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Abstract: In this review, the potential future role of microRNA-based therapies and their specific
application in lung diseases is reported with special attention to pulmonary hypertension. Current
limitations of these therapies will be pointed out in order to address the challenges that they need to
face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies
in nanovectors has shown improvements as compared to chemically modified microRNAs toward
enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will
contextualize in this review the recent achievements and expectations reported for the treatment of
pulmonary hypertension.
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1. Introduction

The first evidence of the regulatory function of microRNA (miRNA) was reported in C. elegans
by Lee et al. three decades ago [1]. Since this discovery, many examples of these small nucleotide
chains were identified in different species, evidencing the existence of a post-transcriptional regulation
mediated by RNA molecules and fairly conserved in diverse organisms [2,3]. Numerous laboratories
across the world have focused their research in identifying new miRNAs and having a full picture of
their biological functions. Interestingly, the public ENCODE project revealed that around 70% of the
human genome has biochemical activity, reinforcing the idea that non-coding DNA exceeds protein
coding sequences and generating focus on regulatory nucleotides [4]. Similarly to miRNAs, small
interfering RNAs (siRNAs) are also noncoding RNAs with an important role in gene regulation [5].
Both miRNAs and siRINAs are short RNA molecules that target messenger RNA (mRNA) and can
exert gene silencing. However, siRNAs are very specific with only one mRNA target while miRNAs
have multiple targets [5]. Research on siRNA clinical applications has advanced ahead of miRNAs
because they are effective in gene silencing and they could involve less potential off-target effects
because of this one single target [6]. But, miRNNA-based therapies can provide in addition to gene
silencing (and elimination of undesired proteins) the restoration of missing proteins to physiological
levels. Consequently, these therapies are challenging but also offer more therapeutic opportunities
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than siRNA-based drugs. For this reason, they are considered today the future of non-coding RNA
treatments. In addition, they are currently being applied as quantifiable indicators of pathological
states and as molecular biomarkers for early diagnosis. Regular protocols examine differences in the
expression of miRNAs as prognostic markers between groups of patients, with and without medical
treatments, searching for miRNA targets that can give information about the efficiency and effect of
different therapies [7,8]. Regarding the use of miRNAs as biomarker there are already clinical databases,
such as the BACAP cohort for pancreatic cancer, that provide the opportunity to identify correlations
between the presence/expression of a broad panel of miRNAs. Finally, for some diseases it has been
possible to develop miRNA targeted treatments based on these clinical databases. The most advanced
treatment in this sense is called miravirsen and it is based on a locked nucleic acid (LNA)-modified
oligonucleotide targeting the liver expressed miR-122 for treatment of hepatitis C virus infection [9,10].

miRNA-based treatments suffer for low stability and efficiency [11] and they require chemical
modifications [12,13] or conjugation/encapsulation in different kinds of nanovectors such as lentivirus,
polymeric nanoparticles, or exosomes [14-16]. This review intends to highlight the interest of
developing more advanced strategies for miRNA treatments; the challenges related with their stability,
specificity, side-effects, and interest of their encapsulation within drug delivery carriers.

Specifically, we will illustrate why and how miRNAs could ameliorate the pathologies and
complications of respiratory disease, with a special focus being given to the recent achievements
in pulmonary hypertension (PH). PH involves a continuous remodeling of the pulmonary
vasculature, that is similar to cancer in some aspects [17], leading to muscularization of
pulmonary vessels, development of vascular lesions, continuous vasoconstriction, and final heart
failure. Current pharmacological therapies only target three pathways that either regulates the
vasodilatory/vasoconstriction balance (prostacyclin and endothelin pathway) or the uncontrolled cell
proliferation (nitric oxide pathway) [18]. As a result, of these therapies patients can only improve
their life quality but not without suffering adverse side effects. This fatal lung disease lacks effective
treatments. Therefore, there are compelling reasons to find new molecular targets and novel therapies
that reverse the development of the disease. In this context, miRNA-based therapies have shown
promising results that we will provide in the following sections while explaining the important role
that had played their nanoencapsulation [19].

2. Brief Description of miRNA Biogenesis

To understand the therapeutic strategies based on miRNA, it is important to keep in mind the
biological processes required for the biogenesis of mature, functional, and single stranded miRNA
shown in Figure 1. Only this mature molecule will be capable of achieving gene silencing through
partial complementarity with its target mRINA. miRNA biogenesis involves several biological processes
where the correct action of auxiliary factors is crucial but their degree of influence is still under
discussion [20]. Discrepancies have been found between species [21], and some authors refer to two
pathways [22], but here for the sake of simplicity we have condensed the miRNA maturation process
in general terms. Figure 1 attempts to summarize the complex miRNA biogenesis in eukaryotic cells.
First, often RNA polymerase I1I, in the cellular nucleus, transcribes specific DNA sequences, giving
rise to long stem-loop structures called pri-miRNA. pri-miRNA has often well conserved terminal
loops where auxiliary factors bind to ensure an optimal pri-miRNA processing. One of these factors is
hnRNP, an RNA-binding protein that acts by binding the loop of the pri-miRNA to produce a relaxation
at the stem [23,24]. Subsequently, Drosha, a RNase-III type enzyme, binds the microprocessor complex
DGCRS and cleaves the nucleic acid to form pre-microRNA, a 60-80 base pairs chain with typical
hairpin conformation. After that, the protein Exportin-5 (and probably through alternative modes of
transport) is responsible for transporting the pre-miRNA to the cytosol through nuclear pores where it
will be further processed until becoming mature and functional [25]. In this compartment, it is cleaved
by Dicer, creating microRNA duplexes. These duplex RNAs bind the protein Argonaute (AGO) which
is implicated in the separation of the double chain and form the RNA-induced silencing complex (RISC).
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Finally, the guide strand remains anchored to the complex to fulfil its duty while the passenger strand
is decomposed in some cases but it can also stay being functional. Generally, the strand with the less
stably paired 5’-end is selected as the mature miRNA. Argonauts are composed of three domains, PAZ,
MID, and PIWI. In humans, four isoforms have been found. Recent studies point to the mechanism by
which miRNA exerts its action softly differs depending on the binding to the AGO isoform [11].
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Figure 1. One of the possible mechanisms and pathways of the miRNA biogenesis within eukaryotic
cells of mammals. We have marked with a blue pill drawing and a number 1* to 4* the possible
miRNA and miRNA precursors that can be targeted for the different therapeutic strategies explained in
Section 4. (#) Indicates that this pathway can be different.

miRNA-based therapies target at least one of the multiple miRNA biogenesis pathways which
gives an idea about the variety of possible therapies. In Figure 1 we have only highlighted miRNAs
that can be administered in therapies based on replacement by exogenous nucleic acids and there are
already four. If we consider that these four possibilities can be synthesized with different chemical
modifications, the options for building novel drugs exponentially increase. In the following sections we
will try to give a short overview of the recent and more successful (up to now) therapeutic strategies.

3. Key Features of miRNA-Based Medical Applications

miRNAs largely influence homeostasis and their abnormal expression can be related to various
diseases although their complete mode of action is not yet understood. In principle, miRNA exerts
their function by canonically pairing their cognate mRNA. For the target recognition, a mature miRNA
has “seed regions,” short sequences extending from bases 2 to 8 on the tail of the mature miRNA strand
on the 5’ end that bind the targeted mRNA as shown in Figure 2.

These segments match a complementary sequence of the 3’ untranslated region (UTR) of the
mRNA, 5" UTR or within the mRNA coding sequence. The union of the miRNA to the mRNA
promotes this oligonucleotide destruction, downregulating the expression of their codified protein.
This inhibits the protein synthesis [26]. However, the regulation of the gene expression can be
accomplished through different genetic and epigenetic mechanisms. The method of choice varies
depending on complementarity. If the miRNA matches perfectly to the target mRNA the interference
pathway is activated and the mRNA degraded. But, in the case that the base pairing is incomplete,
miRNA hybridize partially to the cognate region of the mRNA, forcing the repression of the protein
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translation [27]. In addition to these functions, miRNA has been found to be involved in chromatin
modification and in the methylation pathway [28,29]. There is a general consensus on the lack of full
knowledge about all mechanisms for gene silencing and biological functions of miRNAs and there is a
constant release of new information about novel roles of these molecules in human disease [30].

Gene silencing through partial complementarity miRNA/mRNA

3- miRNA Complete base

Seed 5 pairing
. — —>Degradation
Target mRNA [ \ Incomplete base pairing
STJ?R —->Represion of the protein
translation

Figure 2. Complementary binding between mRNA and miRNA at the seed region located on the bases
2-8 on the 5" end of mature miRNA and the 3’UTR of the target mRNA.

Because of the difficulties to establish the precise mode of action of a particular miRNA,
mathematical tools have been proposed to discriminate between processes in order to make a practical
use of all obtained information toward clinical application [31,32]. In this line, using a theoretical
base and computational tools, a system biology approach which combines data-driven modelling
and model-driven experiments has been suggested as an efficient method to better understand the
regulatory role of miRNAs in coordinating gene expression [33]. This work also underscored the idea
that mathematical modelling is necessary for a deep understanding of miRNA'’s biological role and
highlighted the complexity of the miRNA regulation. This becomes even more important when we
take into account that there is a large amount of miRNAs that have not been discovered yet. More
than 1 x 10! potential combinations of different miRNAs can be generated with a sequence of only 20
nucleotides. In contrast, only less than 2000 different matured human miRNAs have been identified to
date [34].

The large amounts of miRNAs holding key biological roles, summed to the coincidences detected
between the different species, seems to point out that these molecules are greatly selected and
evolutionarily conserved. Thus, the translation of findings from preclinical models is more prospective
than other molecular targets. miRNAs serve as biomarkers of disease progression and are targets for
therapeutic intervention [26]. Regular protocols for biomarkers selection examine the differences in
the expression of these molecules between groups of individuals in search for syndrome targets and
evaluation of the effect of therapies.

Some of the investigated disorders are: heart failure [35], pancreatic cancer [36], hepatitis B [37],
or asthma [38]. Examples of therapies that have been examined using miRNAs as biomarkers are:
Vandetanib for advanced medullary thyroid cancer [39], oxaliplatin and capecitabine chemotherapy for
advanced gastric [40], tofacitinib treatment for rheumatoid arthritis [41], pegylated interferon therapy
for hepatitis B [10], and adalimumab for early rheumatoid arthritis [42].

4. Types of miRNA-Based Therapies

The association of siRNAs and miRNAs with many diseases and their implication in modulating
key aspects of gene silencing has brought these two molecules into the forefront of new therapeutic
interventions [27,43]. More than 20 clinical trials have been started in the last decade applying
siRNA- and miRNA-based drugs for new therapeutics [44]. The first siRNA medication, patisiran
(commercialized as Onpattro in the USA), has been approved in 2018 by the FDA. miRNA-based
therapies are less advanced but some are already in clinical trials such as miravirsen which is an
inhibitor or miR-122 and many more that are in the preclinical stage [44]. Although the modes of
action of siRNAs and miRNAs are different both oligonucleotides are single stranded and form RISC
complexes. Therefore, some of the strategies developed for an efficient siRNA drug delivery are being
used to push the development of miRNA-based therapies.
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AllmiRNA-based therapies present relevant advantages compared to other drug classes. First, they
act fast and can alter gene expression of multiple transcripts at once [44]. Moreover, the fact that these
are endogenous compounds decreases their reactivity and immunogenic responses. miRNA and their
targets are conserved and highly specific, diminishing adverse effects. Finally, miRNA can specifically
suppress the translation of any gene, including intracellular targets. They can modulate drug targets
that are inaccessible by conventional small molecule inhibitors and antibody based-therapies [45].

However, the expected clinical success was not achieved until recently after the major hurdles
of these therapies were overcome. These major issues included: (a) Inefficient binding affinity for
complementary sequences, (b) inefficient pharmacokinetics and sub-optimal biodistribution, (c) low cell
membrane penetration, and (d) enzymatic degradation by nucleases in vivo [46]. Many miRNA-based
therapies are synthetic oligonucleotides, chemically modified to enhance their stability, tissue targeting,
uptake efficacy and binding affinity [46,47]. In addition, they are encoded as prodrugs, in order to
protect the active substance from the degradation mechanisms of exogenous genetic material that exist
in eukaryotic cells [48].

The most common modifications within the miRNA chain are led first to resist degradation
by RNA nucleases and slow their removal in vivo by the liver. These chemical modifications
alter the internucleotide connections or replace backbone phosphodiester for phosphorothioate,
boranophosphate or peptide bonds. miRNAs can be also modified to improve cell and tissue targeting
by decorating miRNAs with receptor-mediated endocytosis pathways. On the other hand, cell uptake
can be improved by incorporating, at the 3’ end, lipids or cholesterol which increases the permeability
through the cellular lipid bilayer. Chemical functionalization with pH sensitive motifs have also
been incorporated to synthetic miRNAs, typically internalized by cells in endosomal compartments,
to escape and reach the cytosol where they exert gene silencing. The strategies to chemically modify
oligonucleotides have been the subject of many recent reviews and debates about their influence on the
pharmacological properties or miRNA-based therapies since often they reduce their efficiency [46,47].

In 1997, the first chemical approximations of modified RNAs were reported by Takesi et al.
They designed LNAs that are RNA analogues where the ribose residues are modified with an extra
bridge that connects oxygen 2’ with carbon 4’ and paired specifically with their target miRNA [49,50].
In 2005, Krutzfeldt et al. named a novel class of chemically engineered oligonucleotides “Antagomirs.”
These molecules were described as engineered siRNA with certain drug-like properties complementary
to miRNA. They described a method to modify chemically single-stranded RNA analogues conjugated
to cholesterol that was able to bind specific miRNA to achieve therapeutic silencing of an endogenous
gene in vivo [51]. A couple of years later, Wang et al. developed the miRNA mimic technology
(miR-Mimic). With this approach is possible to generate double-stranded miRNA-like RNA fragments
that can bind specifically to its target mRNA and produce posttranscriptional repression of the gene,
mimicking an endogenous miRNA but acting as a gene-specific target [52,53].

Because of the existence of different chemical strategies to restore the physiological levels of
miRNAs it has been possible to establish three different kinds of miRNA-based therapies (that can be
administered within nanoparticles or bare):

(a) Replacement therapies

In this case, the non-natural miRNA is the drug. Exogenous miRNAs are delivered into the
organism to substitute underexpressed miRNAs (Figure 1). Theoretically, an artificial single stranded
and mature miRNA could be used to replace the downregulated endogenous miRNA but this strategy
has shown inefficient results probably because of the low stability of the molecule. Full length
pri-mRNA has also been assayed as possible therapy but it was inefficient because pri-mRNA requires
processing at the nucleus. Typically, the mimic miRNAs used in replacement therapies are duplex
miRNAs or pre-miRNAs. Viral vectors are other kind of replacement strategies and probably the most
efficient nanotherapies in transfecting cells though their application raises some safety concerns.

(b) Antisense-mediated inhibition therapies
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Herein, the drug is an inhibitor called anti-miRNA of a specific and endogenous miRNA.
These therapies intent to inhibit overexpressed miRNAs involved in pathogenic states of target diseases.
The already mentioned LNAs or Antagomirs are examples of inhibition therapies. Miravirsen, the first
LNA-based drug in clinical trials, antagonizes microRNA-122 which is a therapeutic target for the
chronic hepatitis C virus infection [54].

(c) Therapies based on influencing the auxiliary factors of miRNA biogenesis

These therapies, less popular than the two aforementioned, target the auxiliary factors of miRNA
biogenesis such as the AGO proteins [55]. Schmidt et al. developed miRNA-specific AGO2 protein
inhibitors. They act both by antagonism to the active site of the enzyme and by blocking the short
recognition sequence to the solvent-exposed target microRNAs seed region [56].

5. Administration of miRNA-Based Therapies and the Relevant Contribution of Nanotechnology

miRNA-based therapies are administered using diverse approaches. The simplest strategies are
the local, systemic, or targeted administration of chemically modified miRNAs or anti-miRNAs [57,58].
Despite considerable progress has been achieved with these three administration methods (i.e., enhanced
bioactivity and decreased side effects) there are several issues to be addressed for a more extended
clinical translation. One of them is the deficient ability of AGO proteins to recognize artificial miRNAs
for the efficient formation of the silencing complex RISC. This is often due to the excessive chemical
modifications incorporated into miRNA mimics. On the other hand, anti-miRNA-based therapies
usually require a high dose in vivo which induces higher risk of negative side effects. Nevertheless,
the most critical obstacle to be overcome is the inefficient biodistribution in vivo regarding cell uptake
and organ-specific delivery. Thus, there is a great requirement to develop safe and efficient nanovectors
for miRNA-based therapies and in particular for treating PH [59,60]. Figure 3 shows the schematic
representation of some of the already used nanovectors for delivery of miRNA-based therapies.

1

Figure 3. Schematic representation of different nanovectors loaded with miRNA-based therapies.

(1 & 2) depict an adenovirus and an EDVM

nanocell. (3) Depicts a nanovector made of a positively
charge polymer and negatively charged miRNA-based therapy. (4) Depicts a dendrimer. (5) Depicts a
multifunctional liposome, loaded in its interior with miRNAs and functionalized with PEG (in red) on
its surface and a contrast agent (yellow star) within the lipidic bilayer. (6) Depicts a solid nanoparticle
coated with a positively charged polymer (in red) and the miRNA-based therapy via self-assembly.
(7) Depicts a porous solid particle which encapsulates the miRNA-based therapy within its pores and it

is coated to seal the pores. Therapeutic miRNA is depicted in blue and polymeric coatings in red.

5.1. Biological Delivery Nanovectors

5.1.1. Virotherapy

Virus-like nanovectors (e.g., adenovirus, lentivirus, etc.,) are extensively used for delivering
miRNAs because they dispense miRNAs more efficiently than other carriers [61-63]. They also permit
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the transduction of multiple miRNAs and their physicochemical properties can be partially modified
by incorporating moieties such as the antifouling polymer polyethylene glycol (PEG) [64].

However, it has been reported that they can induce mutagenic effects causing cancer and
undesired immune responses which limits their clinical application, so their real translation into clinics
is controvertible [65].

5.1.2. Extracellular Vesicles and Nanocells

In contrast, extracellular vesicles (EVs), considered as drug delivery carriers, are in ongoing clinical
trials aiming to translate them from basic research to clinics. The main advantage of these nanovectors is
that they can be obtained from patients avoiding toxicity [66]. They are lipidic bilayer vesicles naturally
released by cells which size varies from 10 to 10000 nm. EVs are often polydispersed in size and can be
further functionalized with nanoparticles, for example for therapy [67]. They are currently being used
as successful drug delivery systems for miRNAs into particular cells [14,16], such as hepatocytes or
macrophages [68]. Interestingly, they have been recently applied to demonstrate the therapeutic effect
of miR-181a-5p/miR-324-5p against PH in vivo [19]. They are supposed to have diminished side effects
as compared to chemically engineered carriers because of their controllable origin. However, their exact
composition is uncontrolled. They contain active molecules with unknown effects for the organism.
Their properties are dependent upon their cellular origin and separation conditions which complicates
the establishment of general protocols for their extraction, mass production, and characterization
toward ensuring reproducibility and safety. These are the main challenges of this promising technology
for miRNA delivery [69]. Other very promising biological carriers for miRNAs (in clinical trials) are
the bacterially derived EDV™ nanocells (scheme 2 in Figure 3). In cancer, they have been able to carry
and deliver efficiently miRNAs to tumors and stimulate the adaptive immune system augmenting
their antitumoral response [8]. These carriers are also biological lipidic bilayers with unknown effects
on the body.

5.2. Engineered Synthetic Nanovectors

Synthetic nanovectors (schemes 3 to 7 in Figure 3) can be finely designed in the nanoscale
and manufactured in a large scale owing to the advances achieved in nanotechnology in the past
decades [70]. Encapsulation of miRNAs has been mainly carried out using polymers and lipids [71-73].
But solid particles such as calcium phosphate have been used as efficient carriers. Often the driving
force for the entrapment of negatively charged miRNAs is the electrostatic attraction with cationic
lipids or polymers. Physical caging is also another efficient way to entrap miRNAs in empty cavities.

5.2.1. Lipidic Nanotherapeutics

Lipofectamine is considered the “gold standard” for nucleic acid transfection. It is a lipid-based
nanovector composed of positively charged cationic lipids. Often it is called a “liposome,” however it
is unclear whether it forms a hollow shell vesicular structure. It has been used extensively to transfect
miRNAs and is one of the examples of nanovectors already used to treat PH and other pulmonary
diseases. Its high transfection efficiency has been explained by Cardarelli et al. who claimed that
these nanoparticles can prevent lysosomal degradation because of their atypical Brownian motion
within cells [74]. Other similar commercially available cationic lipid-based vectors are Invivofectamine,
NeoFX, or Oligofectamine.

Liposomes are the most advanced and sophisticated delivery systems for miRNA delivery. They
are multilamellar or unilamellar spherical vesicles made of phospholipids composed of a hydrophilic
head group and a hydrophobic tail. Depending on the chemical nature of the main hydrophilic group,
we can differentiate between positive, negative, and neutral charged liposomes. The first generation of
liposomes for gene delivery, able to successfully transfect cells, were composed by phospholipids with
a positively charged head group [75]. The encapsulation efficiency is enhanced for liposomes with
positive charge as compared with negative or neutral liposomes because of the electrostatic attraction
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with the negatively charged miRNAs. However, the use of permanently charged cationic lipids can
induce cellular and inflammatory toxicity, fast plasma clearance, aggregation, and accumulation in
lungs, liver, and spleen. The stability, transfection efficiency, and cellular toxicity is determined in a
large extend on the lipid composition, so many novel formulations of lipids and liposomes have been
developed in the past decades. Ionizable cationic lipids have been chemically designed to produce
pH sensitive liposomes able to complex the negatively charged miRNAs at low pH. Interestingly,
they shift their charge to neutral charge at physiological pH toward reduced aggregation, toxicity,
and electrostatic adherence to cellular membranes. In addition, this charge reversibility triggers a
pH-induced release within the acidic endosomal compartments, hypothetically by destabilization of
the endosomal membrane because of the electrostatic interaction between the positively charged lipids
of liposomes and the negatively charged lipids of the endosomal membrane. Liposomal miR-34a
mimics, based on this kind of amphoteric lipids, have successfully entered clinical trials to treat patients
with advanced solid tumors [76]. The last advances in liposomal RNA delivery have been assertively
reviewed by Peer et al. [77].

5.2.2. Polymeric Nanotherapeutics

Using polymers as the building blocks of nanotherapeutics has the advantage of tailoring its
sustained and controlled drug delivery properties [78]. Examples of polymers that form complexes
with nucleic acids through electrostatic interactions are poly(ethylenimine) or poly(allylamine) [79].
Recently dendrimers, which are highly symmetrical hyperbranched polymers, have also been applied
as drug delivery systems for miRNAs. In this case, the encapsulation is due to both hydrophilic and
hydrophobic interactions [80,81]. Solid polymeric nanoparticles such as the FDA and EMA-approved
poly(lactic-co-glycolic acid) (PLGA) are widely used for sustained drug delivery of hydrophobic drugs
encapsulated in the interior. However, they can also entrap inside hydrophilic molecules such as
siRNAs or miRNAs applying a double emulsion synthetic method or adsorb them on their surface by
electrostatic interactions [82,83]. Many different types of polymeric particles can be applied to entrap
and release miRNAs but have not yet been assayed. For example, nanogels are good candidates that
have demonstrated decent delivery efficiency for siRNA transfection and would work similarly for
miRNA [84]. These nanovectors are crosslinked polymeric networks that have high water content
and large mesh size. Its advantage over other possible miRNA carriers is its mild conditions for
encapsulation of labile drugs and their stimuli-responsive properties [85].

5.2.3. Inorganic Particles as Nanotherapeutics

Inorganic silica and calcium phosphate particles are also promising carriers for miRNA delivery.
Both are innocuous to the body and are degraded by hydrolysis, delivering their content. Silica
nanoparticles are known for the easy modification of surface chemistry, but also for the variety of
sizes, shapes, and structures that can be built with this material. Especially interesting are the porous
particles and hollow shells that can host and deliver miRNAs from their hollow cavities [86,87].
Calcium phosphates are among the most widely used pharmaceutical excipients and there are notable
examples of miRNAs delivery from this type of particles [88]. They have been even functionalized
with targeting moieties for in vivo cell targeting. miRNAs are entrapped in these particles by simple
coprecipitation or diffusion under mild conditions [89]. However, they have not yet been applied to
pulmonary hypertension.

In this review, we only give a brief summary of the promising nanotherapeutics that could be
applied for the encapsulation and delivery of miRNA-based therapies. But often advanced delivery
systems are composites. The stealth properties to escape the reticuloendothelial system are obtained
mainly by polymer coating (e.g., polyethylene glycol). Targeting can be accomplished by decorating
the nanoparticle surface with antibodies, peptides, and other small molecules. And multifunctionality
is often sought by combining metallic nanoparticles with other materials such as Nanoplex developed
by Wu et al. This miRNA nanovector composed of pH sensitive micelles and superparamagnetic
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nanoparticles for magnetic resonance imaging was used for combination therapy with two different
mimics (miRNA-29b and miRNA-122) against hepatic fibrosis [90]. In conclusion, there is a broad
variety of possible drug carriers but it must be assumed that every nanovector has its pros and
cons. In this regard, studies such the developed by Osorio et al. comparing the loading, release and
therapeutic effect of three different miRNA nanotherapeutics (liposomes, PLGA, and EVs) are of special
interest in the field [91].

Although the application of nanotherapies to treat PH is in an early stage, due to the dysfunctional
and hyperpermeable vascular endothelium, they could represent a powerful tool to bringing
PH therapies, such as miRNAs, to novel cellular targets, as has been assertively reviewed by
Segura-lbarra et al. [60].

6. Administration Routes for Lung Targeting

The advantage of targeting lung diseases with miRNA-based therapies as compared with other
organs is that it is possible to directly administer these compounds through the respiratory track which
limits side and off-target effects [92]. In this context, Scholosser et al. have recently demonstrated that
direct administration of mimic miRNA therapeutics via the oronasal or the trachea depositions (with or
without aerosolization) are efficient methods for direct targeting of the lungs [58]. In this study, they
compared five different direct administration strategies (intratracheal liquid instillation, intratracheal
aerosolization with and without ventilator assistance, intranasal liquid instillation, and intranasal
aerosolization) with three different systemic strategies used as controls (intravenous, intraperitoneal,
and subcutaneous delivery) and demonstrated that all lung-targeted strategies showed lung-selective
miRNA mimics uptake as compared to systemic administered mimics. Moreover, they showed that
intratracheal administration of a liquid miRNA formulation provided the highest lung specific delivery
up to 4 orders of magnitude more than the control strategies. This work highlights the impact of the
administration method on the therapeutic outcome and the cost-effectiveness of miRNA mimics.

A second aspect and less advantageous than direct deposition to take into consideration for
lung-specific delivery of miRNAs is their elimination by intrinsic pulmonary clearance mechanisms,
including enzymatic degradation, quick absorption into the blood, and ingestion by the alveolar
macrophages. In this context, nanovector-based delivery systems such as lipid or polymer nanoparticles
are used to minimize pulmonary clearance mechanisms, enhance the therapeutic effect, and achieve
specific cell targeting [76]. Although cell targeting remains a considerable challenge in nanomedicine,
novel and more specialized delivery technologies are continuously being developed, so miRNA
technology would benefit from it [93].

7. miRNA-Based Therapies in Pulmonary Diseases

Altered expression of miRNAs has been reported for many lung diseases such as asthma,
pulmonary fibrosis, and lung cancer [94]. To the best of our knowledge there are no miRNA-based
therapies for lung diseases currently accepted by the regulatory agencies, although the same company
with patisiran in the market (Ainylam Pharmaceuticals) has finished a phase IIb clinical trial with
a siRNA aerosolized therapeutic solution for the treatment of respiratory syncytial virus infection
during lung transplantation. Despite this, the promising results obtained in animal models treated
with miRNA based therapies have brought great hope in the field [95]. Table 1 summarizes few of
reported miRNA-based therapies for lung diseases emphasizing on the characteristics of the treatment
such as the type of treatment, the use of nanovector, the phenotypic effect, and the application.
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Table 1. Examples of miRNA-based therapies applied in lung diseases.

Targeted 1 .2 Type of . c . 3
miRNA NV Admin. Therapy Disease Effect Application Ref.
|Collal”,
miR-29 None ivi 4 Repl. ° PF © Col3a1 8 BMM ? [96]
expression
| Fibroblast BMM
miR-200c None int.ins. 1° Repl. PF fibrogenic Human [97]
phenotype cells
Allergic
miR-155-5p None intranasal Inh. 11 Asthma | Disease arway [98]
phenotype disease
MM 12
miR-101 Adenovirus inh. Repl. PF | Fibroblast BMM [99]
proliferation
Lung
miR-34a Lipid NP 13 s.c. 14 Repl. Lung { Tumor cancer [87]
cancer growth
xenograph
. . .. Solid T Antitumor Humans,
miR-34a Liposome Lv.i Repl. tumor activity Phase I [76]

! Nanovector. 2 Administration. 3 Reference. 4 Intravenous injection. ® Replacement therapy. ® Pulmonary fibrosis.
7 Collagenlal. 8 Collagen3al. ° Bleomycin murine model. !© Intratracheal instillation. ™ Inhibition therapy.
12 Murine model. !® Nanoparticle. ' Subcutaneous injection. 7 means increase and | means decrease.

8. miRNA-Based Therapies in Pulmonary Hypertension

Pulmonary hypertension (PH) is a condition characterized by increased mean pulmonary arterial
pressure. During the compensatory phase, the right ventricle of the heart deals with pressure overload
to maintain the blood flow by chamber transformation. This translates into an adaptive increase in artery
wall thickness which involves an uncontrolled cell proliferation. Molecular mechanisms underlying the
physiopathology have not been completely elucidated but since there is no cure for this fatal disease it
urges to find methodologies for the selective detection and treatment of PH [100]. PH has been classified
in five different groups which depend on the origin of the disease. Pulmonary arterial hypertension
(PAH) is the commonly the most studied case of PH. In PAH, the small arteries (and in some cases also
the venules) in the lung are obstructed due to different reasons such as HIV infection, autoimmune
disorders, and others but it can be also idiopathic. All PH groups courses with endothelium dysfunction
and vascular remodeling in the lungs which has been extensively described that is accompanied by a
metabolic reprogramming in the heart and the lung only explored until recently [101-103]. It is known
that arterioles can undergo vasoconstriction imbalance, cellular remodeling, thrombosis, and cell
proliferation. Pulmonary artery endothelial cells (PAECs), pulmonary artery smooth muscle cells
(PASMCs), myofibroblast, pericytes, platelets, and inflammatory cells play key roles during the disease
development. The vascular remodeling during PH involves PAECs dysfunction, such as proliferation,
interaction with PASMCs, and transdifferentiation and the accumulation of PASMCs in obstructive
vascular lesions [104,105]. Figure 4 shows schematically a transversal section of a pulmonary artery
developing PH.
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Figure 4. Schematic drawing of a transversal section of a pulmonary artery developing PH and the
structural alterations in the different cellular levels. Initially smooth muscle cells excessively proliferate
producing vasoconstriction. After that, inflammation, remodeling, and thrombotic lesions will follow.

Currently, PH treatments only help to relieve the symptomatology and do not stop the progression
of the disease. The medical therapies available for the treatment of PAH include calcium channel
blockers, endothelin receptor antagonists, phosphodiesterase type 5 inhibitors and soluble guanylate
cyclase stimulators, prostacyclin analogues, and prostacyclin receptor agonists [106]. miRNA
dysregulation has been correlated to the physiopathology of PH and the use of miRNA-based
therapies has emerged as new hope toward the reversion of PH symptomatology [107]. Table 2
summarizes a list of reported miRNA that could be efficient therapeutic targets for the treatment
of PH. In many aspects, PH disease development resembles tumorigenesis. In PH and cancer the
hyperproliferative and apoptosis resistant phenotype is partially related to impaired mitochondrial
dynamics and in both cases there is a metabolic dysfunction (Warburg effect) characterized by a shift
from oxidative glucose metabolism to aerobic glycolysis which provides the survival conditions for
highly proliferating cells [17]. Given these similarities multiple miRNAs that are aberrantly expressed
in cancer are also dysregulated in PH. For instance, miR-204 and miR-205 are downregulated in
pulmonary artery small muscle cells (PASMs) in PAH as well as in many cancers [108]. In both
cases the downregulation of these miRNAs induces metabolic dysfunction and enhanced PASMCs
proliferation. MiR-204 and miR-205-based treatments have demonstrated to be efficient for decreasing
cell proliferation and metastasis in few cancers and recently it has been reported their potential use for
reversing PAH in a murine model [109,110]. Its encapsulation and targeted release in the lungs could
be advantageous for preventing the miRNAs being filtered by the kidney, decrease off-targeted effects,
and improve intracellular delivery.



Int. ]. Mol. Sci. 2020, 21, 3253

12 0f 23

Table 2. Reported dysregulated miRNA biomarkers in pulmonary hypertension, origin of the obtained
data, reported targets and miR functions.

miRNA Model Target Gene Exp. Function Ref. 2
miR-9-1 PASMCs 2 from HIF-1 T Phenotypic switch [111]
+ miR-9-3 HMM *
miR-17-5p Bioinformatics BMPR2 ) Differentiation, [112]
+ miR-20a +HEK293 cells proliferation and fibrous
matrix production of
PAECS ® and PASMCs
miR-100 HMM, MCT © mTOR ! Proliferation of PASMCs [113]
miR-124 HPAECs 7 PTPB1 + PKM1/M2 l Proliferation of PASMCs [114]
and PAFs 8
miR-140-5p Bioinformatics 23 genes & 7 signaling l Proliferation and [115]
(miRBase pathways pro-differentiation of
database) PAECS, PASMCs & PAFs
miR-145 HMM, BMPR2 ) Proliferation of PASMCs [116]
HPASMC
miR-199a-5p HPASMC s, SMAD3 T Inhibit the level of NO [117]
HPAECs & and promote the
HMM concentration of Ca2*
miR-204 PAECs TGFBR2, x-SMA, ! Proliferation and [118]
SMAD2/7 migration of PAECs
miR-205-5p Hypoxic MICAL2 ! Proliferation of PASMCs [110]
PASMCs & ERK1/2 signaling
HMM
miR-206 PASMCs & HIF-1 o /JFHL-1 l Promotion of cell entry [119]
HMM into the S phase and
PASMC proliferation
miR-214 Hypoxic CCNL2, LMOD1, T Proliferation of PASMCs [120]
HPASMCs, MEF2C, PTEN by suppressing cell
Sugen/HMM apoptosis
miR-339 MCT murine FGF l Proliferation of PASMC [121]
model
miR-449a-5p PASMCs from MYC l Mitochondrial [122]
MCT dysfunction and
proliferation of PASMCs
miR-1281 Hypoxic HDAC4 l Cell proliferation and [123]
HPASMCs & migration
MCT
miR-637 HPASMCs CDK6 l Increase PASMCs [124]
viability
miR-4632 HPASMCs JUN ! Inhibit proliferation and [125]
promote HPASMCs
apoptosis

1 Expression of miRNA. 2 Reference. 3 Pulmonary artery smooth muscle cells. * Hypoxic murine model. ® Pulmonary
artery endothelial cells. ® Monocrotaline murine model. 7 Human pulmonary artery endothelial cells. 8 Pulmonary
artery fibroblasts. T means increase and | means decrease.

Table 2 shows a small portion of the possible miRNA targets and some of their reported targeted

genes that could be used to treat PH. Considering that only for dysfunctional PAECs more than 20
different dysregulated miRNAs have been already reported, it will become essential to use in silico
approaches to identify the most relevant miRNA targets for developing novel treatments against
PAH [126]. In this context, we referred readers to the work recently published by Bonnet et al. [95].
Currently, the treatment of PH with miRNA-based therapies is still in an early phase, similar to
siRNA-based therapies [127]. There are no clinical trials going on yet, but fortunately all reported

pre-clinical trials up to now have shown significant beneficial effects and some of them have
demonstrated an evident decrease of the arteriopathy and cardiac dysfunction. We have collected

these examples in Table 3.
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Table 3. Relevant information about miRNA-based therapies in pulmonary hypertension.

{;ﬁiﬁf Nv1 Adm. 2 Therapy Effect Application Target cell  Ref. 3
| Arteriopathy
. LRVP © 8
miR-17 None R 5 7 MCT
(Antagomir) ivi. Inh. IRVH HMM © PASMC [128]
TArtery
acceleration time
. None - |Arteriopathy
miR-21 (Antagomirs) ivi Inh. LRVP HMM PASMC [128]
miR-92a ( Ang;(’)‘;irs) ivi Inh. |Arteriopathy HMM PASMC [128]
Lentivirus ;
. . o Restore hypoxia PASMCs
miR-17~92 r(n-t IEE:I:) ivi. Repl. phenotype HM-KO-M 10 PASMC [129]
i . . L 11 IRVP HPASMC
miR-145 Lipofectamine s.C.i. Inh. | Arteriopathy HMM PASMC [116]
iR- ; 12 — IRVP
miR-145 Liposomes ivi. Inh. LArtery thickness Sugen/HMM PASMC [7]
miR-181a-5p/ EV and ivi Repl. 13 lCllII{V? llé{YPtIl o HPAECs PAEC [19]
miR-324-5p  Invivofectamine v P e’ prowieratio Sugen/HMM
lAngiogenesis
1Cell proliferation
|Vascular
miR-204a Invivofectamine int.neb. 14 Repl. remodeling PASMCs PASMC [109]
MCT
LPA blood
pressure
. . . . IPASMC PASMC
miR-205 Lipofectamine in vitro Repl. proliferation HPASMC PASMC [110]
. Adeno-associated . . lVascul.ar
miR-495 virus ivi Inh. remodeling Sugen/HMM PAEC [130]
lAngiogenesis

I Nanovector. 2 Administration.  Reference. # Intravenous injection. ® Inhibition therapy. © Right Ventricle
Preassure. 7 Right Ventricle Hypertrophy. 8 Monocrotaline murine model. ® Hypoxic murine model. ° Hypoxic
murine knockout model. ™ Subcutaneous injection. !> Nanoparticles. '* Replacement therapy. ' Intratracheal
nebulization. T means increase and | means decrease.

As can be seen in Table 3, some studies aimed at determining the possible therapeutic effect of
a target miRNA using bare miRNA mimics or Antagomirs as a first assay. This was the case of the
study carried out by Pullamsetti et al. in 2012. However, most of the reported research has been done
using nanovectors known to improve transfection efficiency such as commercial lipofectamine or viral
vectors [110,130]. For instance, in the study of the potential use of miR-145 as a therapeutic target,
Caruso et al. was first evidencing the upregulation of miR-145 in humans with PAH and in animal
models of PAH. Then, they used antimiR-145 delivered with commercial lipofectamine and showed
that it prevented arteriopathy in hypoxic mice. Owing to this study, some years later McLendon et al.
reported effective delivery and retention in the lungs of antimiR-145 loaded in more sophisticated
cationic liposome-based nanovectors made of polymer-functionalized lipopolyamines that provided
stealth properties [7]. Importantly, their results showed an evident decrease of right ventricle pressure,
decreased artery muscularization, and lower degree of cardiac dysfunction in murine models of
severe PAH while avoiding off-target effects and toxicity. These two last features are essential for the
translation of miRNA therapies into clinics but they are still a challenge in the field.

The dose of miRNA required to obtain a therapeutic effect depends on the animal model of PH
and many other factors. However, we could draw some general conclusions from Table 3. Comparing
two different miRNA therapies in mice housed in hypoxic conditions, reduction of arteriopathy
could be achieved in both cases after 2-3 intravenous injections per week for 2 weeks (6 injections in
total) [19,128]. When miRNAs were not encapsulated, a higher concentration in treatment, 8 mg/Kg
as compared with 2 mg/Kg, was required for the administration of Invivofectamine. In rat models
with monocrotaline-induced PH or hypoxia and Sugen, the therapeutic effect was achieved only after
2-3 intravenous injections. Similarly, the concentration of miRNA from the injections was lower for
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encapsulated therapies (2 mg/Kg vs. 5 mg/Kg) [7,128]. The dose could also decrease with direct
administration to the lungs, as demonstrated by Courboulin et al. [109]. Only two nebulizations (1 per
week) of encapsulated miRNA mimics were required to obtain a therapeutic outcome of miR-204a
mimics in a PH model with monocrotaline. This administration method could also avoid some of the
potential off-target effects of miRINA-based therapies, but this has not yet been confirmed. Despite
the lungs offer the advantage of local delivery of therapies, as can be seen in Table 3, the majority of
the miRNA treatments are currently being administered intravenously. This is due to the early stage
of these therapies and the barriers that still remain for real targeted therapies such as (1) controlling
lung clearance, (2) achieving a homogeneous biodistribution, (3) obtaining stable miRNA carriers for
nebulization, and (4) obtaining selective delivery systems to the target cells. In addition, what is not
yet known is whether the decrease in PH pathology is temporary or lasting [43]. Future advances in
other miRNA therapies such as cancer are likely to help address these challenges for PH [44].

In the field of non-coding RNA therapies, combination therapies are expected to be more efficient
than single-target RNA; Sindi et al. have obtained outstanding results in this direction already in
PH [19]. These authors first focused their work on deciphering whether the Kriippel-like factor 2
(KLF2) signaling pathway in PAECs could be a novel molecular target to combat PH. They then
demonstrated that the combination therapy of exosomal miR-181a-5p and miR-324-5p was helpful
in reducing right ventricle pressure and hypertrophy, cell proliferation and angiogenesis in murine
models. Interestingly, they compared single miRNA delivery with combination therapy displaying a
higher efficiency for the latter. This study, in addition shows the potential use of exosomes as efficient
carriers for miRNA-based therapies, illustrates perfectly how important is to detect many different
miRNAs to find the best therapeutic outcome.

Figure 5 depicts the few but promising nanovectors applied to date to treat PH with miRNA
therapies and their reported cell targets (also reported in Table 3). Nanovectors may target PASMCs
because of dysfunctional endothelium patency in HP [131]. However, the use of nanovectors
functionalized with targeting molecules could show significant improvements to avoid side and
off-target effects while improving therapeutic outcomes. Peptides and antibodies have been already
applied successfully in miRNA-based therapies when targeting other organs such as heart or
liver [70,132-134], so we are convinced that this strategy will be promptly applied in PH treatments.
There is plenty of room for improvement in miRNA therapeutics for PH.

NPs Targeting PAEC ° NPs Targeting PASMC °
A B
° [ )
° o
Q" - % Q".ﬂ.*
- ° . ,{ & o .&
» . : L J °
R & s *
. °
3~ Adenovirus _\'“J'k Lentivirus
‘: Inh. miR-205 z . o Repl.miR-17~92 (KO)

.. Exosome Lipofectamine
‘ Repl. miR-181a-5p/miR-324-5p Inh. miR-145

*7 Liposome
< Inh. miR-145

. Invivofectamine
< Repl. miR-181a-5p/miR-324-5p

W
L

Figure 5. Schematic drawing of a cross section of two pulmonary arteries that develop PH and are
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being treated with nanopharmaceuticals (represented as small red and black spheres) that target the
endothelial cells of the PAEC arteries (A) or smooth muscle cells PASMC (B). Endothelial dysfunction
leads to a patent state in which NPs can leak into the pulmonary vasculature and reach PASMC more
easily than in healthy arteries. The nanovectors collected in Table 3 are shown here.

9. Conclusions

Although nowadays the majority of miRNA-based therapeutics in clinical trials and patents are
related with cancer [43], there is a great promise for the treatment of pulmonary diseases and other
pathologies. In particular pulmonary hypertension can greatly benefit from all the research that has
been already advanced for miRNA-based cancer treatments. PH and cancer hold many similarities
such as cell hyperproliferation and the Warburg effect that make easier to find appropriated molecular
targets. We have shown that there is a long list of possible miRNA targets for developing miRNA-based
treatments for PH but few studies that have already assayed their efficacy to reverse the severity of this
fatal disease. However, they have shown that it is possible to reduce uncontrolled cell proliferation,
reduce vascular remodeling and angiogenesis in preclinical trials. This successful early phase research
reflects the need of developing robust delivery technologies. Bare miRNAs cell transfection is a very
inefficient process that has been ameliorated with chemical modifications of such oligonucleotides.
Unlikely, these modifications often decrease their specificity and there is a general consensus about the
future role of nanovectors in the advance of the field. Until now, there are no perfect nanovectors for
miRNA delivery, but we are convinced that the way to advance this type of therapy will go through the
improvement of known nanotherapies, either with increased transfection efficiency, moieties to target
cells, or combination therapies. All this will be aimed at improving efficacy and specificity which are
currently the main goals for miRNA-loaded nanovectors applied to PH.
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Abbreviations

miRNA microRNA

siRNA small interfering RNA

mRNA messenger RNA

LNA locked nucleic acid

AGO Argonaute protein

RISC RNA-induced silencing complex
NV nanovector

NP nanoparticle

PEG polyethylene glycol

PLGA poly(lactic-co-glycolic acid)

EV extracellular vesicles

FDA Food and drug administration of Unites States
EMA European medicine agency

PA pulmonary artery

PH pulmonary hypertension

PAH pulmonary artery hypertension
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UTR untranslated region

PAEC pulmonary artery endothelial cell

HPAEC human pulmonary artery endothelial cell

PASMC pulmonary artery smooth muscle cell

HPASMC human pulmonary artery smooth muscle cell

PAF pulmonary artery fibroblast

HIF-1 o hypoxia inducible factor 1-alpha

BMPR2 bone morphogenetic protein receptor type II

mTOR mammalian target of rapamycin

PTPB1 polypyrimidine tract-binding protein 1

PKM1/M2 pyruvate kinase isozymes M1/M2

SMAD3 mothers against decapentaplegic homolog 3

TGFBR2 transforming growth factor beta receptor 2

o-SMA Alpha-smooth muscle actin

SMAD2/7 mothers against decapentaplegic homolog 2/7

MICAL2 microtubule associated monooxygenase, calponin and LIM domain containing 2

ERK1/2 extracellular signal-regulated kinase %

FHL-1 four and a half LIM domain protein

CCNL2 cyclin-L2

LMOD1 leiomodin 1

MEF2C myocyte-specific enhancer factor 2C

PTEN phosphatase and tensin homolog

FGF fibroblast growth factor

MYC master regulator of cell entry and proliferative metabolism

HDAC4 histone deacetylase 4

CDK6 cell division protein kinase 6
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