, regulation of Rab protein signal 
transduction

ENST00000537739 HDGF 4.52676E-06
IRE1-mediated unfolded protein response, cell 

proliferation, regulation of transcription and signal 
transduction
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Moreover, “cancer” (top p-value: 5.46 × 10−4 with 
26 molecules) represented the disease associated with the 
highest number of molecules. Altogether, these analyses 
revealed enrichment of several pathways and functions 
involved in key mechanisms required for carcinogenesis 
development.

DISCUSSION

In this study, we analyzed the genome-wide 
transcription profile observed in LCLs immortalized from 
high-risk breast cancer families. To our knowledge, this is 
the first study describing clustering of BRCA1, BRCA2 and 
unaffected/affected BRCAX individuals based on their 
whole gene expression profile observed in corresponding 
LCLs.

The reliability of using LCLs from affected 
individuals for a given disease with regard to expression 
studies or splicing signatures has already been established 
[18-28]. A particular study conducted by Hussain and 
colleague concluded that LCLs were a good reflection 
of isolated lymphocytes given their close resemblance at 
the genetic and phenotypic levels to parent lymphocytes 
and were a valuable resource for studies regarding 
genotype-phenotype interactions [39] and inter-individual 
variations associated with various diseases and disorders 
such as cancer or infectious disease [40-42]. In addition, 
peripheral blood mononuclear cells (PBMCs) have also 
been used to investigate the links between DNA damage 
response, immunity and cancer [43] and to study the early 
stages of breast cancer development on gene expression 
patterns [44].

Figure 2: Hierarchical clustering of the 95 transcripts differentially expressed. Unsupervised LCLs classification based on 
the significantly and differentially expressed transcripts measured by RNA-sequencing using bonferroni corrected p-value <0.01. Color bar 
represents each of our groups (red: BRCA1, blue: BRCA2, Green: BRCAX) and status of disease (pink: affected and white: unaffected).
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As described in other studies [45-47], we used 
ANOVA analysis of variance with the Scheffé multiple 
post-hoc test to identify transcripts specifically regulated 
in BRCA1, BRCA2 as well as in unaffected and affected 
BRCAX individuals. Using gene expression data of the 
95 significant gene isoforms, our clustering results allowed 
discrimination of BRCA subgroups, particularly BRCA1/2 
from BRCAX individuals.

This is in agreement with other studies in which 
gene expression in LCLs was successfully used for 
clustering analysis in several diseases including 
autism spectrum disorders and spinocerebellar ataxia 
(SCA28) [48, 49]. Moreover, LCLs served as a model 
system to assess genotype–phenotype relationships in 
human cells, including studies for quantitative trait loci 
influencing levels of individual mRNAs and responses 
to drugs and radiation [50-53], as well as regarding 
the haploinsufficiency effects of various BRCA1 
mutation [54].

Over the last decade, several investigations clustered 
breast tumors based on single gene expression levels as 
well as their gene/splicing expression profile or molecular 
and clinical characteristics. The first correlation between 
the tumor phenotypic diversity (histopathological and 
clinical characteristics) and gene expression patterns 
was demonstrated in 2000 by Perou and colleague [55-
58]. Van’t Veer et al. conducted clustering analyses of 
breast tumors based on their gene expression profile 
and determined a predictive signature of metastases 
development (poor prognosis) in patients without tumoral 
cells in local lymph node at diagnosis and established 
a specific signature of BRCA1 tumors [56]. Clustering 
analyses of breast tumors based on whole gene expression 
revealed familial aggregation of BRCA-related tumors and 
of specific molecular subtypes including Basal, HER2-
enriched, Luminal A and B as well as Normal-like and 
sporadic tumors [38, 55-57, 59-70]. In addition, alternative 
splicing expression profile was also successfully used in 
several studies aiming to discriminate subtypes of breast 
tumors [71-73], and specific gene expression profiles have 
also been identified for BRCA1, BRCA2 and CHEK2-
associated breast tumors [62, 74].

To our knowledge, the only clustering analysis 
involving LCLs in breast cancer classification 
distinguished BRCA1 carrier from non-carrier individuals 
[75], in which 133 genes were found to be differentially 
expressed between BRCA1-mutated and non-carriers. 
However, hierarchical clustering of these genes did 
not result in an accurate discrimination between both 
subgroups. Of these 133 genes identified by Vuillaume 
et al. [75], the RPL29 and PSMF1 genes have also 
been identified in our comparison between BRCA1/2 
and BRCAX individuals. RPL29 is a ribosomal protein, 
involved in RNA interaction and protein synthesis, while 
PSMF1 gene encodes a proteasome inhibitor protein 
involved in protein folding and degradation [76, 77].

We then compared our results with GTEx Portal 
database, which contains normalized expression data from 
RNA sequencing for each gene and transcripts for different 
types of tissues. The normalization of expression was 
done by similar method for all databases. The expression 
values for genes from EBV transformed lymphocytes are 
available, and the normalized expression values in this 
database are similar with the ones we obtained [78]. In 
addition, we performed correlation between TPM value 
and FPKM value by doing a regression analysis using 
the values for each sample in the analysis and we found 
significant correlation between both of them.

We also compared our gene lists with the lists 
for up and down regulated genes associated with breast 
cancer using BioXpress, a curated gene expression and 
disease association database using RNA sequencing from 
TCGA database [79]. A certain number of our significant 
genes were common. Indeed, there were 5 genes that 
were present in our list and in the up regulated list for 

Table 2: Overrepresented functions, network and 
diseases for significantly and differentially expressed 
transcripts

Molecular and cellular functions Top p-value*

Cell Death and Suvival [34] 2.46E-05

Cellular Function and Maintenance [25] 6.77E-05

Cell Cycle [15] 7.41E-05

Post-Translational Modification [11] 2.03E-04

Cell Morphology [17] 2.07E-04

Top Networks Score

Organismal Injury and Abnormalities, 
Renal and Urological Disease, 
Embryonic Development

61

Psychological Disorders, Cancer, Cell Cycle 29

Cell Signaling, Cell-To-Cell Signaling 
and Interaction, Cell Death and Survival 25

Cell Cycle, Cancer, Organismal Injury 
and Abnormalities 22

Cell Death and Survival, Cancer, 
Gastrointestinal Disease 15

Diseases and disorders Top p-value*

Cancer [71] 1.45E-05

Organismal Injury and Abnormalities [73] 1.45E-05

Renal and Urological Disease [27] 1.45E-05

Neurological Disease [27] 4.17E-05

Hematological Disease [34] 1.86E-04

*Top P-value of the p-value range.
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Figure 3: Venn diagram of significantly and differentially expressed transcripts compared with BRCAX unaffected 
individuals. An intersectional analysis of differentially expressed transcripts compared with BRCAX unaffected was performed. The cut-
off value was Bonferroni corrected p-value ≤ 0.01.

Figure 4: Hierarchical clustering of the 28 transcripts differentially expressed between BRCAX affected and BRCAX 
unaffected individuals. Heat map of the TPM (Transcripts Per Million) for 32 women using Euclidean distance with average linkage.
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breast cancer (RAP2C, SPN, GINS2, ESPL1 and IRF7). 
Regarding the list for down regulated genes associated 
with breast cancer, 3 genes were also present in our list 
(HLA-DPA1, PCDH9 and NCALD).

Among the highest significant genes associated with 
BRCA1/2 subgroups, some of them (p-values ranging 
from 1.1 × 10−7 to 4.5 × 10−6) namely NOSIP, EIF2AK1, 
TBCB, XRCC6, SGSM3 and HDGF are involved in key 
mechanisms implicated in carcinogenesis susceptibility.

The expression of the NOSIP gene was upregulated 
and EIF2AK1 and TBCB were downregulated in BRCA1/2 
individuals when compared to BRCAX subgroups. The 
eNOS Interacting Protein NOSIP was identified as an 
interacting protein of the endothelial isoform of nitric 
oxide synthase (eNOS) to enhance its translocation to 
intracellular membrane [80].

The EIF2AK1 gene is involved in the modulation of 
the basal hepatic endoplasmic reticulum stress tone [81]. 
Although no information links this gene to breast cancer, 
it has been demonstrated in a mouse xenograft model of 
human breast cancer that an activator of EIF2AK1 protein 
was associated with tumor growth inhibition compared 
with vehicle [82]. Thus, its downregulation in BRCA1/2 
individuals could promote tumor development.

Regarding TBCB, this protein is involved in 
regulation of axonal growth and microtubule functional 
diversity and dynamics [83]. This protein was shown to 
be overexpressed and phosphorylated in breast tumors 
[84]. Therefore the effect of its decreased expression in 
BRCA1/2 individuals remains to be investigated.

Of great interest, specific expression levels of 
XRCC6, SGSM3 and HDGF genes were also associated 
with BRCAX individuals (unaffected and affected). 
These genes are involved in DNA repair as well as in the 
regulation of cell cycle, cell proliferation and transcription, 

and were differentially expressed between BRCA1/2, 
unaffected BRCAX and affected BRCAX individual. 
These genes showed the highest expression in affected 
BRCAX and the lowest expression in BRCA1 and BRCA2 
subgroups. Indeed, a similar and progressive pattern of 
expression values for all three genes was observed between 
subgroups (BRCAX affected > BRCAX unaffected > 
BRCA1/2 individuals) as presented in Supplementary Table 
2. Futhermore, the study highlighted few genes which could 
discriminate BRCA1 from BRCA2 subgroup, amongst them 
the highest difference was depicted by H3F3B.

XRCC6 gene encodes the Ku70 protein, which is a 
component of the non-homologous end joining (NHEJ) 
DNA repair pathway. This pathway is an alternative 
mechanism to homologous recombination (HR) repair 
pathway involved in double-strand break (DSB) repair in 
mammalian cells [85]. Defect or variation of expression 
of NHEJ genes such as XRCC6, might escape cell cycle 
checkpoint surveillance and could lead to suboptimal DNA 
repair and subsequently to accumulation of DNA damage 
and carcinogenesis initiation [86-88]. Given the key 
roles of BRCA1/2 in HR repair pathway [89], defective 
activity of BRCA1/2 proteins found in some individuals 
combined with low expression of NHEJ-associated genes 
could likely increase the accumulation of DNA damage 
in BRCA1/2 individuals. Indeed, this low expression of 
Ku70 was previously observed in BRCA1-deficient cell 
lines [90]. On the other hand, the high expression of 
XRCC6 in BRCAX individuals affected with breast cancer 
remains to be elucidated. Moreover, polymorphisms in 
XRCC6 gene have been shown to increase breast cancer 
susceptibility as well as other types of cancer [91-96].

SGSM3 is a member of the small G protein 
signaling modulators, which is associated with 
small G protein coupled receptor signal transduction 

Table 3: The most significant canonical pathways enriched for significantly and differentially expressed transcripts 
between BRCAX affected and BRCAX unaffected

IPA canonical enriched pathways Number of gene in pathways p-value

Telomere Extension by Telomerase 2 1.66E-04

N-acetylglucosamine Degradation II 1 5.13E-03

CMP-N-acetylneuraminate Biosynthesis I 
(Eukaryotes) 1 6.46E-03

Chondroitin and Dermatan Biosynthesis 1 7.76E-03

DNA Double-Strand Break Repair by Non-
Homologous End Joining 1 1.78E-02

Isoleucine Degradation I 1 1.78E-02

Valine Degradation I 1 2.29E-02

tRNA Charging 1 4.90E-02

Analyses were performed using genes associated with significantly and differentially expressed transcripts between 
BRCAX affected and BRCAX unaffected using bonferroni correct p-value <0.01.
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pathway [97]. The human SGSM3 proteins were 
demonstrated to coprecipitate with RAP and RAB 
subfamily members of the small G protein superfamily. 
Therefore it has been suggested that the SGSM family 
members exert a role as modulators of the small G protein 
RAP and RAB-mediated neuronal signal transduction 
and vesicular transportation pathways [97]. The only 
information in the literature associating this protein with 
breast cancer described a decrease of SGSM3 mRNA 
in breast cancer tissue compared to normal tissue [98], 
which is in contrast with the significant increase of 
expression in LCLs of BRCAX affected individuals 
observed in our study. However, in the study performed 
by Nourashrafeddin et al. using basic RT-PCR method and 

visualization on agarose gel [98], SGSM3 was not detected 
in normal and cancerous tissues, illustrating the very low 
expression of this gene in breast tissues. It should be noted 
that a polymorphism (rs17001868) found in the SGSM3 
gene has been associated with mammographic dense 
areas of the breast [99], which represents a factor of breast 
cancer risk [100-102]. SGSM3 has also been associated 
with hepatocellular carcinoma [103].

The Hepatoma-derived growth factor (HDGF) is 
now recognized as a breast cancer-associated gene and 
promotes the epithelial-mesenchymal transition (EMT) 
[104]. EMT is a hallmark of many cancers characterized 
by an increased cell invasion, which enhances the initial 
phase of metastatic progression [105, 106]. HDGF is 
overexpressed in several types of cancers including breast 
cancer cell lines and tissues and correlates with poor 
prognosis [104, 107-112]. Blockade of HDGF using a 
specific antibody results in the inhibition of malignant 
features and EMT of breast cancer cells [104]. Thus, its 
overexpression in breast cancer tissues is in concordance 
with our results demonstrating the overexpression of 
HDGF in LCLs of BRCAX individuals affected with 
breast cancer. Hence, this protein could be considered as 
a prognostic factor for tumor metastasis and recurrence.

H3 Histone Family Member 3B (H3F3B) is part of 
core histone molecule and has a role in gene regulation, 
DNA repair, DNA replication and chromosomal stability. 
Mutations in H3F3B gene have been associated with 
several cancers including brain cancer, giant cell tumor of 
bone and colorectal cancer [113-115]. Overexpression of 
this gene is also associated with colorectal cancer. In breast 
cancer, the copy number of the chromosome carrying this 
gene is significantly high [116], which is further confirmed 
by the data from the human protein atlas data.

In addition to XRCC6, SGSM3 and HDGF genes 
as described above, ZNF687 and FGF23 genes were 
also associated with and upregulated in BRCAX affected 
individuals when compared to unaffected individuals.

ZNF687 encodes a zinc finger protein and represents 
an important regulator of skeletal development and 
maintenance [117]. Overexpression of ZNF687 has been 
observed in tumor tissue of individual giant cell tumor 
of bone associated with Paget disease of bone, and this 
high expression is also observed in the peripheral blood 
of patients affected with Paget disease [118]. The role of 
ZNF687 in breast cancer is unknown.

As to fibroblast growth factor 23 (FGF23), it is a 
binding partner of Klotho proteins for endocrine signaling 
through the action of FGFRs. These FGFR receptors are 
involved in several mechanisms such as regulation of 
cell survival, proliferation, differentiation and motility 
during embryogenesis as well as tissue homeostasis 
and carcinogenesis [119-122]. Indeed, FGF23 signaling 
promotes proliferation in myeloma cells [123], while 
increase of FGF23 levels in serum were observed in 

Table 4: Overrepresented functions, network and 
diseases for significantly and differentially expressed 
transcripts between BRCAX affected and BRCAX 
unaffected

Molecular and cellular functions Top p-value*

Cell-To-Cell Signaling and Interaction [4] 1.28E-03

Cellular Development [7] 1.28E-03

Cellular Growth and Proliferation [4] 1.28E-03

Cellular Movement [2] 1.28E-03

Lipid Metabolism [1] 1.28E-03

Top networks Score

Cell Death and Survival, Cell 
Morphology, Hair and Skin 
Development and Function

38

Connective Tissue Disorders, Metabolic 
Disease, Nutritional Disease 26

Cellular Assembly and Organization, 
DNA Replication, Recombination, and 
Repair, Nucleic Acid Metabolism

2

Diseases and disorders Top p-value*

Connective Tissue Disorders [3] 2.37E-05

Metabolic Disease [3] 2.37E-05

Nutritional Disease [2] 2.37E-05

Skeletal and Muscular Disorders [4] 2.37E-05

Cancer [26] 5.46E-04

* Top P-value of the p-value range.
The number of genes involved in the process is given in 
parentheses.
Analyses were performed using genes associated with 
significantly and differentially expressed transcripts 
between BRCAX affected and BRCAX unaffected using 
bonferroni correct p-value <0.01.
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cancer patients, and were also elevated in patients with 
non-cancerous diseases, such as hypophosphatemic rickets 
and chronic kidney diseases [124].

Considering all significant genes identified following 
ANOVA analysis of gene expression data observed in four 
BRCA subgroups, several interesting pathways seem to be 
affected by the regulation of specific genes. Among these 
pathways, EIF2 signaling, 14-3-3-mediated pathway and 
mTOR signaling are particularly significant and relevant 
to breast cancer. Moreover, both the EIF2 (through the 
activation of the PI3K pathway) and 14-3-3-mediated 
signaling cascades regulate the mTOR pathway [125, 126], 
which is involved in the response to hormones and growth 
factor stimulation and is well known to exert a significant 
role in tumor cell growth and proliferation as well as in 
breast cancer development [127] and references therein.

On the other hand, cell death and survival, cellular 
function and maintenance as well as cell cycle represent 
the highest enriched functions, while cancer remains 
among the diseases/disorders having the highest p-value, 
which is associated with a high number of genes involved 
in cancer-related pathways.

Taken together, in the present study, we compared 
gene expression profiles in lymphoblastoid cell lines in 
BRCA1- and BRCA2- carriers as well as BRCAX affected 
and unaffected individuals from high-risk breast cancer 
families in order to determine specific markers which 
could be of great relevance for further studies. Indeed, 
several transcripts have been identified as potential 
valuable markers of interest for breast cancer, and deserve 
further analysis.

MATERIALS AND METHODS

Ascertainment of high-risk families

Recruitment of high-risk French Canadian breast 
and ovarian cancer families started in 1996 as a large 
interdisciplinary research program designated INHERIT 
BRCAs [12]. The High risk group is defined as families 
with a history of breast cancer with at least 3 cases in 
1st degree relative or 4 cases in 2nd degree relative, the 
full selection criteria have been published previously 
[12]. Patients were screened for deleterious mutations 
in BRCA1 and BRCA2 genes. The BRCA testing was 
done by complete sequencing of the BRCA1/2 gene by 
using primers in both directions (forward and reverse). 
Confirmation was done by Myriad Laboratories. A subset 
of 96 high-risk families with no deleterious mutation in 
BRCA1 or BRCA2 were recruited (BRCAX families) as 
described elsewhere [128, 129]. For the purpose of this 
study, carriers of a BRCA1 or BRCA2 mutation were 
selected. As for the BRCAX families, the youngest 
available breast cancer case in the family was selected, 
along with the oldest non-affected sister. All unaffected 
women were post-menopausal. All individuals provided 

their written informed consent in order for their genetic 
material to be part of a biobank (Dr J. Simard, director). 
The age range of affected BRCA1, BRCA2 and BRCAX 
were 23-65, 29-72 and 35-70 respectively. For unaffected 
BRCA1, BRCA2 and BRCAX the age range was 35-66, 
37-77 and 41-86 respectively.

Cell line immortalization and RNA extraction

Lymphocytes (LCLs) were isolated and 
immortalized from 7 to 9 mL of blood samples from 
breast cancer individuals using Epstein-Barr virus in 15% 
RPMI medium as previously described [128, 130, 131]. 
Total RNA was extracted from LCLs using TRI Reagent 
(Molecular Reasearch Center Inc, Cincinnati, OH, USA) 
according to the manufacturer’s instructions as described 
previously [128]. The viral strain, number of passage and 
conditions for cell lines were kept identical to avoid bias 
in gene expression [133].

RNA-seq experiments

The quality of RNA samples was evaluated with 
an Agilent Bioanalyzer 2100 to determine the RIN (RNA 
Integrity) score using the Agilent RNA 6000 Nano chip 
and reagents. Samples with a RIN score >7 were retained 
and converted to cDNA with the Illumina RNA seq kit for 
sequence library preparation based on the Illumina TruSeq 
RNA Sample Preparation protocol. The final libraries were 
pooled in triplicate and then sequenced on an Illumina 
HiSeq 2000 at the McGill University and Génome Québec 
Innovation Centre.

Raw reads were trimmed for length (n>=32), 
quality (phred33 score >= 30) and adaptor sequence 
using fastxv0.0.13.1. Trimmed paired-end reads (read 
length: 100 bp) were aligned to the hg19 human reference 
genome using Tophat version v1.4.0 [132]. The resulting 
alignment file was indexed using samtools v0.1.18. Raw, 
trimmed and aligned read numbers were retrieved after 
alignment to determine the quality of the sequence data. 
GATK (v1.0.5777) [134] was then used to compute the 
coding sequence coverage for each sample. Raw read 
counts and normalized read counts (in transcript per 
million, TPM) were obtained using the Kallisto v0.43.0 
quant command [135] with the default parameter on the 
GRCh38.rel79 version of the human transcriptome, while 
Pearson correlation values were obtained pairwise for each 
sample using R v2.12.0. Differential gene expression was 
determined using edgeRv2.2.6 [136] on R v2.12.0 and 
DESeqv1.6.1 [137] on R v2.14.0. Transcript differential 
expression was performed using cuffdiff v1.3.0. A 
gene ontology analysis was then launched on gene and 
transcript differential expression results using goseqv1.2.1 
[138] on R v2.12.0. Finally, UCSC compatible wiggle 
tracks were generated using FindPeaks v4.0.16.
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Statistical analysis

Statistical analyses were carried out using the R 
Package v3.3. In regard to mRNA levels, One-factor analysis 
of variance (ANOVA) was performed to compare the breast 
cancer subgroups. First a model was fitted using the lm 
function from the stats package then the ANOVA analysis 
was performed with the Anova command from the car 
package [139-140]. Bonferroni correction was performed 
with the p.adjust function from the stats package using “BH”, 
“BY” and “bonferroni” methods and statistically significant 
differences were considered at p < 0.01 for the “bonferroni” 
method [140]. The Scheffé test was carried out with the 
scheffé test function from the agricolae R package for post-
hoc analysis for comparisons between two of the multiple 
groups [141]. We performed intra-group variance analysis 
using gene expression data of patients with the BRCA1 
R1443X mutation and BRCA2 8765delAG mutation by 
Principle component analysis (PCA).

Pathways, network and clustering analyses

Partek Genomics Suites® software package 
(copyright © 2009 Partek Incorporated. St. Louis, MO) 
was used for hierarchical clustering using the default 
setting (Euclidean dissimilarity and average linkage 
method) as well as for Principal component analysis 
(PCA).

Identification of overrepresented pathways, functions 
and gene-associated diseases were performed using 
QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN 
Redwood City, www.qiagen.com/ingenuity) software. 
Default settings in IPA for expression dataset analyses 
were used for gene list functional analysis. Gene lists were 
uploaded using NCBI Entrez gene IDs or gene symbols and 
submitted for IPA Core Analysis. IPA calculates p-values 
that reflect the statistical significance of association between 
the genes and the networks by the Fisher’s exact test. P-
value ≤ 0.05 were considered significant.
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