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Abstract

Electronic circuits intuitively visualize and quantitatively simulate biological systems with 

nonlinear differential equations that exhibit complicated dynamics. Drug cocktail therapies are 

a powerful tool against diseases that exhibit such dynamics. We show that just six key states, 

which are represented in a feedback circuit, enable drug-cocktail formulation: 1) healthy cell 

number; 2) infected cell number; 3) extracellular pathogen number; 4) intracellular pathogenic 

molecule number; 5) innate immune system strength; and 6) adaptive immune system strength. To 

enable drug cocktail formulation, the model represents the effects of the drugs in the circuit. For 

example, a nonlinear feedback circuit model fits measured clinical data, represents cytokine storm 

and adaptive autoimmune behavior, and accounts for age, sex, and variant effects for SARS-CoV-2 

with few free parameters. The latter circuit model provided three quantitative insights on the 

optimal timing and dosage of drug components in a cocktail: 1) antipathogenic drugs should be 

given early in the infection, but immunosuppressant timing involves a tradeoff between controlling 

pathogen load and mitigating inflammation; 2) both within and across-class combinations of 

drugs have synergistic effects; 3) if they are administered sufficiently early in the infection, anti-

pathogenic drugs are more effective at mitigating autoimmune behavior than immunosuppressant 

drugs.
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I. Introduction

DYNAMIC models of host-pathogen interactions fitted to clinical data can bring critical 

insights to the complexity of multiple diseases and provide valuable information for 

the development of treatments. For example, a dynamic circuit model can serve as a 

foundational tool for rapid drug cocktail formulation in the current pandemic, future 

pandemics, or other diseases, even in non-viral pathogens and cancers. Circuit models 

explicitly visualize underlying relationships among components in biological systems while 

simultaneously being an exact mathematical representation of the underlying equations [1], 

[2], [3], [4], [5], [6]. Building from this established theoretical foundation, circuit models 

have achieved a strong track record of fitting data from synthetic and naturally occurring 

biological systems [6], [7], [8], [9] but have not thus far been applied towards principled 

approaches to drug-cocktail formulation.

Clinically, combining drugs into cocktails to achieve synergistic effects has been a key 

strategy in combating viral diseases. For decades, combination antiretroviral therapy has 

been the standard of care for the management of HIV [10]. More recently, anti-HIV broadly 

neutralizing antibodies (bNAbs) are also being studied in cocktail formulations [11], with 

exploration towards combining antiretroviral cocktails and bNAb cocktails into multi-class 

cocktails [12]. In the context of influenza, several novel drugs that target viral and host 

factors have reached clinical trials as synergistic combination therapies with oseltamivir, an 

established monotherapy, with both positive and negative results [13], [14], [15]. Inspired 

by these prior clinical antiviral combination therapies, we aimed to innovate in silico drug-

cocktail formulation and discovery via a circuit design approach. Although our methods can 

be applied to several diseases, in this paper, we shall focus on COVID-19.

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus and its ensuing variants, 

has disrupted society and the economy around the world. As of February 1, 2023, the 

World Health Organization had reported totals of 754 million cases and 13.2 million 

deaths worldwide [16]. Boosted vaccination against SARS-CoV-2 significantly reduces the 

rates of symptomatic infection, morbidity, and mortality, but varied host response strengths 

and waning protection efficacies are frequently reported among the vaccinated population 

[17], [18], [19], [20], [21]. For example, fully vaccinated and boosted individuals can still 

suffer severe disease due to breakthrough infections [22], [23]. Similar to vaccination, host 

responses to SARS-CoV-2 infection differ greatly and the currently available drugs against 

COVID-19 have shown varying efficacy among patients [24], [25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], [35], [36], [37]. Therefore, it is useful to study and analyze 

virus-host interactions and drug treatment courses for COVID-19 quantitatively.

There exist many models of within-host SARS-CoV-2 infection. The simplest variety of 

model does not account for the host immune response beyond first-order viral clearance and 

infected cell death rate constants [38], [39], [40], [41]. Another approach is to model the 

adaptive immune response exclusively, with no infection dynamics [42]. However, SARS-

CoV-2 infection calls for models that incorporate virus-host cell infection dynamics together 

with the immune response [43]. Such a synergy is especially important for COVID-19, 

wherein strong immunity will prevent and clear infection, but overactive immunity can 
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lead to cytokine storm or autoimmunity. Several groups have used mathematical methods 

to combine models of infection kinetics and immune response dynamics [39], [40], [44], 

[45], [46], [47], [48], [49], [50], [51]. Some of these papers also include monotherapy and 

combination therapy effects; cytokine storm; age and sex effects; vaccination effects; and 

separate adaptive and innate immune responses, but no model in the literature has all of 

these features and no model includes adaptive autoimmunity or accounts for viral variant 

effects. An alternative modeling strategy is to apply well-studied engineering principles 

and tools to the COVID-19 modeling problem, as has been done with the application of 

chemical engineering simulation software for batch reaction kinetics to the modeling of the 

epidemiological dynamics of SARS-CoV-2 [52].

In our study, we employed an electronic circuit modeling approach to construct a within-host 

model of COVID-19 with interactions between the virus, host, and drugs. We first developed 

a simplified dynamic model of host-virus-drug interactions that fit clinical data across mild 

and severe COVID-19, while also establishing regimes of cytokine storm and adaptive 

autoimmune behaviors. Then, we accounted for the effects of patient age and sex and 

viral variant on COVID-19 dynamics. Having established the model, we used it to evaluate 

the timing and combination of five drug treatments for COVID-19: an anti-S monoclonal 

antibody (anti-S mAb), Molnupiravir (Mol), Paxlovid (Pax), Dexamethasone (Dex), and 

Tocilizumab (Toc).

II. Circuit Model Rationale and Development

Prior work has developed mechanistically detailed models of COVID-19 viral replication 

with specific viral protein and molecule species [53] and host lung and immune system 

responses with several specific cellular subprocesses [49] and signaling pathways [50]. 

However, especially with a novel disease, creating realistic dynamic behavior using many 

cellular, molecular, and protein species-specific parameters can be prohibitive. Additionally, 

the human immune system is highly complex with many intra- and inter-cellular signaling 

and effector systems across several cell types; thus, no human immune system model that is 

complete and fits quantitative experimental data yet exists [54], [55], [56], [57]. Therefore, 

to model COVID-19, including virus-host interactions and combinatorial drug effects, we 

developed a biological circuit model with six main states: healthy lung epithelial cell number 

(HC); infected lung epithelial cell number (IC); extracellular viral population virion number 

(Vpop); intracellular viral protein and molecule number (VPM); the strength of the innate 

immune response (II); and the strength of the adaptive immune response (AI).

The dominant interactions between the six main states, and the modulation of those 

interactions by drugs, are described by Fig. 1. (1) Healthy cells (HC) modulate their 

net growth rate to attempt to maintain a homeostatic population size. (2) At the time of 

infection, an initial amount of virus infects the healthy cells, creating infected cells (IC). (3) 

The replicating virus hijacks infected cells to produce viral proteins and molecules (VPM). 

(4) If the infected cell produces large numbers of viral proteins and molecules, the cell’s 

material and energetic resources can be overwhelmed and the cell will die. (5) Infected cells 

release fully formed virions, causing infection to progress, but these virions can be bound 

and neutralized by the anti-S mAb. The production of (3) intracellular viral species (VPM) 
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and (5) fully formed virions (Vpop) are inhibited by Mol and Pax. (6) As they become larger 

in quantity, the three viral states – IC, Vpop, and VPM – trigger the innate immune response 

(II) (e.g., via pattern recognition receptors and cytokine release). (7) Together with that 

innate immune response, the three viral states are then able to trigger the adaptive immune 

response (AI) (e.g., via MHC antigen presentation).

The (8, 9) innate and (10, 11) adaptive immune responses are sustained by local positive 

feedback loops that are uncontrolled (8, 10) or controlled by the level of infection 

(9, 11). Strong activation of the uncontrolled innate immunity local positive feedback 

loop (8) can cause a cytokine storm. Other interaction-example pairings are: (9) innate 

immunity’s controlled positive feedback and chemokine signaling; (10) adaptive immunity’s 

uncontrolled positive feedback and the accumulation of antibodies produced by plasmablasts 

and plasma B cells; and (11) adaptive immunity’s controlled positive feedback and B-cell 

affinity maturation. (12) In the presence of ongoing infection, the adaptive immune response 

can further grow the innate immune response (e.g., via cytotoxic T-cell cytokine production). 

Dex limits all productive sources of both immune responses, while Toc only reduces the 

value of the innate immune state, which correlates with inflammation. As a non-specific 

inflammatory immune response, the innate immune response kills both (13) healthy cells 

and (14) infected cells (e.g., via TNFα production [58]). (15) In contrast, the adaptive 

immune response only significantly targets infected cells for killing (e.g., via cytotoxic 

T-cells). Both the (16, 17) innate and (18, 19) adaptive immune responses remove virions 

(16, 18) (e.g., via phagocytosis and antibody-mediated opsonization, respectively), but the 

immune cells are susceptible to viral infection (17, 19).

For simplicity, a few features and states are not shown in Fig. 1, but are represented by our 

circuit models (and associated mathematics): 1) Vpop, VPM, II, and AI all have intrinsic 

half-life decays; 2) as VPM approaches zero after infection, infected cells recover to healthy 

cells (i.e., a cell is not infected if it no longer contains viral proteins or molecules); 3) there 

is an immunological memory state (e.g., memory B-cells) that, when non-zero, increases the 

sensitivity and speed of the adaptive immune response; 4) there is an adaptive autoimmunity 

(AAI) state that parallels the AI state; 5) Triggering AAI requires stronger infection and 

inflammation than AI, but AAI targets the innate immune response and healthy cells [59], 

[60].

In order to reduce the number of parameters needed to populate the circuit, the model states 

were normalized to be in the range [0, 1], i.e., from the basal level to the maximal level 

(or, for HC from no healthy cells to the homeostatic population size). Such normalization 

gave us the flexibility to capture disease dynamics with a wide dynamic range at different 

orders of magnitude and allowed us to make the reasonable assumption that most saturation 

constants are approximately 0.5 normalized units (n.u.), half of the maximum state value 

[61], [62]. Another model design decision was to consider the model’s states as relative 

changes from their basal, uninfected values. For example, there are basal levels of cytokines 

or phagocytic cells in the innate immune system when no viral infection is present, but we 

initialize the II state as II0 = 0. In the context of model rates, we assumed that basal rates of 

cell death and population growth are negligible compared to those caused by infection and 

recovery. For example, we do not include an intrinsic death rate of infected cells because 
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it would be insignificant compared to the infected cell death caused by infection and the 

subsequent immune response.

III. Circuit Design

It is useful to visualize our biological circuit models as electronic circuits, which represent 

the state variables (molecular concentrations or cell population numbers) as voltages and 

the flow variables (the derivative or rate-of-change variables) as currents. The circuit 

representation allows for intuitive identification of connections between states and the 

resulting feedback loops without having to parse long lists of differential equations [2], 

[3], [5], [6]. At the same time, the circuit representation is more quantitative than a 

flow diagram because each component represents a term in a mathematical equation. We 

designed and simulated all circuits in industry-standard Candence Virtuoso integrated circuit 

design software (see Method S-C in the Supplementary Methods, Tables, and Figures and 

find all Cadence files in the Supplementary Code).

For several frequently used components, Fig. 2 gives the conversion from electronic circuit 

component to mathematical equation. These components are wired together to construct 

biological circuits. The COVID-19 biological circuit for viral replication is shown in Fig. 3 

(a) and the biological circuits for the innate and adaptive immune responses are presented 

in Figs. 3 (b) and (c), respectively. The biological circuit for adaptive autoimmunity (not 

shown) is identical to the adaptive immunity circuit in Fig. 3 (c) but with updated names 

(i.e., ‘AI’ becomes ‘AAI’) for the states and some parameters. A more traditional – but 

mathematically equivalent – differential equation representation of the circuit model is 

provided in Table I, with the parameters and their values described in Table S-I in the 

Supplementary Methods, Tables, and Figures. A third way to represent the system is via a 

feedback diagram, which can be constructed by observing the state interactions described 

by the model’s biological schematic (Fig. 1), circuit schematic (Fig. 3), or differential 

equations (Table I). An example feedback diagram highlighting the interactions between 

viral infection, the innate immune response strength, and the adaptive immune response 

strength is given in Fig. S-1 in the Supplementary Methods, Tables, and Figures.

IV. Model Parameterization and Data Fitting

For the COVID-19 circuit model to be legitimate, it needed to have parameters that both 

agreed with literature and produced dynamics that fit clinical data. The most consequential 

parameters for creating the model’s global behavior were the rate constants, the values 

of which are given in Table S-I.a. The calculation of these rate constants from literature 

and their subsequent fitting to clinical data (resulting in the curves shown in Fig. 4), are 

described in Method S-A. Non-rate model parameters are given in Table S-I.b. The fitted 

clinical data is available in the Supplementary Data.

The dynamics of the model’s six main states for the mild and severe diseases follows a 

general pattern (Figs. 4 (a) and (d)). When an initial amount of extracellular virus (Vpop) 

infects cells and replicates to infect more cells, the number of healthy lung epithelial cells 

(HC) decreases while the number of infected lung epithelial cells (IC) increases. At the 
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same time, the number of extracellular virions (Vpop) and the number of intracellular viral 

proteins and molecules (VPM) increases. Eventually, viral antigens (from IC, Vpop, and 

VPM) accumulate to a level that activates the immune system. The innate immune response 

(II) is easier to trigger but is transient. The adaptive immune response (AI) is persistent but 

requires both antigen and innate immunity stimulation to become activated. Realistically, 

the adaptive immune response would eventually wane over time due to the Treg calming 

of the T-cell response and the shift of antibody production from short-lived plasmablasts to 

long-lived plasma B cells in the bone marrow [65], [66]. However, these effects are beyond 

the scope of our model for acute COVID-19.

The dynamic differences over the infection course between the mild and severe diseases 

were significant, as shown in the model’s fit to severity-categorized clinical data (Figs. 4 

(b), (c), (e), (f)). As clinically observed, our model showed that severe disease patients 

generally have a larger viral load and fewer healthy cells than patients with mild disease do. 

Such differences were explained by changes in only two sets of parameters in our model, 

namely the activation Kd constants for triggering the innate and adaptive immune responses 

(processes 6 and 7, respectively, in Fig. 1). The activation Kd parameter differences are given 

in Table S-I.c. In the model of severe disease, the innate and adaptive immune systems 

required a higher level of infection (IC, Vpop, VPM) to trigger an immune response. In 

other words, severe patients in the model experienced less sensitive innate and adaptive 

immune detection of SARS-CoV-2 infection, corresponding to higher immune activation 

Kd values; poorer antigen detection allowed the disease to progress and worsen in severity 

before an immune response was mounted. For the selection and normalization of the clinical 

data, see Method S-B. Using model parameters relevant in literature and severity-specific 

immune activation Kd values, our circuit model captured dynamic clinical data faithfully.

Additionally, the model recapitulated common COVID-19 complications, specifically 

cytokine storm and adaptive autoimmunity. Model parameters were selected to make the 

host susceptible or resistant to either complication. For cytokine storm, a susceptible 

host had a lower activation Kd for the innate immune response’s uncontrolled positive 

feedback loop (process 8 in Fig. 1) compared to the resistant host (default). For adaptive 

autoimmunity, a susceptible host had lower activation Kd values for more easily triggering 

an adaptive autoimmune response (the AAI process analogous to the AI process 7 in Fig. 

1) compared to the resistant host (default). The complication-resistant and complication-

susceptible parameters are given in Table S-I.d. Fig. S-2 illustrates what the cytokine storm 

and adaptive autoimmunity susceptible model simulations look like for severe disease. The 

complication-resistant parameters were used in later simulations unless explicitly stated 

otherwise.

Finally, the model’s adaptive immunity memory (AImem) state was used to model 

COVID-19 in individuals who have been vaccinated or previously infected. In the model, 

having an immunological memory of COVID-19 effectively reduced the adaptive immunity 

activation Kd and increased the activation rate for the adaptive immune response (process 

7 in Fig. 1). For individuals with prior infection or vaccination, the adaptive immunity 

memory state was initialized to AImem0 = 1 n.u. (Table S-I.e). In contrast, AImem0 = 0 

n.u. was used for individuals who are SARS-CoV-2 naïve and unvaccinated (Table S-I.e). 
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A comparison between simulations with and without prior infection or vaccination is given 

in Fig. S-3, with the infection dynamics being less severe for the former, as expected. If 

the vaccination or prior infection had occurred within the previous several months, then its 

disease-mitigating effects may be even stronger since the initial level of antibodies would be 

non-zero, meaning AI0 would be non-zero in the model [67], [68]. To be conservative and 

assume the worst-case scenario, all other simulations in this work assumed an unvaccinated 

host with no prior infection.

V. Modeling the Effects of Age, Sex, and Viral Variant

COVID-19 has shown differential effects on individuals based on their age and sex, with 

people of older age and male sex having worse outcomes [69], [70], [71]. To make our 

model more robust to these differences, we included ageand sex-specific multiplicative 

parameters in our model. For both age and sex, multiplicative factors scaled the efficacy 

of the innate immune response (processes 14 and 16 in Fig. 1) and both the activation 

sensitivity (process 7 in Fig. 1) and positive feedback strength (processes 10 and 11 in Fig. 

1) of the adaptive immune response. The placement of these multiplicative factors within 

the model’s ODEs is described in Table S-II.a. The multiplicative parameters’ values are 

described in Table S-II.b. For context, the young age parameters represent an individual 

approximately in their 30s and the old age parameters represent an individual approximately 

in their 60s [72], [73], [74], [75].

Assuming severe disease, the combinatorial effects of age and sex on the COVID-19 model 

dynamics are shown in Fig. 5. Consistent with epidemiological observations, the young 

female simulation had the most favorable disease course while the old male simulation had 

the least favorable (Figs. 5 (a)–(d)). Most noticeably, the larger innate immune response 

from the old male simulation was indicative of excessive inflammation (Fig. 5 (e)). In the 

adaptive immune response, there was a cross-over in the dynamics (Fig. 5 (f)) between 

the different ages and sexes. This cross-over occurred because the old/male person’s less 

effective innate immune response left more antigen to activate a strong adaptive immune 

response early in the infection, but the strength of the young/female person’s adaptive 

immunity positive feedback allowed for the young/female person’s adaptive immune 

response to surpass the old/male person’s response over time. Overall, the model suggested 

that age has a stronger effect on disease dynamics than sex because age dominated whether 

the disease dynamics were more or less favorable compared to default settings (when all age 

and sex multipliers are set to 1).

Another determinant of COVID-19 infection parameters [76], [77], and probably outcomes 

[78], [79], [80], [81], [82], is the SARS-CoV-2 variant type. To account for variant-to-variant 

differences, we included multiplicative parameters that scale the virus’ infection rate of 

healthy cells (process 2 in Fig. 1) and evasion of the adaptive immune response (processes 

15 and 18 in Fig. 1). The placement of these multiplicative factors within the model’s ODEs 

is described in Table S-II.a. The multiplicative parameters’ values are described in Table 

S-II.b. The model would be more accurate with an innate immunity evasion parameter rather 

than an adaptive immunity evasion parameter because this would make the immune evasion 

strength independent of the modeled person’s prior infections and vaccinations. However, 
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though strong studies have been performed on innate immunity evasion in individual 

variants [83], quantitative measurements across variants are not available.

Assuming severe disease in an old male, the effects of variants D614G (default), Alpha, 

Beta, and Delta on COVID-19 infection dynamics are displayed in Fig. 6. Compared to 

D614G, the Alpha variant had dynamics that were similar in magnitude, but faster. These 

differences are attributable to Alpha’s higher cellular infection rate but poorer adaptive 

immunity evasion (Table S-II.b). The Beta and Delta variants caused simulation dynamics 

that are equally large in magnitude but opposing in strategy. The Beta variant’s powerful 

evasion of adaptive immunity allowed it to achieve the highest peak viral load of all the 

variants (Fig. 6 (c)). In contrast, the Delta variant’s extremely high rate of cellular infection 

enabled it to peak fastest in its effects on epithelial cell populations (Figs. 6 (a) and (b)) 

and viral states (Figs. 6 (c) and (d)) without triggering a larger immune response than the 

Beta variant (Figs. 6 (e) and (f)). Based on our simulation results, it is reasonable to propose 

that the Delta variant’s faster infection dynamics were a key determining factor in the Delta 

variant becoming the dominant variant in the human population over the D614G, Alpha, and 

Beta variants. We would expect that the Omicron variant has even faster infection dynamics 

than the Delta variant.

For both the Beta and Delta variant in Fig. 6, the infection is very serious. The number of 

healthy lung epithelial cells drops to a fifth of the homeostatic value (Fig. 6 (a)) and the 

magnitudes of the innate and adaptive immune responses are at least double the immune 

response magnitudes resulting from the D614G and Alpha variants (Figs. 6 (e) and (f)), 

increasing the risk for cytokine storm and adaptive autoimmunity complications. As a result, 

therapeutic drugs and drug cocktails must be examined to make the infection dynamics less 

severe.

VI. Rationale and Development of Drug Pharmacokinetics and 

Pharmacodynamics Models

Based on the platform of our virus-host interaction model validated above, we sought to 

model the pharmacokinetics and pharmacodynamics of potential drug interventions. The 

effects of five drugs on COVID-19 dynamics were examined in the model: an anti-S 

monoclonal antibody (anti-S mAb), Molnupiravir (Mol), Paxlovid (Pax), Dexamethasone 

(Dex), and Tocilizumab (Toc). The anti-S mAb dosing and kinetics are based on the 

REGEN-COV casirivimab/imdevimab cocktail, but a specific mAb or mAb cocktail can be 

substituted in response to whichever mAb or mAb cocktail is effective against the suspected 

or dominant variant at the time of infection. To classify the drugs, we will refer to anti-S 

mAbs, Mol, and Pax as “antivirals” and Dex and Toc as “immunosuppressants.”

The drugs’ pharmacokinetic models were chosen to have a pulse administration and 

first-order decay, which in electronics is equivalent to a parallel I-R-C circuit (Fig. S-4). 

Treatment start times, dose timing, and dose amount were informed by NIH treatment 

guidelines and clinical trial procedures (Tables S-III.a and S-III.b). The drugs’ half-lives 

and their electrical-equivalent first-order RC time constants are listed in Table S-III.c. 

A comparison between the pharmacokinetics of the anti-S mAb (a single dose with 
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slow decay) and Pax (frequent doses with fast decay) demonstrated the range of the 

pharmacokinetic model’s behaviors (Fig. S-5).

Based on each of the five drugs’ mechanisms of action, we incorporated the drugs’ 

pharmacodynamics into the COVID-19 circuit model, as presented in Figs. 1 and 3 and 

Table I. The anti-S mAb binds extracellular virions (Vpop) and prevents them from infecting 

cells. As a nucleoside analogue and a protease inhibitor, respectively, Mol and Pax inhibit 

the production of extracellular virions (Vpop) and intracellular viral proteins and molecules 

(VPM). As a glucocorticoid, Dex has systemic effects [84], [85] and therefore it was 

modeled as broadly inhibiting the activation and positive feedback of the immune response 

(II, AI, and adaptive autoimmunity). Toc is an anti-IL-6 receptor mAb and therefore it was 

modeled as blocking the inflammatory aspects of the innate immune response (II). The 

saturation constant (Kd) for each drug was taken or estimated from literature and is listed in 

Table S-IV.

The design choice to construct a simplified 6-state model caused a tradeoff with 

pharmacodynamic modeling granularity; the 6-state model may not capture some drugs’ 

specific mechanism of action (e.g., exact biochemical targets), but the it is much faster to 

implement and parametrize. For example, as discussed above, Mol and Pax both inhibit the 

production of Vpop and VPM by different mechanisms: the former is a nucleoside analogue 

and the latter is a protease inhibitor. However, in our model, their actions were modeled in a 

mechanistically identical way.

VII. Single-Drug Treatment Simulations

Before formulating a drug cocktail, it was essential to understand each drug’s effect on the 

system as a monotherapy. To best challenge the drugs, we simulated the drugs’ performance 

under worst-case scenario conditions, namely severe disease, old age, male sex, and Delta 

variant. To determine the suggested time to start the monotherapy treatment courses, we 

reviewed NIH treatment guidelines and clinical trial procedures (see Table S-III.a). For 

severe disease, these treatment start times, which we refer to as the “guidance” timings, were 

6 to 8 days post-infection (dpi) for anti-S mAb, Mol, and Pax; 10 dpi for Dex; and 12.5 dpi 

for Toc.

When following the late guidance timing of 8 dpi (i.e., 5 days post-symptom onset for severe 

disease), the anti-S mAb only moderately improved the disease dynamics compared to no 

drugs (Figs. 7 (a) and (b)). Free virions (Vpopf) were quickly bound by the anti-S mAb, 

causing the other viral states (IC, VPM) to decline, but the healthy cell population (HC) had 

already been more than halved by the time of anti-S mAb administration and inflammation 

from the innate immune response (II) was mostly unchanged (Fig. 7 (b)). In contrast, the 6 

dpi early guidance timing (i.e., 3 days post-symptom onset for severe disease) for the anti-S 

mAb essentially halted disease progression before it could become serious (Fig. 7 (c)). 

Before the anti-S mAb could be administered, the healthy cell population only declined by 

less than 20% (Fig. 7 (c)). Then, when the anti-S mAb bound the free extracellular virions, 

no more healthy cells could be infected while the existing infected cells either died from 

Beahm et al. Page 9

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their infection, were cleared by the moderate innate immune response, or recovered after 

their intracellular viral proteins and molecules degraded (Fig. 7 (c)).

Similarly, for Pax, the late drug guidance timing (5 days post-symptom onset – i.e., 8 dpi in 

severe disease) was not optimal (Fig. 8). While the 8 dpi Pax did reduce the peak viral load 

(Fig. 8 (b)), the number of infected cells remained high (Fig. 8 (a)) and the inflammatory 

peak of the innate immune response was only slightly reduced (Fig. 8 (c)). In contrast, the 

minimum drug guidance timing, with Pax administered 3 days post-symptom onset (i.e., 6 

dpi in severe disease), was much more effective (Fig. 8). When administered at 6 dpi, Pax 

lowered the viral load, number of infected cells, and innate immunity inflammation to levels 

similar to those seen in the anti-S mAb simulation (Figs. 7 (b) and 8). The dynamics of all 

six main model states from the Pax simulations are shown in Fig. S-6. The simulation results 

for Mol were nearly identical to those for Pax and are available in Fig. S-7. In summary, 

starting antiviral drugs (anti-S mAb, Mol, or Pax) as early as guidance allows was essential 

for the antivirals’ efficacy.

For the immunosuppressants, Dex and Toc, setting the treatment start time was a trade-off 

between the management of inflammation and viral load (Fig. 9). Our model predicted that 

if immunosuppressants were given following the drug timing guidance (10 dpi for Dex and 

12.5 dpi for Toc), it would be too late for the immunosuppressants to be beneficial because 

the inflammation had already peaked (Figs. 9 (b) and (e) – red curves). In the case of 

Dex, the primary effect of 10 dpi administration was a weakening of the adaptive immune 

response, the decline of which is not desirable (Fig. 9 (c) – red curve). In contrast, if the 

immunosuppressants were administered at a slightly earlier time, they successfully reduced 

the magnitude (Dex) or duration (Toc) of the peak levels of inflammation, reducing the risk 

of cytokine storm or adaptive autoimmunity (Figs. 9 (b) and (e) – green curves). However, 

if the immunosuppressants were given too early during the disease, the viral load became 

very large (Toc) or uncontrollable (Dex) because the immune response was too weak to 

limit the infection (Figs. 9 (a) and (d) – blue curves). More specifically, when the Dex was 

given too early (8 dpi), the innate and adaptive immune responses were never strong enough 

(until after Dex treatment was over) to remove extracellular virions faster than they could be 

produced. In comparison, when Toc was given too early (7.5 dpi), the viral load eventually 

came under control during the Toc treatment (Fig. 9 (d) - blue curve) because Toc weakened 

only the innate immune response and not the adaptive immune response (Figs. 9 (e) and 

(f) – blue curves). The dynamics of all 6 main model states for the simulations shown in 

Fig. 9 are given in Figs. S-8 and S-9 for Dex and Toc, respectively. In summary, to find the 

optimum start time for immunosuppressive treatments, multiple simulations with different 

treatment start times should be performed and compared.

VIII. DRUG COCKTAIL FORMULATION SIMULATIONS

Using the original drug parameters from literature (Tables S-III.b, S-III.c, and S-IV), the 

five drugs appeared efficacious when modeled as monotherapies. However, the parameters 

underlying that success should be approached conservatively, especially the bioavailability 

and reported saturation constants (Kd) of the drugs. The bioavailability of a drug at the 

site of action may be lower than measured or assumed, which would cause the modeled 
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drug concentration to be an overestimate. Also, a drug’s effective saturation constant (Kd) 

may be higher in vivo than values reported from in vitro experiments. Therefore, prior to 

beginning drug cocktail formulation, we assumed that the drugs’ efficacy in vivo would 

be generally poorer than predicted. Thus, we increased the drugs’ saturation constants to 

model the drugs’ clinical performance being generally weaker. This decision served two 

purposes. One, it makes the simulations of drug effects more conservative and, thereby, 

possibly more accurate. Two, it allows us to easily explore the synergistic effects of drug 

cocktail designs, which we wouldn’t see as clearly if monotherapies were already sufficient 

for clearing infection or reducing inflammation. To select the sub-optimal Kd values used 

to weaken the drugs’ effects, we simulated several candidate order-of-magnitude changes in 

Kd for each drug and chose the order-of-magnitude change that gave the most intermediate 

response during simulated monotherapy treatment (Fig. S-10). The selected sub-optimal, or 

“high,” Kd values were 104 ∗ Kd,mAb, 103 ∗ Kd,Mol, 103 ∗ Kd,Pax, 102 ∗ Kd,Dex, and 5 ∗ 102 

∗ Kd,Toc. The values were used in all subsequent simulations unless noted otherwise.

The first cocktail that we investigated used the 3 antiviral drugs (anti-S mAb, Pax, and 

Mol) at their optimized 6 dpi timing. As shown in Fig. 10, each additional drug added 

to the cocktail synergistically improved the cocktail’s efficacy. Viral load, infected cells, 

and inflammation all decreased while the number of healthy cells increased. The only, 

minor, downside was that a treated infection produced less antigen to stimulate adaptive 

immunity, meaning that the adaptive immune response became weaker as the antiviral 

cocktail improved (Fig. 10 (f)). In reality, this weaker adaptive immune response could be 

easily compensated for by vaccinating the host after the infection has cleared [86], [87].

The second cocktail that we simulated used the 2 immunosuppressant drugs, Dex and Toc, 

administered at 9 dpi and 10 dpi, respectively. These drugs worked together synergistically, 

reducing the peak (Dex) and period (Toc) of innate immunity inflammation (Fig. 11 (a)). 

The immunosuppressant cocktail only reduced the peak value of IIf by 14%, but the 

time the IIf state was above 0.2 n.u. (approximately 50% of the maximum value) fell 

by 50%. Therefore, due to the shorter duration and weaker strength of innate immune 

response positive feedback, there was a lower risk for triggering cytokine storm or adaptive 

autoimmunity. Whereas the antiviral drug cocktail curtailed the innate immune response by 

reducing the amount of viral antigen, the immunosuppressant cocktail reduced the innate 

immune response by blocking inflammatory cytokine signaling via Toc and transiently 

weakening the immune system’s positive feedback loop-gains via Dex (Figs. 11 (a) and 

(b)). Again, the weaker adaptive immune response that results from this immunosuppressive 

cocktail can be compensated for by vaccinating the individual after the disease course [86], 

[87]. The full dynamics of all states for the immunosuppressant cocktail are given in Fig. 

S-11.

In Fig. 12, we combined the antiviral and immunosuppressant cocktails into a single, 

multifunctional cocktail. The antiviral drug timings were maintained from prior optimization 

(6 dpi for anti-S mAb, Mol, and Pax). To control the viral load, the immunosuppressant 

cocktail treatment start times were delayed to 10 dpi and 13 dpi for Dex and Toc, 

respectively. The model predicted that the use of the antiviral drug cocktail early in the 

disease course suppresses viral load such that it was largely unnecessary to administer 
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immunosuppressant drugs later in the disease course (Fig. 12 (a)). Nevertheless, Dex and 

Toc still served to decrease the peak and period of innate immunity inflammation (Fig. 12 

(b)), reducing the risk of triggering a cytokine storm or adaptive autoimmunity. The cost of 

using the immunosuppressants was that the adaptive immune response also weakened (Fig. 

12 (c)), which, combined with the suppressed innate immune response, allowed for a longer 

tail of viral infection (Fig. 12 (a)). The full dynamics of all states for the multifunctional 

cocktail are given in Fig. S-12.

IX. Cocktails Against Cytokine Storm and Autoimmunity

Finally, we tested whether either the antiviral or immunosuppressant drug cocktails 

could avert cytokine storm and adaptive autoimmunity complications (Fig. 13). For 

these simulations, we used the cytokine storm and adaptive autoimmunity complication-

susceptible parameters described previously (Table S-I.d and Fig. S-2). The antiviral 

cocktail, despite using the sub-optimal Kd parameters, completely avoided the cytokine 

storm (Fig. 13 (c)) and minimized autoimmunity until after the viral load had subsided (Fig. 

13 (b) and (d)). As a result, the antiviral cocktail allowed the healthy lung epithelial cell 

population to recover fully by 35 dpi (Fig. 13 (a)). In contrast, the immunosuppressant 

cocktail with sub-optimal Kd parameters only gave a moderate, transient decrease in 

cytokine storm inflammation while making minimal impact on autoimmunity (Figs. 13 

(c) and (d)). Consequently, the healthy cell number only recovered to a value of 0.54 n.u., 

almost half of the homeostatic value of 1 n.u., indicating severe lung damage or death 

(Fig. 13 (a)). To completely reverse the cytokine storm (Fig. 13 (c)), partially reverse the 

autoimmune response (Fig. 13 (d)), and match the healthy lung epithelial cell recovery of 

the antiviral cocktail (Fig. 13 (a)), the immunosuppressant cocktail required full-efficacy 

(literature Kd) drug performance. Together, these results emphasize the model’s prediction 

that treatment with antivirals early in the disease course is more effective than later treatment 

with immunosuppressants when trying to avoid cytokine storm or autoimmunity. The full 

dynamics of all states for the evaluation of cocktails against cytokine storm and adaptive 

autoimmunity complications are given in Fig. S-13.

X. Conclusion

Using SARS-CoV-2 as a concrete example, this study presents an electronic circuit model 

of within-host infection kinetics, immune responses, and therapeutic drug interventions, 

as monotherapies and combination therapy cocktails. The model fits clinical data across 

disease severities and accounts for the effects of age, sex, and viral variant on COVID-19 

dynamics. The model additionally emulates cytokine storm, adaptive autoimmunity, and 

adaptive immune memory. Several key results were uncovered by running simulations 

of our model: First, antiviral drugs should be given early to prevent the generation 

of viral load and inflammatory immune responses later in the disease course. Second, 

there is a critical tradeoff in the timing of administration of immunosuppressants. 

Immunosuppressant treatment given too early in the disease course allows for viral load 

to grow uncontrollably while immunosuppressant treatment given too late will miss the 

period of peak inflammation, during which immunosuppression is most needed. Third, 

combining drugs within and across classes (i.e., antivirals and immunosuppressants) has 
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a larger, synergistic effect on the system compared to monotherapies. Fourth, antiviral 

drugs administered earlier in the disease course are better for avoiding cytokine storm or 

autoimmunity than immunosuppressant drugs administered later in the disease course.

In a SARS-CoV-2 pandemic context, the circuit model is significant because it provides 

a way to rapidly and rationally evaluate the timing, dose, and combination of drugs in a 

model specific to patient (age, sex) and virus (variant) characteristics. In the future, we 

envision the model to be a useful platform applicable to other diseases due to its six-state 

simplicity while robustly capturing host-pathogen-drug interactions. Narrowly interpreted, 

the model could easily and quickly be applied to future coronavirus or other viral pandemics 

with different parameters specific to the disease and virus. More broadly, host-pathogen 

interaction models can also be adapted to represent infectious-disease dynamics where the 

pathogen is not necessarily viral but could be bacterial or fungal. Most broadly, the model 

could be adapted for carcinogenesis modeling and cancer cocktail therapy evaluation: in 

the latter case, the model states would be healthy and cancerous tissue, tumor antigens and 

circulating cancer cells, and the innate and adaptive immune responses.

For the SARS-CoV-2 circuit model, there are several avenues of further research available. 

Fitting clinical data from individual patients would provide insight into the infection-

to-infection variation in COVID-19 dynamics and model parameters. If data fitting in 

individual patients is found to be reliable and the ranges of model parameters are well 

understood, the model may be able to make personalized drug cocktail formulation 

suggestions for patients. Also, the production and consumption or degradation rates of the 

states could be analyzed in terms of their energy costs, allowing for the calculation of power 

consumption by competing viral and host processes. For example, the transcriptional and 

translational energy costs to a host cell to produce one virion could be calculated and drugs 

could be selected that preferentially target metabolically stressed cells. Furthermore, the 

software-designed-and-run model presented here could be ported to cytomorphic computing 

chips [1], [4], [53], [88], [89], [90], [91], [92], allowing for high-speed iterations of drug 

cocktail formulations, which could be optimized by machine learning. Such computational 

techniques may prove faster than empirical methods at identifying promising drug cocktails 

for clinical applications. Finally, any of these avenues of further research may identify model 

parameters that SARS-CoV-2 is highly sensitive to, which can be used to propose new 

targets for drug discovery efforts.

Using only 6 main states made parametrizing the COVID-19 circuit model tractable, but 

also gave rise to some of its limitations. Generally, lumping innate and adaptive immunity 

into just two states made it impossible to capture the responses of different immune cell 

types and signaling molecules within those systems. In future work, the immunity states 

could be more granular, separating the adaptive immune response into B- and T-cell 

populations and separating the innate immune response into phagocytic cell counts and 

cytokine/chemokine production. A more specific limitation of using a simplified model was 

that drugs’ mechanisms of action become oversimplified. For example, Toc is a mAb that 

targets the IL-6 receptor, but many other cytokines exist and likely contribute to cytokine 

storms [93]. Yet, the model groups all of these cytokines, and Toc’s effect on them, into 

a single innate immunity state variable. This loss of drug mechanism and target specificity 
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may have also contributed to the model’s failure to differentiate the performance of Mol and 

Pax; in reality, Pax has outperformed Mol in clinical trials [25], [26]. It is also possible that 

the modeled Mol-Pax similarity arose from bioavailability or saturation constant parameters 

being incompletely examined in the literature or from the absence of viral variant effects 

on drug efficacies in the model. In future models of drug effects, the drug targets could be 

modeled with greater mechanistic detail before being connected back into the rest of the 

biological system.

In conclusion, we have developed a circuit model of virus-host-drug interactions in 

COVID-19 that fits clinical data and accounts for key host (age, sex, immunological 

memory), virus (variant), and disease (severity, complications) features. The model allows us 

to make predictions about which drug regimens and combinations can best combat infection 

and reduce the risk of complications.

Circuit models, which are quantitative yet visually tractable, are a useful tool to gain insight 

into biological systems and are an enabling tool for drug-cocktail formulation and design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research (AFOSR) under Grant 
FA9550-18-1-0467; in part by the National Institutes of Health under Grant R01 GM 123032-01; and in part 
by Dartmouth College.

Biographies

Douglas Raymond Beahm received the Bachelor of Arts degree in engineering in 2019 

and the Bachelor of Engineering degree from the Thayer School of Engineering, Dartmouth 

College, Hanover, NH, USA, where he is currently pursuing the Ph.D. degree with the 

Sarpeshkar Lab, focusing on circuit models of biological systems.

Previously, he was a Research Assistant with Sarpeshkar Lab, Thayer School of 

Engineering, and a Research & Early Development Intern with IDEXX Laboratories, 

Westbrook, ME, USA.

Mr. Beahm is a member of the Tau Beta Pi Engineering Honors Society.

Beahm et al. Page 14

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yijie (Daniel) Deng received the B.S. degree in pharmaceutical engineering from Fuzhou 

University, Fuzhou, China, the master’s degree in biochemical engineering from Shenyang 

Pharmaceutical University, Shenyang, China, and the Ph.D. degree from the University of 

Southern Mississippi, Hattiesburg, MS, USA. He is currently a Research Scientist with 

Prof. R. Sarpeshkar’s Lab, Dartmouth College, Hanover, NH, USA. His research focuses on 

both fundamental and application studies in synthetic biology, including biological noise, 

circuit modeling, cell-free biosensor developments, bacterial drug persistence, and protein 

engineering. Before joining Dartmouth College, he was a Postdoctoral Researcher with 

the State University of New York (SUNY) University at Buffalo, NY, USA, and Virginia 

Commonwealth University, Richmond, VA, USA, where he studied the interactions of oral 

bacteria and human host. His work resulted in multiple impactful publications with over 200 

citations and an H-index of 7 at present.

Thomas M. DeAngelo received the B.A. degree (Hons.) in computational biology from 

Colby College, Waterville, ME, USA, in May 2022. He is currently pursuing the B.E. degree 

in biomedical engineering from the Thayer School of Engineering, Dartmouth College, 

Hanover, NH, USA. Since June 2018, he has been a Research Assistant with Dr. L. 

Walensky with Dana-Farber Cancer Institute, Boston, MA, USA. During his time at Colby, 

he performed research in the laboratory of Prof. K. Rice. Since May 2021, he has also 

been working as a Research Assistant for Prof. R. Sarpeshkar with Dartmouth College. 

His research with Dr. L. Walensky and Prof. K. Rice focused on deregulated apoptotic 

pathways in cancer. His current and interdisciplinary research with Prof. R. Sarpeshkar aims 

to highlight the benefits of interweaving medicine with engineering. He received the Colby’s 

Pulver Science Scholar Award in 2019 and a Pediatric Oncology Student Training Award 

from Alex’s Lemonade Stand Foundation in 2020.

Rahul Sarpeshkar (Fellow, IEEE) received the B.S. degree in electrical engineering and 

physics from the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, and 

the Ph.D. degree from the California Institute of Technology, Pasadena, CA, USA. He is 

Beahm et al. Page 15

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



currently the Thomas E. Kurtz Professor with Dartmouth College, Hanover, NH, USA, 

where he is also a Professor of Engineering, Physics, Microbiology and Immunology, and 

Molecular and Systems Biology. His research creates novel wet DNA–protein circuits in 

living cells and also advanced dry nanoelectronic circuits on silicon chips for quantum 

and biological circuit applications. Before joining Dartmouth’s Faculty, he was a Tenured 

Professor with MIT, leading the Analog Circuits and Biological Systems Group, Research 

Laboratory of Electronics. Before joining MIT, he was a member of the Technical Staff 

of Bell Labs’ Division of Biological Computation, Physics Department. His longstanding 

work on analog and biological computation and his most recent work have helped pioneer 

the field of analog synthetic biology. His work on a glucose fuel cell for medical implants 

was featured by Scientific American among 2012’s 10 World Changing Ideas. He holds 44 

awarded patents, has authored multiple publications, including one that was featured on the 

cover of Nature, and has over 13 000 citations and an H-index of 54 at present. His book 

Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired 
Systems (Cambridge University Press, 2010) revealed the deep connections between analog 

transistor circuits and biochemical circuits and founded the field of cytomorphic systems. 

His group holds several first or best records in analog, bioinspired, quantum inspired, 

synthetic biology, medical device, ultra-low-power, and energy harvesting systems. His work 

has applications in implantable medical devices for those with hearing impairments, low/

limited vision, and/or limited mobility, and in biotechnology, medical, or AI applications 

that benefit from cellular engineering or quantum-inspired engineering. He was a recipient 

of several awards, including the NSF CAREER Award, the ONR Young Investigator Award, 

and the Packard Fellows Award. He is a Fellow of the National Academy of Inventors.

References

[1]. Sarpeshkar R, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and 
Bio-Inspired Systems, 1st ed. Cambridge, UK: Cambridge Univ. Press, 2010.

[2]. Sarpeshkar R, “Analog synthetic biology,” Philos. Trans. Royal Soc. A, vol. 372, Mar. 2014, Art. 
no. 20130110, doi: 10.1098/rsta.2013.0110.

[3]. Teo JJY, Woo SS, and Sarpeshkar R, “Synthetic biology: A unifying view and review using 
analog circuits,” IEEE Trans. Biomed. Circuits Syst, vol. 9, no. 4, pp. 453–474, Aug. 2015, doi: 
10.1109/TBCAS.2015.2461446. [PubMed: 26372648] 

[4]. Teo JJY, Weiss R, and Sarpeshkar R, “An Artificial tissue homeostasis circuit designed via analog 
circuit techniques,” IEEE Trans. Biomed. Circuits Syst, vol. 13, no. 3, pp. 540–553, Jun. 2019, 
doi: 10.1109/TBCAS.2019.2907074. [PubMed: 30908238] 

[5]. Teo JJY and Sarpeshkar R, “The merging of biological and electronic circuits,” iScience, vol. 23, 
no. 11, Nov. 2020, Art. no. 101688, doi: 10.1016/j.isci.2020.101688.

[6]. Deng Y, Beahm DR, Ran X, Riley TG, and Sarpeshkar R, “Rapid modeling of experimental 
molecular kinetics with simple electronic circuits instead of with complex differential equations,” 
Front. Bioeng. Biotechnol, vol. 10, Sep. 2022, Art. no. 947508, doi: 10.3389/fbioe.2022.947508.

[7]. Daniel R, Rubens JR, Sarpeshkar R, and Lu TK, “Synthetic analog computation in living cells,” 
Nature, vol. 497, pp. 619–623, May 2013, doi: 10.1038/nature12148. [PubMed: 23676681] 

[8]. Zeng J, Teo J, Banerjee A, Chapman TW, Kim J, and Sarpeshkar R, “A synthetic microbial 
operational amplifier,” ACS Synth. Biol, vol. 7, no. 9, pp. 2007–2013, Aug. 2018, doi: 10.1021/
acssynbio.8b00138. [PubMed: 30152993] 

[9]. Deng Y, Beahm DR, Ionov S, and Sarpeshkar R, “Measuring and modeling energy and power 
consumption in living microbial cells with a synthetic ATP reporter,” BMC Biol, vol. 19, p. 101, 
May 2021, doi: 10.1186/s12915-021-01023-2. [PubMed: 34001118] 

Beahm et al. Page 16

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[10]. Bartlett JA et al. , “An updated systematic overview of triple combination therapy in 
antiretroviral-naive HIV-infected adults,” AIDS, vol. 20, no. 16, pp. 2051–2064, Oct. 2006, doi: 
10.1097/01.aids.0000247578.08449.ff. [PubMed: 17053351] 

[11]. Mendoza P et al. , “Combination therapy with anti-HIV-1 antibodies maintains viral 
suppression,” Nature, vol. 561, pp. 479–484, Sep. 2018, doi: 10.1038/s41586-018-0531-2. 
[PubMed: 30258136] 

[12]. Gaebler C et al. , “Prolonged viral suppression with anti-HIV-1 antibody therapy,” Nature, vol. 
606, pp. 368–374, Apr. 2022, doi: 10.1038/s41586-022-04597-1. [PubMed: 35418681] 

[13]. Koszalka P, Tilmanis D, and Hurt AC, “Influenza antivirals currently in late-phase clinical trial,” 
Influenza Other Respi. Viruses, vol. 11, no. 3, pp. 240–246, Feb. 2017, doi: 10.1111/irv.12446.

[14]. O’Neil B et al. , “A phase 2 study of pimodivir (JNJ-63623872) in combination with oseltamivir 
in elderly and nonelderly adults hospitalized with influenza A infection: OPAL study,” J. Infect. 
Dis, vol. 226, no. 1, pp. 109–118, Jul. 2020, doi: 10.1093/infdis/jiaa376.

[15]. Deng R et al. , “Pharmacokinetics of the monoclonal antibody MHAA4549A administered in 
combination with oseltamivir in patients hospitalized with severe influenza A infection,” J. 
Clin. Pharmacol, vol. 60, no. 11, pp. 1509–1518, Jul. 2020, doi: 10.1002/jcph.1652. [PubMed: 
32621543] 

[16]. “WHO coronavirus (COVID-19) dashboard.” World Health Organization. Accessed: Feb. 1, 
2023. [Online]. Available: https://covid19.who.int

[17]. Accorsi EK et al. , “Association between 3 doses of mRNA COVID-19 vaccine and symptomatic 
infection caused by the SARS-CoV-2 Omicron and delta variants,” JAMA, vol. 237, no. 7, pp. 
639–651, Feb. 2022, doi: 10.1001/jama.2022.0470.

[18]. Moreira ED et al. , “Safety and efficacy of a third dose of BNT162b2 Covid-19 vaccine,” 
New Engl. J. Med, vol. 387, no. 20, pp. 1910–1921, May 2022, doi: 10.1056/NEJMoa2200674. 
[PubMed: 36383726] 

[19]. Johnson AG et al. , “COVID-19 incidence and death rates among unvaccinated and fully 
vaccinated adults with and without booster doses during periods of delta and omicron variant 
emergence—25 U.S. Jurisdictions, April 4–December 25, 2021,” Morb. Mortal. Weekly Rep, vol. 
71, no. 4, pp. 132–138. Jan. 2022, doi: 10.15585/mmwr.mm7104e2.

[20]. Ebinger JE et al. , “Demographic and clinical characteristics associated with variations in 
antibody response to BNT162b2 COVID-vaccination among healthcare workers at an academic 
medical centre: A longitudinal cohort analysis,” BMJ Open, vol. 12, no. 5, May 2022, Art. No. 
e059994, doi: 10.1136/bmjopen-2021-059994.

[21]. Feikin DR et al. , “Duration of effectiveness of vaccines against SARS-CoV-2 infection and 
COVID-19 disease: Results of a systematic review and meta-regression,” Lancet, vol. 339, no. 
10328, pp. 924–944, Mar. 2022, doi: 10.1016/S0140-6736(22)00152-0.

[22]. Juthani PV et al. , “Hospitalisation among vaccine breakthrough COVID-19 infections,” Lancet 
Infect. Dis, vol. 21, no. 11, pp. 1485–1486, Nov. 2021, doi: 10.1016/S1473-3099(21)00558-2. 
[PubMed: 34506735] 

[23]. Wang SY et al. , “Severe breakthrough COVID-19 cases in the SARSCoV-2 delta 
(B.1.617.2) variant era,” Lancet Microbe, vol. 3, no. 1, pp. E4–E5, Jan. 2022, doi: 10.1016/
S2666-5247(21)00306-2. [PubMed: 34901896] 

[24]. Brodin P, “Immune determinants of COVID-19 disease presentation and severity,” Nat. Med, no. 
27, pp. 28–33, Jan. 2021, doi: 10.1038/s41591-020-01202-8. [PubMed: 33442016] 

[25]. Bernal AJ et al. , “Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients,” New 
Engl. J. Med, vol. 386, no. 6, pp. 509–520, Feb. 2022, doi: 10.1056/NEJMoa2116044. [PubMed: 
34914868] 

[26]. Hammond J et al. , “Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19,” 
New Engl. J. Med, vol. 386, no. 15, pp. 1397–1408, Apr. 2022, doi: 10.1056/NEJMoa2118542. 
[PubMed: 35172054] 

[27]. Weinreich DM et al. , “REGEN-COV antibody combination and outcomes in outpatients with 
Covid-19,” New Engl. J. Med, vol. 385, p. e81, Dec. 2021, doi: 10.1056/NEJMoa2108163. 
[PubMed: 34587383] 

Beahm et al. Page 17

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://covid19.who.int


[28]. Gupta A et al. , “Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody 
sotrovimab,” New Engl. J. Med, vol. 385, no. 21, pp. 1941–1950, Nov. 2021, doi: 10.1056/
NEJMoa2107934. [PubMed: 34706189] 

[29]. Streinu-Cercel A et al. , “Efficacy and safety of regdanvimab (CTP59): A phase 2/3 randomized, 
double-blind, placebo-controlled trial in outpatients with mild-to-moderate coronavirus disease 
2019,” Open Forum Infect. Dis, vol. 9, no. 4, Feb. 2022, Art. no. ofac053, doi: 10.1093/ofid/
ofac053.

[30]. The RECOVERY Collaborative Group, “Dexamethasone in hospitalized patients with Covid-19” 
New Engl. J. Med, vol. 384, no. 8, pp. 693–704, Feb. 2021, doi: 10.1056/NEJMoa2021436. 
[PubMed: 32678530] 

[31]. Tomazini BM et al. , “Effect of dexamethasone on days alive and ventilator-free in patients 
with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX 
randomized clinical trial,” JAMA, vol. 324, no. 13, pp. 1307–1316, Sep. 2020, doi: 10.1001/
jama.2020.17021. [PubMed: 32876695] 

[32]. Toroghi N et al. , “Comparing efficacy and safety of different doses of dexamethasone in the 
treatment of COVID-19: A three-arm randomized clinical trial,” Pharmacol. Rep, vol. 74, no. 1, 
pp. 229–240, Feb. 2022, doi: 10.1007/s43440-021-00341-0. [PubMed: 34837648] 

[33]. Salvarani C et al. , “Effect of tocilizumab vs standard care on clinical worsening in patients 
hospitalized with COVID-19 pneumonia: A randomized clinical trial,” JAMA Internal Med, vol. 
181, no. 1, pp. 24–31, Oct. 2020, doi: 10.1001/jamainternmed.2020.6615.

[34]. Stone JH et al. , “Efficacy of tocilizumab in patients hospitalized with Covid-19,” New Engl. 
J. Med, vol. 383, no. 24, pp. 2333–2344, Dec. 2020, doi: 10.1056/NEJMoa2028836. [PubMed: 
33085857] 

[35]. Rosas IO et al. , “Tocilizumab in hospitalized patients with severe Covid-19 pneumonia,” New 
Engl. J. Med, vol. 384, no. 16, pp. 1503–1516, Apr. 2021, doi: 10.1056/NEJMoa2028700. 
[PubMed: 33631066] 

[36]. Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, and Ravaud P, “Effect 
of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe 
pneumonia: A randomized clinical trial,” JAMA Internal Med, vol. 181, no. 1, pp. 32–40, Oct. 
2020, doi: 10.1001/jamainternmed.2020.6820.

[37]. Salama C et al. , “Tocilizumab in patients hospitalized with Covid-19 pneumonia,” New Engl. J. 
Med, vol. 384, no. 1, pp. 20–30, Jan. 2021, doi: 10.1056/NEJMoa2030340. [PubMed: 33332779] 

[38]. Perelson AS and Ke R, “Mechanistic modeling of SARS-CoV-2 and other infectious diseases and 
the effects of therapeutics,” Clin. Pharmacol. Ther, vol. 109, no. 4, pp. 829–840, Dec. 2020, doi: 
10.1002/cpt.2160.

[39]. Wang S, Pan Y, Wang Q, Miao H, Brown AN, and Rong L, “Modeling the viral dynamics 
of SARS-CoV-2 infection,” Math. Biosci, vol. 328, Oct. 2020, Art. no. 108438, doi: 10.1016/
j.mbs.2020.108438.

[40]. Gonçalves A et al. , “Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 
viral load,” CPT Pharmacometr. Syst. Pharmacol, vol. 9, no. 9, pp. 509–514, Sep. 2020, doi: 
10.1002/psp4.12543.

[41]. Li C, Xu J, Liu J, and Zhou Y, “The within-host viral kinetics of SARS-CoV-2,” Math. Biosci. 
Eng, vol. 17, no. 4, pp. 2853–2861, Mar. 2020, doi: 10.3934/mbe.2020159. [PubMed: 32987502] 

[42]. Manisty C et al. , “Time series analysis and mechanistic modelling of heterogeneity and sero-
reversion in antibody responses to mild SARSCoV-2 infection,” EBioMedicine, vol. 65, Mar. 
2021, Art. no. 103259, doi: 10.1016/j.ebiom.2021.103259.

[43]. Prague M, Alexandre M, Thiébaut R, and Guedj J, “Within-host models of SARS-CoV-2: 
What can it teach us on the biological factors driving virus pathogenesis and transmission?” 
Anaesth. Crit. Care Pain Med, vol. 41, no. 2, Apr. 2022, Art. no. 101055, doi: 10.1016/
j.accpm.2022.101055.

[44]. Dodd MG, Krishna R, Goncalves A, and Rayner CR, “Model-informed drug repurposing: 
Viral kinetic modelling to prioritize rational drug combinations for COVID-19,” Brit. J. Clin. 
Pharmacol, vol. 87, no. 9, pp. 3439–3450, Sep. 2021, doi: 10.1111/bcp.14486. [PubMed: 
32693436] 

Beahm et al. Page 18

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[45]. Néant N et al. , “Modeling SARS-CoV-2 viral kinetics and association with mortality in 
hospitalized patients from the French COVID cohort,” Proc. Nat. Acad. Sci, vol. 118, no. 8, 
Feb. 2021, Art. no. e2017962118, doi: 10.1073/pnas.2017962118.

[46]. Dogra P et al. , “Innate immunity plays a key role in controlling viral load in COVID-19: 
Mechanistic insights from a whole-body infection dynamics model,” ACS Pharmacol. Transl. 
Sci, vol. 4, no. 1, pp. 248–265, Dec. 2020, doi: 10.1021/acsptsci.0c00183. [PubMed: 33615177] 

[47]. Fadai NT, Sachak-Patwa R, Byrne HM, Maini PK, Bafadhel M, and Nicolau DV, “Infection, 
inflammation and intervention: Mechanistic modelling of epithelial cells in COVID-19,” J. Royal 
Soc. Interface, vol. 18, no. 175, Feb. 2021, Art. no. 20200950, doi: 10.1098/rsif.2020.0950.

[48]. Goyal A, Cardozo-Ojeda EF, and Schiffer JT, “Potency and timing of antiviral therapy as 
determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response,” Sci. 
Adv, vol. 6, no. 47, Nov. 2020, Art. no. eabc7112, doi: 10.1126/sciadv.abc7112.

[49]. Sego TJ et al. , “A modular framework for multiscale, multicellular, spatiotemporal modeling 
of acute primary viral infection and immune response in epithelial tissues and its application to 
drug therapy timing and effectiveness,” PLoS Comput. Biol, vol. 16, no. 12, Dec. 2020, Art. no. 
e1008451, doi: 10.1371/journal.pcbi.1008451.

[50]. Voutouri C et al. , “In silico dynamics of COVID-19 phenotypes for optimizing clinical 
management,” Proc. Nat. Acad. Sci, vol. 118, no. 3, Jan. 2021, Art. no. e2021642118, doi: 
10.1073/pnas.2021642118.

[51]. Ke R, Zitzmann C, Ho DD, Ribeiro RM, and Perelson AS, “In vivo kinetics of SARS-CoV-2 
infection and its relationship with a person’s infectiousness,” Proc. Nat. Acad. Sci, vol. 118, no. 
49, Dec. 2021, Art. no. e2111477118, doi: 10.1073/pnas.2111477118.

[52]. Willis MJ, Wright A, Bramfitt V, and Díaz VHG, “COVID-19: Mechanistic model calibration 
subject to active and varying nonpharmaceutical interventions,” Chem. Eng. Sci, vol. 231, Feb. 
2021, Art. no. 116330, doi: 10.1016/j.ces.2020.116330.

[53]. Beahm DR, Deng Y, Riley TG, and Sarpeshkar R, “Cytomorphic electronic systems: A review 
and perspective,” IEEE Nanotechnol. Mag, vol. 15, no. 6, pp. 41–53, Dec. 2021, doi: 10.1109/
MNANO.2021.3113192. [PubMed: 35242267] 

[54]. Wagar LE, Difazio RM, and Davis MM, “Advanced model systems and tools for basic 
and translational human immunology,” Genome Med, vol. 10, p. 73, Sep. 2018, doi: 10.1186/
s13073-018-0584-8. [PubMed: 30266097] 

[55]. Kirschner DE, Hunt CA, Marino S, Fallahi-Sichani M, and Linderman JJ, “Tuneable resolution 
as a systems biology approach for multi-scale, multi-compartment computational models,” 
Wiley Interdiscip. Rev. Syst. Biol. Med, vol. 6, no. 4, pp. 289–309, Aug. 2014, doi: 10.1002/
wsbm.1270. [PubMed: 24810243] 

[56]. Sarpe V and Jacob C, “Simulating the decentralized processes of the human immune system 
in a virtual anatomy model,” BMC Bioinform, vol. 14, no. 6, p. S2, Apr. 2013, doi: 
10.1186/1471-2105-14-S6-S2.

[57]. Mitha F, Lucas TA, Feng F, Kepler TB, and Chan C, “The multiscale systems Immunology 
project: Software for cell-based immunological simulation” Source Code Biol. Med, vol. 3, p. 6, 
Apr. 2008, doi: 10.1186/1751-0473-3-6. [PubMed: 18442405] 

[58]. Patel BV, Wilson MR, O’Dea KP, and Takata M, “TNF-induced death signaling triggers alveolar 
epithelial dysfunction in acute lung injury,” J. Immunol, vol. 190, no. 8, pp. 4274–4282, Apr. 
2013, doi: 10.4049/jimmunol.1202437. [PubMed: 23487422] 

[59]. Dotan A, Muller S, Kanduc D, David P, Halpert G, and Shoenfeld Y, “The SARS-CoV-2 as 
an instrumental trigger of autoimmunity,” Autoimmun. Rev, vol. 20, no. 4, Apr. 2021, Art. no. 
102792, doi: 10.1016/j.autrev.2021.102792.

[60]. Wang EY et al. , “Diverse functional autoantibodies in patients with COVID-19,” Nature, vol. 
595, pp. 283–288, May 2021, doi: 10.1038/s41586-021-03631-y. [PubMed: 34010947] 

[61]. Park JO et al. , “Metabolite concentrations, fluxes and free energies imply efficient enzyme 
usage,” Nat. Chem. Biol, vol. 12, pp. 482–489, May 2016, doi: 10.1038/nchembio.2077. 
[PubMed: 27159581] 

Beahm et al. Page 19

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[62]. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, and Rabinowitz JD, “Absolute 
metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. 
Chem. Biol, vol. 5, pp. 593–599, Jun. 2009, doi: 10.1038/nchembio.186. [PubMed: 19561621] 

[63]. Borremans B et al. , “Quantifying antibody kinetics and RNA detection during early-phase 
SARS-CoV-2 infection by time since symptom onset,” Elife, vol. 9, Sep. 2020, Art. no. e60122, 
doi: 10.7554/eLife.60122.

[64]. Weiss A, Jellingsø M, and Sommer MOA, “Spatial and temporal dynamics of SARS-CoV-2 in 
COVID-19 patients: A systematic review and meta-analysis,” EBioMedicine, vol. 58, Aug. 2020, 
Art. no. 102916, doi: 10.1016/j.ebiom.2020.102916.

[65]. Vignali DAA, Collison LW, and Workman CJ, “How regulatory T cells work,” Nat. Rev. 
Immunol, vol. 8, pp. 523–532, Jul. 2008, doi: 10.1038/nri2343. [PubMed: 18566595] 

[66]. Turner JS et al. , “SARS-CoV-2 infection induces long-lived bone marrow plasma cells 
in humans,” Nature, vol. 595, pp. 421–425, May 2021, doi: 10.1038/s41586-021-03647-4. 
[PubMed: 34030176] 

[67]. Cohen KW et al. , “Longitudinal analysis shows durable and broad immune memory after 
SARS-CoV-2 infection with persisting antibody responses and memory B and T cells,” Cell Rep. 
Med, vol. 2, no. 7, Jul. 2021, Art. no. 100354, doi: 10.1016/j.xcrm.2021.100354.

[68]. Notarte KI et al. , “Characterization of the significant decline in humoral immune response six 
months post-SARS-CoV-2 mRNA vaccination: A systematic review,” J. Med. Virol, vol 94, no.7, 
pp. 2939–2961, Feb. 2022, doi: 10.1002/jmv.27688. [PubMed: 35229324] 

[69]. Biswas M, Rahaman S, Biswas TK, Haque Z, and Ibrahim B, “Association of sex, age, and 
comorbidities with mortality in COVID-19 patients: A systematic review and meta-analysis,” 
Intervirology, vol. 64, pp. 36–47, Jan. 2021, doi: 10.1159/000512592.

[70]. Bonanad C et al. , “The effect of age on mortality in patients with COVID-19: A meta-analysis 
with 611,583 subjects,” J. Amer. Med. Directors Assoc, vol. 21, no. 7, pp. 915–918, Jul. 2020, 
doi: 10.1016/j.jamda.2020.05.045.

[71]. Peckham H et al. , “Male sex identified by global COVID-19 meta-analysis as a risk factor 
for death and ITU admission,” Nat. Commun, vol. 11, p. 6317, Dec. 2020, doi: 10.1038/
s41467-020-19741-6. [PubMed: 33298944] 

[72]. McLinden KA, Kranjac D, Deodati LE, Kahn M, Chumley MJ, and Boehm GW, “Age 
exacerbates sickness behavior following exposure to a viral mimetic,” Physiol. Behav, vol. 105, 
no. 5, pp. 1219–1225, Mar. 2012, doi: 10.1016/j.physbeh.2011.04.024. [PubMed: 21549726] 

[73]. “Life span as a biomarker.” The Harrison Lab at the Jackson Laboratory. Accessed: May 24, 
2022. [Online]. Available: https://www.jax.org/research-and-faculty/research-labs/the-harrison-
lab/gerontology/lifespan-as-a-biomarker

[74]. Flurkey K, Currer JM, and Harrison DE, “The mouse in aging research,” in The Mouse in 
Biomedical Research, vol. 3, 2nd ed. Burlington, MA, USA: Academic, 2007, ch. 20.

[75]. Jabal KA et al. , “Impact of age, ethnicity, sex and prior infection status on immunogenicity 
following a single dose of the BNT162b2 MRNA COVID-19 vaccine: Real-world evidence from 
healthcare workers, Israel, December 2020 to January 2021,” Eurosurveillance, vol. 26, no. 6, 
Feb. 2021, Art. no. 2100096, doi: 10.2807/1560-7917.ES.2021.26.6.2100096.

[76]. Cai Y et al. , “Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 
variants,” Science, vol. 373, no. 6555, pp. 642–648, Jun. 2021, doi: 10.1126/science.abi9745. 
[PubMed: 34168070] 

[77]. Zhang J et al. , “Membrane fusion and immune evasion by the spike protein of SARS-
CoV-2 delta variant,” Science, vol. 374, no. 6573, pp. 1353–1360, Oct. 2021, doi: 10.1126/
science.abl9463. [PubMed: 34698504] 

[78]. Sheikh A, McMenamin J, Taylor B, and Robertson C, “SARS-CoV-2 Delta VOC in Scotland: 
demographics, risk of hospital admission, and vaccine effectiveness,” Lancet, vol. 397, no. 
10293, pp. 2461–2462, Jun. 2021, doi: 10.1016/S0140-6736(21)01358-1. [PubMed: 34139198] 

[79]. Paredes MI et al. , “Associations between SARS-CoV-2 variants and risk of COVID-19 
hospitalization among confirmed cases in Washington State: A retrospective cohort study,” 
Clin. Infect. Dis, vol. 75, no. 1, pp. e536–e544, Jul. 2022, doi: 10.1093/cid/ciac279. [PubMed: 
35412591] 

Beahm et al. Page 20

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.jax.org/research-and-faculty/research-labs/the-harrison-lab/gerontology/lifespan-as-a-biomarker
https://www.jax.org/research-and-faculty/research-labs/the-harrison-lab/gerontology/lifespan-as-a-biomarker


[80]. Veneti L et al. , “No difference in risk of hospitalization between reported cases of the SARS-
CoV-2 Delta variant and Alpha variant in Norway,” Int. J. Infect. Dis, vol. 115, pp. 178–184, Feb. 
2022, doi: 10.1016/j.ijid.2021.12.321. [PubMed: 34902584] 

[81]. Voss JD et al. , “Variants in SARS-CoV-2 associated with mild or severe outcome,” Evol. Med. 
Public Health, vol. 9, no. 1, pp. 267–275, Jun. 2021, doi: 10.1093/emph/eoab019. [PubMed: 
34447577] 

[82]. Nakamichi K et al. , “Hospitalization and mortality associated with SARS-CoV-2 viral clades 
in COVID-19,” Sci. Rep, vol. 11, no. 1, p. 4802, Feb. 2021, doi: 10.1038/s41598-021-82850-9. 
[PubMed: 33637820] 

[83]. Thorne LG et al. , “Evolution of enhanced innate immune evasion by SARS-CoV-2,” Nature, vol. 
602, pp. 487–495, Dec. 2021, doi: 10.1038/s41586-021-04352-y [PubMed: 34942634] 

[84]. Coutinho AE and Chapman KE, “The anti-inflammatory and immunosuppressive effects of 
glucocorticoids, recent developments and mechanistic insights,” Mol. Cell Endocrinol, vol. 335, 
no. 1, pp. 2–13, Mar. 2011, doi: 10.1016/j.mce.2010.04.005. [PubMed: 20398732] 

[85]. Kino T, Burd I, and Segars JH, “Dexamethasone for severe Covid-19: How does it work at 
cellular and molecular levels?” Int. J. Mol. Sci, vol. 22, no. 13, p. 6764, Jun. 2021, doi: 10.3390/
ijms22136764. [PubMed: 34201797] 

[86]. Gobbi F et al. , “Antibody response to the bnt162b2 mRNA Covid-19 vaccine in subjects 
with prior SARS-COV-2 infection,” Viruses, vol. 13, no. 3, p. 422, Mar. 2021, doi: 10.3390/
v13030422. [PubMed: 33807957] 

[87]. Morales-Núñez JJ, “Neutralizing antibodies titers and side effects in response to BNT162B2 
vaccine in healthcare workers with and without prior SARS-CoV-2 infection,” Vaccines, vol. 9, 
no. 7, p. 742, Jul. 2021, doi: 10.3390/vaccines9070742. [PubMed: 34358158] 

[88]. Mandal S and Sarpeshkar R, “Circuit models of stochastic genetic networks,” in Proc. 
IEEE Biomed. Circuits Syst. Conf., Beijing, China, 2009, pp. 109–112, doi: 10.1109/
BIOCAS.2009.5372073.

[89]. Daniel R, Woo SS, Turicchia L, and Sarpeshkar R, “Analog transistor models of bacterial genetic 
circuits,” in Proc. IEEE Biomed. Circuits Syst. Conf., San Diego, CA, USA, 2011, pp. 333–336, 
doi: 10.1109/BioCAS.2011.6107795.

[90]. Woo SS, Kim J, and Sarpeshkar R, “A cytomorphic chip for quantitative modeling of 
fundamental bio-molecular circuits,” IEEE Trans. Biomed. Circuits Syst, vol. 9, no. 4, pp. 527–
542, Aug. 2015, doi: 10.1109/TBCAS.2015.2446431. [PubMed: 26292344] 

[91]. Kim J, Woo SS, and Sarpeshkar R, “Fast and precise emulation of stochastic biochemical 
reaction networks with amplified thermal noise in silicon chips,” IEEE Trans. Biomed. Circuits 
Syst, vol. 12, no. 2, pp. 379–389, Apr. 2018, doi: 10.1109/TBCAS.2017.2786306. [PubMed: 
29570064] 

[92]. Woo SS, Kim J, and Sarpeshkar R, “A digitally programmable cytomorphic chip for simulation 
of arbitrary biochemical reaction networks,” IEEE Trans. Biomed. Circuits Syst, vol. 12, no. 2, 
pp. 360–378, Apr. 2018, doi: 10.1109/TBCAS.2017.2781253. [PubMed: 29570063] 

[93]. Mulchandani R, Lyngdoh T, and Kakkar AK, “Deciphering the COVID-19 cytokine storm: 
Systematic review and meta-analysis,” Eur. J. Clin. Invest, vol. 51, no. 1, Oct. 2020, Art. no. 
e13429, doi: 10.1111/eci.13429.

Beahm et al. Page 21

IEEE Trans Mol Biol Multiscale Commun. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flow diagram of the essential interactions between virus, host, and drugs in the circuit 

model. Positive, upregulating interactions are shown by green lines with activation arrows. 

Negative, downregulating interactions are shown by red lines with repression symbols 

except for drugs, which are differentiated by purple lines and repression symbols. The 

gray numbers marking the interactions correspond to the numbered descriptions of the 

interactions in the preceding text. Healthy lung epithelial cell number (HC); infected lung 

epithelial cell number (IC); extracellular viral population virion number (Vpop); intracellular 

viral protein and molecule number (VPM); the strength of the innate immune response (II); 

and the strength of the adaptive immune response (AI).
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Fig. 2. 
Key conversions between electronic circuit components and mathematical equations. The 

state variables are represented by voltages, denoted V, and the rate-of-change variables are 

represented by currents, denoted I. Saturation constants are denoted Kd and cooperativity 

constants are denoted h.
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Fig. 3. 
Electronic circuit schematics of COVID-19. The circuits represent (a) viral replication and 

infection of lung epithelial cells, (b) the innate immune response, and (c) the adaptive 

immune response. The states were named VHC for heathy lung epithelial cell number, 

VIC for infected lung epithelial cell number, VVpop for extracellular viral population virion 

number, VVPM for intracellular viral protein and molecule number, VII for the strength of the 

innate immune response, VAI for the strength of the adaptive immune response, and VAAI 

for the strength of the adaptive autoimmune response. Wires with the same voltage label 

are assumed to be connected (i.e., have the same voltage). The wire styles differentiate total 

(solid lines) and free (dashed lines) variables.
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Fig. 4. 
Dynamics of the COVID-19 circuit model and fits to clinical data for mild and severe 

disease. (a) The dynamics of the six main model states in a simulation of mild disease. (b) 

The adaptive immune response strength, AI, from the model agrees with the dynamics of 

the normalized median level of anti-S IgM antibodies from clinical data for mild disease 

[63]. (c) The extracellular viral load, Vpop, from the model agrees with the dynamics 

of normalized clinical PCR measurements from clinical data in mild disease [64]. (d)-(f) 

The corresponding model dynamics and clinical data fits for severe disease. The only 

parameters that differ between the mild and severe disease simulations are the immune 

response activation Kd values, given in Table S-I.c. The data point size is proportional to the 

number of samples at that time point. The sample size ranges from 1 to 10 for PCR data and 
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from 1 to 8 for IgM data. See Method S-B for more information about the fitted data. The 

fitted data is available in the Supplementary Data.
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Fig. 5. 
The effects of age and sex on COVID-19 dynamics. Combinations of age and sex affect 

all states of the COVID-19 circuit model: (a) healthy lung epithelial cell number (HC), 

(b) infected lung epithelial cell number (IC), (c) extracellular virion number (Vpop), (d) 

intracellular viral protein and molecule number (VPM), (e) innate immunity response 

strength (II), and (f) adaptive immunity response strength (AI). The “Default Severe 

Disease” curves are identical to the severe disease curves presented in Figs. 4 (d) and (e). 

Severe disease is assumed for all age and sex combinations.
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Fig. 6. 
The effect of SARS-CoV-2 variants on COVID-19 dynamics. Viral variant type affects 

all states of the COVID-19 circuit model: (a) healthy lung epithelial cell number (HC), 

(b) infected lung epithelial cell number (IC), (c) extracellular virion number (Vpop), (d) 

intracellular viral protein and molecule number (VPM), (e) innate immunity response 

strength (II), and (f) adaptive immunity response strength (AI). The D614G curves are 

identical to the old male curves in Fig. 5 and an old male with severe disease is assumed for 

all viral variant simulations.
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Fig. 7. 
Anti-S mAb treatment start time optimization via circuit model simulations. Compared 

to the undrugged simulation (a) and the later 8 dpi treatment in (b), the anti-S mAb 

monotherapy given at 6 dpi (b) was most effective, causing IC, Vpop, and VPM to rapidly 

go to zero while preserving 80% of the healthy cell population. For ease of comparison, the 

drugged simulations in (b) and (c) are overlayed on top of the undrugged simulation from 

(a), represented by gray lines. The simulations assumed severe disease, old age, male sex, 

and Delta variant.
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Fig. 8. 
Pax treatment start time optimization via circuit model simulations. The latest guidance-

given start time of 8 days post-infection (dpi), equivalent to 5 days post-symptom onset 

in severe disease, reduced the viral load (b), but failed to make significant changes to the 

number of infected cells (a) or the level of inflammation (c). Administering Pax at the earlier 

6 dpi start time reduced all three states: IC, Vpop, and II. The simulations assume severe 

disease, old age, male sex, and Delta variant.
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Fig. 9. 
Dex and Toc monotherapy start time optimization via circuit model simulations. The Vpop 

(a, d), IIf (b, e), and AI (c, f) state dynamics for three different treatment start times for Dex 

(a)-(c) and Toc (d)-(f) monotherapies suggest that there is an optimal intermediate start time 

for immunosuppressants that balances viral load management and inflammation reduction. 

(a) In the worst case, viral load became uncontrollable if Dex was started at 8 dpi because 

the immunosuppressant was given before the innate and adaptive immune responses were 

strong enough to stabilize the viral load. In panels in which it cannot be seen, the black line 

is behind the red line. The simulations assumed severe disease, old age, male sex, and Delta 

variant.
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Fig. 10. 
Model-predicted effects of synergistic antiviral drug cocktails on COVID-19 dynamics. To 

examine the effect of each component of the antiviral drug cocktail, simulations were run 

by adding one drug to the cocktail at a time and comparing the resulting changes to state 

dynamics. The wavy features in some of the plots arise from the frequent dosing and short 

half-lives of Pax and Mol. All three drugs’ start times were 6 dpi. The simulations assumed 

severe disease, old age, male sex, Delta variant, and high drug Kd values.
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Fig. 11. 
Model-predicted effects of a synergistic immunosuppressant drug cocktail on COVID-19 

dynamics. Dex reduced the peak innate immunity inflammation value (a) at the cost of 

weakening the adaptive immune response (b). The addition of Toc caused the inflammation 

to recede from its peak value more quickly (a) without further worsening the adaptive 

immune response (b). Dex treatment is started at 9 dpi and Toc treatment is started at 10 dpi. 

The simulations assumed severe disease, old age, male sex, Delta variant, and high drug Kd 

values.
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Fig. 12. 
Model-predicted effects of a synergistic multi-class drug cocktail on COVID-19 dynamics. 

The antiviral (AV) cocktail greatly reduced the viral load (a), causing a decrease in innate (b) 

and adaptive (c) immune responses. Adding the immunosuppressant (IS) cocktail to create 

a multi-class cocktail further reduced the peak level of inflammation and the period of high 

inflammation (b) at the cost of a longer tail of viral load (a) and a weaker adaptive immune 

response (c). All three antiviral drugs were started at 6 dpi. Dex treatment was started at 10 

dpi and Toc treatment was started at 13 dpi. The simulations assumed severe disease, old 

age, male sex, Delta variant, and high drug Kd values.
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Fig. 13. 
Antiviral (AV) and immunosuppressant (IS) drug cocktail evaluation for the prevention or 

correction of cytokine storm and adaptive autoimmunity. The “High Kd” cocktails were 

simulated with sub-optimal drug performance (Fig. S-10), while the “Lit. Kd” cocktail 

was simulated with literature-value drug performance (Table S-IV). All three drugs in 

the antiviral cocktail were started at 6 dpi. For both immunosuppressant simulations, Dex 

treatment was started at 9 dpi and Toc treatment was started at 10 dpi. The simulations 

assumed severe disease, old age, male sex, and Delta variant.
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