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Abstract: The organoleptic profile of a Virgin Olive Oil is a key quality parameter that is currently
obtained by human sensory panels. The development of an instrumental technique capable of
providing information about this profile quickly and online is of great interest. This work employed
a general purpose e-nose, in lab conditions, to predict the level of fruity aroma and the presence
of defects in Virgin Olive Oils. The raw data provided by the e-nose were used to extract a set of
features that fed a regressor to predict the level of fruity aroma and a classifier to detect the presence
of defects. The results obtained were a mean validation error of 0.5 units for the prediction of fruity
aroma using lasso regression; and 88% accuracy for the defect detection using logistic regression.
Finally, the identification of two out of ten specific sensors of the e-nose that can provide successful
results paves the way to the design of low-cost specific electronic noses for this application.

Keywords: virgin olive oil; quality; electronic nose

1. Introduction

A common feature of the Mediterranean diet, which is a dietary pattern associated
with longevity, improvement of life quality, and a reduction of the incidence of many
chronic pathologies (i.e., cardiovascular diseases, cerebrovascular diseases, diabetes mel-
litus, metabolic syndrome, certain cancers, and neurodegenerative diseases), is the high
consumption of olives and olive oil as the primary source of dietary fat [1–3].

Olive oil quality is deeply conditioned by extraction techniques, thereafter virgin
olive oils are designated also as “oils obtained from the fruit of the olive tree solely by
mechanical or other physical means under conditions, particularly thermal conditions
that do not lead to alterations in the oil, and which have not undergone any treatment
other than washing, decantation, centrifugation and filtration”. These oils are ready for
direct human consumption (EC Reg ECC 2568/1991 as amended). European legislation
provides three main merceological classes of olive oil, based on physical, chemical, and
sensory characteristics: extra virgin (EVOO), virgin (VOO), and lampante olive oil (LOO).
The olive oil features are strictly regulated by EU, which also establishes methods for their
analysis (Reg (EEC) 2568/91, EC Reg 640/08) [4]. When EVOO is extracted from fresh
and healthy olive fruits, it is properly processed and adequately stored [5,6]; it exhibits an
organoleptical profile characterized by a unique fruity aroma and taste, with no defects
(e.g., fusty, musty, winey, metallic, rancid).

Its volatile constituents are mainly C6 compounds (aldehydes, ketones, alcohols, and
esters in particular), synthesized by means of the lipoxygenase metabolic pathway and
responsible for EVOO green scents [7]. EVOO’s fragrant and delicate flavor is ascribable to
fruity sensation, which is a reminiscence of the healthy olive fruit perfectly ripe, and to
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scents of cut grass, olive leaf, flowery scents, green fruits (e.g., apple, banana, almond) or
vegetables (e.g., tomato, artichoke) [8,9].

Indeed, its peculiar taste is characterized by more or less intense bitterness and
pungency notes, which are positive attributes depending on the content of bioactive
compounds strictly related to important health benefits, such as phenols [10]. The EVOO
sensory profile is strongly related to its quality, so there are other lower-quality olive oils,
such as VOO, which is also fruity but has a few minor defects deriving from incorrect
extraction or storage processes, and LOO, which exhibits an unpleasant smell and is
non-edible [11].

According to the European legislation, the sensory analysis of virgin olive oils must
be carried out by both smell and taste assessments by means of a panel test, constituted
by a group of trained and selected assessors (EEC 2568/91; EC 640/08). Thus far, there
is no methodology able to suitably replace human sensory panels, essentially because
taste and olfactory properties are formed by a plethora of different compounds in varying
concentrations, which deliver the holistic sensory impression [12–14]. Sensory assessment,
however, needs many resources and time, as well as specialized panellists, which are not
always at the disposal of small/medium-sized enterprises and cooperative societies, and
should not be used for routine operations [13,15].

In this context, there is a need for the development of accurate instrumental techniques
capable of performing measurements in real-time and generating the same information
as a panel, in a reproducible and stable way, in order to achieve the correct classification
of VOOs rapidly and efficiently [16]. Several analytical methods have been proposed in
different studies carried out in the last decade, many including characterizations of the
volatile markers for each sensory characteristics [17], and there have been recent efforts
devoted to the quality testing of different types of oils using electronic noses [18–20].
The development of easy-to-use electronic noses, capable of being installed directly in the
process line, appears extremely appealing in this field.

The aim of this work is to employ the electronic nose to develop an automatic online
analysis system for olive oils’ batches sensory classification immediately after the olive oil
extraction process. The acquired knowledge could be applied to evaluate the fruity aroma
and defect level of the olive oil batches at the end of the virgin olive oil production process
and classify them, in order to avoid misclassification and to prevent the mixing low quality
oil in the same tank with high quality oil. In this work, we analyze all the VOO produced
by a company in a season in lab conditions, and assess its quality by means of predicting
the value of the fruity aroma attribute and the existence of defects.

The rest of the paper is organized as follows: the next section provides a brief overview
of relevant previous works, while Section 3 details the Materials and Methods employed to
obtain the results discussed in Section 4. The paper ends with the conclusions presented in
Section 5.

2. Related Works

The sensors usually denominated electronic noses are devices that employ one or more
gas transducers that receive a flow of air extracted from the headspace of the samples and
modify their electric impedance in the presence of different families of volatile molecular
compounds, so that they provide an electric signal that depends on the presence or absence
of these compounds [21].

The major applications in food products for this type of sensors are quality control
and food safety [22,23], authenticity control [24], and detection of contaminants [25]. This
way, in the literature, there are several reports that devote their attention to the application
of e-noses to fruits and vegetables in order to identify and select cultivars, to discriminate
among different ripening stages, to predict the optimal harvest date, to monitor shelf
life [26] or to manage the post-harvest processes and to evaluate the occurrence of de-
fects [16]. This technology has also been employed to evaluate the quality of fish [27,28],
meat [29] and processed vegetables [25,30–32].
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In addition, according to [23], e-noses find useful applications in several issues per-
taining to classification, determination of botanical and geographical origin, detection of
adulterations and evaluation of the degree of oxidation of edible oils [33]. For olive oil in
particular, this technology has been proven useful for determining the geographical origin
of the oil, detecting adulterations and quality determining the spoilage due to external
factors, such as temperature, storage time, air composition in storage tanks, etc. [23].

Other recent studies of the application of this technology to olive oil [34,35] show
the different responses provided by the sensors when confronted with different olive oil
samples adulterated with other vegetal oils. Ref. [36] show the possibility of classifying
virgin olive oil versus other chemically treated olive oils using only a single sensor, with a
success rate of 91%. Other works, such as [37], show the use of e-nose to detect the quality
loss over time of virgin olive oils stored at different temperatures, with a success rate
close to 94%. In turn, ref. [38] used an e-nose to classify olive oils obtained from different
cultivars, yielding a 82% accuracy in their predictions. Finally, ref. [39]demonstrated the
potential of using this type of technology directly on intact olives to predict whether the oil
to be produced from them would be virgin or lampante, with an accuracy of 90%.

The novelty of the work presented in this paper resides on the prediction of the
intensity of fruity aroma and the detection of defect, which can be employed to classify
olive oils prior to their storage.

3. Materials and Methods
3.1. Olive Oil Samples

Forty-two olive oil samples, produced from Olea europeae fruits belonging to typical
Spanish cultivars (mainly cv. Picual) and harvested during the 2018/2019 crop season from
different growers of Jaén province (Spain), were provided by a local Olive Oil Cooperative
(Picualia mill, Bailen—Jaén).

Each sample was divided in representative aliquots and stored in dark glass 125 mL
containers with the aim to immediately evaluate its volatile emission by electronic-nose
and to be delivered to the accredited CM Europe laboratory for the sensory and chemical
analysis.

3.2. Chemical and Sensory Analysis of Oil

Each chemical determination was performed in triplicate, following the official methods—
acidity index (AI), peroxide value (PV), K232, K270, and ∆K according to EU Reg 2568/1991.
The sensory characterization followed the method described by [40]. Table 1 includes the
main chemical and sensory parameters of the considered samples.

Table 1. Chemical and sensory characterization of the samples (overall mean and standard deviation), and relevant quality
degree, in accordance with current legislation.

Number of
Samples

AI (g Oleic
Acid/100 g Oil)

PV (meq
O2/kg Oil) K232 K270 ∆K EE (mg/kg) Fruity Defect Quality

Grade

21 0.16 (0.03) 4.4 (0.6) 1.50 (0.10) 0.15 (0.01) <0.01 7 (5) 4.1 (0.8) 0 (0) EVOO
19 0.24 (0.05) 5.1 (0.8) 1.50 (0.10) 0.14 (0.01) <0.01 8 (3) 2.4 (0.4) 2.6 (0.3) VOO
2 0.25 (0.01) 4.3 (0.4) 1.57 (0.01) 0.17 (0.01) <0.01 7 (1) 1.3 (1.7) 3.6 (0) LOO

3.3. Volatile Emission by Electronic-Nose

The analysis of the headspaces of each olive oil sample was performed using an elec-
tronic nose apparatus PEN3 (Airsense Analytics GmbH, Schwerin, Germany), consisting
of a gas sampling unit (maximum flow rate of 600 mL/min), an integrated sensor array
composed of 10 different thermo-regulated (200–500 ◦C) metal oxide thick film sensors
(MOS) sensitive to different classes of chemical compounds and a software (Win Muster v.
1.6.2) [41]. Figure 1 depicts a schematic of the setup used.
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Figure 1. Schematic representation of the experimental setup of the electronic nose used in sample
measurements (1 = PEN3 e-nose; 2 = silica gel filter; 3 = activated carbon filter; 4 = tested sample;
5 = computer).

For each sample, 5 g of olive oil were poured in a dark glass 13.5 mL vial, hermetically
sealed with rubber closure and conditioned to 30 ± 1 ◦C before the measurement process
in order to increase the volatile concentration in the headspace.

As previously described by [41], each measurement process starts with a sensor array
cleaning stage, when air, after passing through an activated carbon filter, reaches the sensor
array. During the second step, air crosses another time through an activated carbon filter
and then through the sample; after passing through a moisture and particle filter, air
finally reaches the array of sensors. When the sample volatile compounds react with the
sensing film of the sensor, an oxygen exchange occurs resulting in a change of electrical
conductivity, detectable by a transducer element (electrode) attached to each sensor.

3.4. Data Analysis

The primary source of information about the samples are the response curves for
each of the sensors in the PEN3 device. These curves represent the sensor measurement
as a function of time. Figure 2 shows the raw response of the nine sensors finally used
for the data analysis as provided by the PEN3 software for all the samples. These plots
show that the noise level of the signals was very modest, so no filtering preprocessing
step was required. The exception to this pattern was sensor 4 (not shown in Figure 2),
which provided data that were confined in a very narrow range and with a very poor
signal-to-noise ratio, so this sensor was not considered in the following data analysis.
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Figure 2. Curves of the responses of the nine sensors finally employed in the data analysis for the different samples.

The first step of the data analysis consisted of the extraction of features that summa-
rized the information contained in the curves, as is common practice in applications that
employ electronic noses [42]. The reason for this step is that the value at each time step is
highly correlated with its neighbors, so directly using the data provided by the sensors at
each time as an independent feature would grant an extremely high-dimensional feature
vector with high correlations between their components, which is not desirable.

A visual inspection of the sensor response plots, along with a review of features
commonly used in the literature for the characterization of this type of curves [42], provided
the basis the selection of the preliminary set of features. This way, two features were
extracted from the time series:

1. Peak value of the curve (SxM),
2. Final value of the curve (SxF).

This way, as an example, the peak value of the curve for sensor 1 is denoted S1M,
while the final value of the curve for sensor 2 is denoted S2F. The two features extracted
from the time response of each of the nine sensors finally used provide a feature vector
of dimension 18, which is still relatively high when compared to the total number of
samples available for the analysis (42). In order to attenuate the risk of overfitting, further
regularization and dimensionality reduction techniques were applied, as detailed below.
All of the computations were carried out using scikit-learn [43], a machine learning library
for Python.



Sensors 2021, 21, 2298 6 of 17

3.5. Prediction of Fruity Aroma

As the value of fruity aroma is a continuous parameter, its prediction constitutes a data
regression problem. The left-hand panel of Figure 3 shows the distribution of the fruity
aroma values of the samples. As depicted in the plot, the values are reasonably spread, so
they should not be problematic for standard regression tools. However, as commented
above, the feature vector dimension was high related to the number of samples, so it was
necessary to consider candidate techniques that included regularization parameters so
that overfitting did not impair the generalization of the model. Furthermore, the fact that
the features essentially represent the response of sensors to the concentration of volatiles
makes it plausible to consider that a linear model could be appropriate for the prediction
of fruity aroma. Thus, taking these considerations into account, three candidate techniques
were implemented: ridge, lasso, and elastic-net regressions.
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Figure 3. Distribution of fruity aroma and defect intensity for the studied samples.

The three methods are very similar in nature, as they all essentially fit a linear model
solving an optimization problem that includes some penalty in the objective function
related to the size of the coefficients in the linear model, thus including regularization [44].

The ridge regression model finds the parameters w of the model minimizing the
following expression:

J(w) =
∥∥∥y− wTx

∥∥∥2
+ C‖w‖2.

Here, C is the coefficient that determines the emphasis put on the regularization term.
If C = 0, then we would a have regular least squares fitting problem.

In turn, the lasso minimizes the following expression:

J(w) =
∥∥∥y− wTx

∥∥∥2
+ C‖w‖1.

In this case, it is the l1 norm that penalizes the size of the parameters, thus yielding
solutions that tend to be sparse, i.e., have many coefficients being exactly zero.

Finally, the elastic net is a mixture of both methods, minimizing

J(w) =
∥∥∥y− wTx

∥∥∥2
+ C1‖w‖1 + C2‖w‖2,

with C1 and C2 being the parameters that determine the relative weight of the l1 and l2
norms, respectively.
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3.5.1. Prediction of Defect

The prediction of defect required a different approach to the one used in the prediction
of fruity aroma intensity. The distribution of the defect intensity values in the samples
is shown in the right-hand panel of Figure 3. As depicted in the plot, many values are
exactly zero—those corresponding to EVOO samples—and the rest of values are lumped
between roughly 2 and 3.6. This data distribution is problematic for a regression approach
due to the fact that many samples are exactly zero and the rest are concentrated in a fairly
narrow range. For situations like this, it is usually best practice to start with a classification
problem to determine whether the point belongs to the cluster at 0 or the other one, and
then use a regression model trained exclusively with the data not being zero. However, the
fact that the values are confined in a very narrow range, together with the limited number
of samples available in this range, hindered the interest in training a regressor to predict
these values. This way, only the classification step was pursued.

The first step in the data analysis was to perform Principal Component Analysis (PCA)
to the set of 18 preliminary features, with the objective of visualizing the distribution of
the classes in the feature space and obtaining an intuitive grasp of the difficulty of the task.
Figure 4 shows the first four components of the PCA-transformed feature set, computed
using the whole dataset available.
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The inspection of the sample distribution shows that the data are effectively some-
what clustered according to its quality—which is in fact directly linked with the presence
of defect—and that using a linear classifier could offer satisfactory results with good
generalization properties.

This way, Support Vector Machines (SVM) were the first classifier class selected for
the task. In the linearly separable case, SVM defines the separating hyperplane that
maximizes the distance between the classes; for the nonlinearly separable case, as is
ours, they provide an hyperplane that separates the classes including a penalty for the
misclassified samples [44]. Thus, the optimization problem to be solved is:

minimize
w,b,ξ

1
2

wTw + C
n

∑
i=1

ξi

subject to yi(wTxi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n

Here, C is the parameter that defines the penalization of the misclassification of each
sample. SVM allows for using different values of C for each sample, which is useful
when facing an unbalanced problem, i.e., a problem where samples from one class are
significantly more abundant than the other. However, we did not need to use this possibility,
as roughly half of the samples are EVOO and half are not, so the value of C was the same
for all the samples and chosen via cross-validation from a candidate set.

Another classification algorithm known to perform well for linear problems is Logistic
Regression [44]. For this classifier, the optimization problem to be solved is:

minimize
w

n

∑
i=1

log
(

1 + e−yiwT xi
)
+ C‖w‖2

Here, C is a regularization parameter that penalizes the size of the weight vector w.
In this algorithm, unlike SVM, there is no explicit coefficient penalizing the misclassification
of points, as it is implicit in the loss function in the term e−yiwT xi , which yields a large
positive value whenever wTxi and yi do not have the same sign.

Logistic Regression can also be performed using l1 regularization

minimize
w

n

∑
i=1

log
(

1 + e−yiwT xi
)
+ C‖w‖1

This formulation, analogous to the lasso regression, tends to provide a sparse w, which
can be used to provide models using only a subset of the sensors. This approach was also
tested and the results are included in the next section.

4. Results and Discussion

This section presents and comments on the results obtained for the prediction of fruity
aroma intensity and the detection of defects.

4.1. Prediction of Fruity Aroma

According to the results of the sensory analysis, the fruity attribute was perceived in
all the samples tested but one. Both for the prediction of fruity aroma intensity and the
detection of defects, five-fold cross validation was used to test the generalization capacity
of the models fitted. Within each of these first five sets, which were randomly generated
from the complete set of data, four-fold cross validation was applied with the training
samples to select the best parameters for the models fitted.

As commented in the previous section, the initial approach was to fit ridge regression,
lasso, and elastic net models to the 18 features presented in the previous section. Figure 5
shows the fitted parameters for each of models and the five data folds. As seen in the
plot, there is a strong coherence in the values picked for all the models, with the lasso
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model showing the least fluctuation in the parameters found. In the lasso panel, two
features clearly stand out, namely S2F and S10M. A second model using only those as
input features was fitted, and the results obtained are included in Figure 6 and Table 2,
together with the results of the other models.
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Figure 5. Visualization of the parameters of the lasso classifier for each of the input features.
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Figure 6. Visualization of the training and testing prediction results for the first four of the five iterations for the final models
constructed using the S2F and S10M features. The gray band represents the zone of ±1. Training points are blue and testing
points are orange.
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Table 2. Results obtained. for the prediction of fruity aroma. The final model structure selected was the fourth row (Lasso
S2F, S10M).

Model Mean Average Error
(Training)

Mean Average Error
(Testing)

Mean Max Error
(Training)

Mean Max Error
(Testing)

Ridge 1.09 1.06 5.12 3.4
ElasticNet 0.54 0.59 2.31 1.58
Lasso 0.56 0.59 2.49 1.57
Lasso (S2F, S10M) 0.55 0.55 2.55 1.49
Lasso (S2F, S10M) (VOO, EVO) 0.49 0.51 1.52 1.18

The results obtained are fairly similar for all the models and quite satisfactory: with
the final lasso model yielding a mean average error of less than 0.6 and a mean maximum
error around 1.5 in the testing subsets. One final test was carried out fitting a model
removing the two lampante olive oil (LOO) samples in the dataset, as an inspection of
Figure 6 shows a very clear outlier corresponding to the LOO sample with 0 fruity aroma
intensity. The results obtained are included in the last column of Table 2. As included in
the table, the testing mean average error did not improve, but the maximum error did
decrease. The most likely explanation for this point behaving as an outlier is that, in panel
test analysis, it is common practice not to actually taste the olive oil if the perceived level of
defect is large enough for the sample to be labeled as lampante. Thus, sometimes, there is
some level of fruity aroma in the sample that might not be included in the reference results.

4.2. Detection of Defects

As commented in Section 3.2, the visualization of the first four components of the PCA
transformation of the dataset suggested that linear classification algorithms using these
transformed features should provide good results. This PCA decomposition, however, was
not used for the fitting of the models.

This way, the first approach was to train an SVM and a logistic regression using PCA
elements in a five-fold cross-validation setup. Figure 7 shows the coefficients of the PCA
transformation of each of the raw features for each fold of the cross-validation procedure.
As depicted in the plot, the components provided by each subset are very similar.

A closer inspection of the discriminative component 2 (second row of Figure 7) shows
that sensor 10 obtains the largest coefficient, followed by sensors 9 and 7. PCA component
4 (fourth row of Figure 7) again shows a large weight assigned to sensor 10, this time
providing basically the difference between the two features associated with the sensor, as
the coefficients are roughly the same magnitude and opposite sign. In this PCA component,
sensor 2 also has a relatively large weight, particularly the final value feature (S2F). It is
worth noting that these two sensors were the ones selected by the lasso regression for the
prediction of fruity aroma intensity.
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Figure 7. Visualization of the coefficients for the first four PCA components.

Furthermore, Figure 8 shows the weights of the fitted models for both the SVM
(top panel) and logistic regression (bottom panel). The inspection of these plots suggests
that PCA components 2 and 4 are the most discriminative, as the coefficients associated
with these components present a higher value than the others, particularly so for the
SVM. The similarity of the coefficients yielded by both methods is noticeable, although
not surprising taking into account the similarity of the optimization problems solved to
obtain these parameters. The results obtained using this approach are included in Table 3.
These results are not bad, but far from satisfying, particularly due to a lack of robustness
shown as a large fluctuation of the classification score depending on the particular seed
chosen for the random number generator responsible for the five-fold partition.
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Figure 8. Visualization of the coefficients associated with each PCA component for the Support Vector Machine (upper
panel) and Logistic Regression (lower panel).

The good results obtained for the prediction of fruity aroma using the lasso moti-
vated exploring a slightly different approach for the defect prediction problem: fitting a
logistic regression with l1 regularization using the original set of 18 features. The results
obtained improved those using PCA features, yielding 89.32 and 85.56% accuracy for
training and testing, respectively. Figure 9 shows the coefficients yielded by the algorithm.
The inspection of this plot suggested using the same approach as with the prediction of
fruity aroma, i.e., fitting a new model including only the features that got assigned weights
of certain magnitude. This way, two more models were fitted, one including the features
S2F, S6M, S9F and S10M; and another including just S2F and S10M. The results obtained
are also included in Table 3. As seen there, the approach taking only S9F and S10M offered
the best results overall (85.72% and 88.06% for training and testing, respectively) and a
remarkable independence of the particular partition for the five-fold validation. The reason
for these good results can be appreciated observing Figure 10. This plot shows that the
samples are almost linearly separable in the space spanned by these two features. A final
test was performed by fitting an SVM using just these two features, but the results obtained
were poorer than those offered by the logistic regression, but are also included in the last
row of Table 3.

These results are in line with the performance obtained in previous works that em-
ployed e-noses for different tasks in olive oil, such as the 91% accuracy reported to classify
VOO versus other chemically treated oils [36], the 84% accuracy for the discrimination
between cultivars [38], the 90% accuracy in the prediction of the olive oil quality measur-
ing intact olives [39], and the 81% accuracy in discerning between different fruity aroma
profiles [20].
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Figure 9. Visualization of the coefficients of the original features for the l1 logistic regression.

Table 3. Results obtained for the detection of defects. The best results are obtained using a logistic
regression with l1 using the features S2M and S10F.

Model Training Accuracy (%) Test Accuracy (%)

SVM PCA 85.76 80.83
Logistic Regression PCA 87.54 80.83
Logistic Regression l1 89.32 85.56
Logistic Regression l1 (S2, S6, S9, S10) 88.11 85.56
Logistic Regression l1 (S2, S10) 85.72 88.06
SVM l1 (S2, S10) 86.36 83.06
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Figure 10. Visualization of the feature space yielded by S2F and S10M. The classes are almost completely linearly separable.
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5. Conclusions

The obtained results show that the use of electronic noses is a viable approach to per-
form a fast screening of the quality of produced VOO, paving the way for the development
of devices capable of providing at-line or online assessments of the quality of the VOO
directly in the factory. These assessments could be used to store the produced VOO in
tanks with other VOO of similar quality and to apply some feedback to the process.

The plots that depict the parameters of the classifiers and regressors for the different
data folds demonstrate the low variability in these values, which suggests that the classifiers
and regressors are robust and should perform well when applied to new samples.

Finally, a remarkable observation is the good results obtained using l1 regulariza-
tion techniques and the comparable results obtained using only a subset of the available
sensors. This is, in our opinion, very interesting for the construction of low-cost specific
purpose electronic noses, as the number of sensors included in the device directly affects its
total cost.
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