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The altered Schaedler flora (ASF) is a bacterial community that supports normal growth and development of gnotobiotic mice.
We report here the draft genome sequences of the 8 bacteria that comprise the ASF.
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The importance of the gastrointestinal (GI) microbiota in the
health of the host has been known for decades. Roles of the

GI microbiota include nutrient acquisition, protection against
pathogens, and immune system development. Recent studies have
added to our understanding by providing new mechanistic in-
sights into host-microbiota interactions (1, 2). A significant chal-
lenge to these studies moving forward is the high abundance and
diversity of bacterial species that colonize the mammalian GI
tract, which is dominated by members of the phyla Bacteroidetes
and Firmicutes (3). Recently, there has been renewed interest in
the gnotobiotic mouse model, represented by the altered
Schaedler flora (ASF), for the study of how gut bacteria impact
the host (4–10).

The ASF mouse model is derived from the work of Schaedler et
al., who colonized germfree mice with a consortium of bacteria
that originated from conventional mice (11). Motivated by efforts
by the National Cancer Institute (NCI) to generate mice colonized
with a standardized microbiota, the ASF was subsequently derived
from the original Schaedler flora, which comprised eight bacterial
species. The ASF also consists of eight separate bacterial species,
which were isolated from Swiss outbred mice, and includes four
species not present in the original community (12). The ASF has
subsequently been characterized by 16S rRNA sequence analysis
to better determine the phylogeny of the members (13) and by
quantitative PCR to assess the abundance, stability, and spatial

distribution throughout the GI tract (14, 15). To further develop
the ASF model as a resource for gut microbiota studies, we have
determined the genome sequences of each of the bacterial species,
which represent the first genome sequences of a complete mam-
malian GI bacterial community.

Whole-genome shotgun sequencing was done using Illumina
sequencing technology to generate draft sequences for the 8 ASF
strains, as summarized in Table 1. Genomic sequence reads were
generated on an Illumina HiSeq 2000 machine. Data consisted of
two libraries: one 180-bp insert paired-end library (16) and a
large-insert, robotically size-selected, 3- to 5-kbp jumping library
(17).

Genome consensus was built de novo using ALLPATHS-LG
(18) with default parameters, except for Lactobacillus bacterium
ASF360, for which Velvet was used due to lack of jumping libraries
for ASF360. Original assembly consensus was improved and cor-
rected for Mucispirillum schaedleri ASF457 and Firmicutes bacte-
rium ASF500 using the Pilon assembly improvement tool (D.
Ward, unpublished data). Assemblies were analyzed using the
GAEMR (http://www.broadinstitute.org/software/gaemr/) as-
sembly evaluation package and manually reviewed for quality.

Protein-coding genes were predicted with Prodigal (19) and
filtered to remove genes with at least 70% overlap of tRNAs or
rRNAs, which were identified using tRNAscan-SE (20) and
RNAmmer (21), respectively. Gene product names were assigned

TABLE 1 Genome features and accession numbers of the ASF bacteria

ASF no. Taxonomy
Genome size
(Mb) GC (%) Gene count Contig count N50 (kb) Fold coverage GenBank accession no.

ASF356 Clostridium sp. 2.91 30.91 2,799 31 209 143 AQFQ00000000.1
ASF360 Lactobacillus sp. 2.01 35.86 1,930 244 19 47 AQFR00000000.1
ASF361 Lactobacillus murinus 2.17 39.96 2,102 78 59.7 160 AQFS00000000.1
ASF457 Mucispirillum schaedleri 2.33 31.15 2,144 39 151 142 AYGZ00000000.1
ASF492 Eubacterium plexicaudatum 6.51 42.86 6,217 248 74.4 119 AQFT00000000.1
ASF500 Firmicutes bacterium 3.70 58.77 3,563 42 300 137 AYJP00000000.1
ASF502 Clostridium sp. 6.48 47.90 6,062 134 137 82 AQFU00000000.1
ASF519 Parabacteroides sp. 6.87 43.45 5,477 24 584 143 AQFV00000000.1
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based on top blast hits against the Swiss-Prot protein database (at
least 70% identity and at least 70% query coverage) and a protein
family profile search against the TIGRfam HMMER equivalogs.
More detailed characterizations of the ASF genomes are forth-
coming.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession numbers shown in Table 1.
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